Dans cet article, nous démontrons que l’algèbre vertex affine universelle associée à une algèbre de Lie simple est simple si et seulement si la variété associée à son unique quotient simple est égale à . Nous en déduisons un résultat analogue pour la réduction quantique de Drinfeld-Sokolov appliquée à l’algèbre vertex affine universelle.
In this note, we prove that the universal affine vertex algebra associated with a simple Lie algebra is simple if and only if the associated variety of its unique simple quotient is equal to . We also derive an analogous result for the quantized Drinfeld-Sokolov reduction applied to the universal affine vertex algebra.
Accepté le :
Publié le :
DOI : 10.5802/jep.144
Keywords: Associated variety, affine Kac-Moody algebra, affine vertex algebra, singular vector, affine $W$-algebra
Mot clés : Variété associée, algèbre de Kac-Moody, algèbre vertex affine, vecteur singulier, $W$-algèbre affine
Tomoyuki Arakawa 1 ; Cuipo Jiang 2 ; Anne Moreau 3
@article{JEP_2021__8__169_0, author = {Tomoyuki Arakawa and Cuipo Jiang and Anne Moreau}, title = {Simplicity of vacuum modules and associated~varieties}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {169--191}, publisher = {\'Ecole polytechnique}, volume = {8}, year = {2021}, doi = {10.5802/jep.144}, mrnumber = {4201804}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.144/} }
TY - JOUR AU - Tomoyuki Arakawa AU - Cuipo Jiang AU - Anne Moreau TI - Simplicity of vacuum modules and associated varieties JO - Journal de l’École polytechnique — Mathématiques PY - 2021 SP - 169 EP - 191 VL - 8 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.144/ DO - 10.5802/jep.144 LA - en ID - JEP_2021__8__169_0 ER -
%0 Journal Article %A Tomoyuki Arakawa %A Cuipo Jiang %A Anne Moreau %T Simplicity of vacuum modules and associated varieties %J Journal de l’École polytechnique — Mathématiques %D 2021 %P 169-191 %V 8 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.144/ %R 10.5802/jep.144 %G en %F JEP_2021__8__169_0
Tomoyuki Arakawa; Cuipo Jiang; Anne Moreau. Simplicity of vacuum modules and associated varieties. Journal de l’École polytechnique — Mathématiques, Tome 8 (2021), pp. 169-191. doi : 10.5802/jep.144. https://jep.centre-mersenne.org/articles/10.5802/jep.144/
[ABD04] - “Rationality, regularity, and -cofiniteness”, Trans. Amer. Math. Soc. 356 (2004) no. 8, p. 3391-3402 | DOI | MR | Zbl
[AK18] - “Quasi-lisse vertex algebras and modular linear differential equations”, in Lie groups, geometry, and representation theory, Progress in Math., vol. 326, Birkhäuser/Springer, Cham, 2018, p. 41-57 | DOI | MR | Zbl
[AM17] - “Sheets and associated varieties of affine vertex algebras”, Adv. Math. 320 (2017), p. 157-209, Corrigendum: Ibid 372 (2020), article Id. 107302 | DOI | MR | Zbl
[AM18a] - “Joseph ideals and lisse minimal -algebras”, J. Inst. Math. Jussieu 17 (2018) no. 2, p. 397-417 | DOI | MR | Zbl
[AM18b] - “On the irreducibility of associated varieties of -algebras”, J. Algebra 500 (2018), p. 542-568 | DOI | MR | Zbl
[Ara05] - “Representation theory of superconformal algebras and the Kac-Roan-Wakimoto conjecture”, Duke Math. J. 130 (2005) no. 3, p. 435-478 | DOI | MR | Zbl
[Ara07] - “Representation theory of -algebras”, Invent. Math. 169 (2007) no. 2, p. 219-320 | DOI | Zbl
[Ara11] - “Representation theory of -algebras, II”, in Exploring new structures and natural constructions in mathematical physics, Adv. Stud. Pure Math., vol. 61, Math. Soc. Japan, Tokyo, 2011, p. 51-90 | DOI | MR | Zbl
[Ara12a] - “A remark on the -cofiniteness condition on vertex algebras”, Math. Z. 270 (2012) no. 1-2, p. 559-575 | DOI | MR | Zbl
[Ara12b] - “-algebras at the critical level”, in Algebraic groups and quantum groups, Contemp. Math., vol. 565, American Mathematical Society, Providence, RI, 2012, p. 1-13 | DOI | MR | Zbl
[Ara15a] - “Associated varieties of modules over Kac-Moody algebras and -cofiniteness of -algebras”, Internat. Math. Res. Notices (2015) no. 22, p. 11605-11666 | DOI | MR | Zbl
[Ara15b] - “Rationality of -algebras: principal nilpotent cases”, Ann. of Math. (2) 182 (2015) no. 2, p. 565-604 | DOI | MR | Zbl
[AvE19] - “Rationality and fusion rules of exceptional W-algebras”, 2019 | arXiv
[BD] - “Quantization of Hitchin’s integrable system and Hecke eigensheaves”, preprint, available at http://math.uchicago.edu/~drinfeld/langlands/QuantizationHitchin.pdf
[BFM] - “Introduction to algebraic field theory on curves”, preprint
[BLL + 15] - “Infinite chiral symmetry in four dimensions”, Comm. Math. Phys. 336 (2015) no. 3, p. 1359-1433 | DOI | MR | Zbl
[BR18] - “Vertex operator algebras, Higgs branches, and modular differential equations”, J. High Energy Phys. (2018) no. 8, article ID 114, 70 pages | DOI | MR | Zbl
[CM16] - “The symmetric invariants of centralizers and Slodowy grading”, Math. Z. 282 (2016) no. 1-2, p. 273-339 | DOI | MR | Zbl
[DM06] - “Integrability of -cofinite vertex operator algebras”, Internat. Math. Res. Notices (2006), article ID 80468, 15 pages | DOI | MR | Zbl
[DSK06] - “Finite vs affine -algebras”, Japan. J. Math. 1 (2006) no. 1, p. 137-261 | DOI | MR | Zbl
[EF01] - “Appendix to [Mus01]”, 2001
[FF90] - “Quantization of the Drinfelʼd-Sokolov reduction”, Phys. Lett. B 246 (1990) no. 1-2, p. 75-81 | DOI | Zbl
[FF92] - “Affine Kac-Moody algebras at the critical level and Gelʼfand-Dikiĭ algebras”, in Infinite analysis, Part A, B (Kyoto, 1991), Adv. Ser. Math. Phys., vol. 16, World Sci. Publ., River Edge, NJ, 1992, p. 197-215 | DOI | Zbl
[FG04] - “-modules on the affine Grassmannian and representations of affine Kac-Moody algebras”, Duke Math. J. 125 (2004) no. 2, p. 279-327 | DOI | MR | Zbl
[Fre05] - “Wakimoto modules, opers and the center at the critical level”, Adv. Math. 195 (2005) no. 2, p. 297-404 | DOI | MR | Zbl
[FZ92] - “Vertex operator algebras associated to representations of affine and Virasoro algebras”, Duke Math. J. 66 (1992) no. 1, p. 123-168 | DOI | MR | Zbl
[GG02] - “Quantization of Slodowy slices”, Internat. Math. Res. Notices (2002) no. 5, p. 243-255 | DOI | MR | Zbl
[GK07] - “On simplicity of vacuum modules”, Adv. Math. 211 (2007) no. 2, p. 621-677 | DOI | MR | Zbl
[Har77] - Algebraic geometry, Graduate Texts in Math., vol. 52, Springer-Verlag, New York-Heidelberg, 1977 | Zbl
[Hum72] - Introduction to Lie algebras and representation theory, Graduate Texts in Math., vol. 9, Springer-Verlag, New York-Berlin, 1972 | MR | Zbl
[Kac90] - Infinite-dimensional Lie algebras, Cambridge University Press, Cambridge, 1990 | DOI | Zbl
[KRW03] - “Quantum reduction for affine superalgebras”, Comm. Math. Phys. 241 (2003) no. 2-3, p. 307-342 | DOI | MR | Zbl
[KW89] - “Classification of modular invariant representations of affine algebras”, in Infinite-dimensional Lie algebras and groups (Luminy-Marseille, 1988), Adv. Ser. Math. Phys., vol. 7, World Sci. Publ., Teaneck, NJ, 1989, p. 138-177 | MR
[KW08] - “On rationality of -algebras”, Transform. Groups 13 (2008) no. 3-4, p. 671-713 | DOI | MR | Zbl
[Li05] - “Abelianizing vertex algebras”, Comm. Math. Phys. 259 (2005) no. 2, p. 391-411 | DOI | MR | Zbl
[LL04] - Introduction to vertex operator algebras and their representations, Progress in Math., vol. 227, Birkhäuser Boston, Inc., Boston, MA, 2004 | DOI | MR | Zbl
[Miy04] - “Modular invariance of vertex operator algebras satisfying -cofiniteness”, Duke Math. J. 122 (2004) no. 1, p. 51-91 | DOI | MR | Zbl
[Mus01] - “Jet schemes of locally complete intersection canonical singularities”, Invent. Math. 145 (2001) no. 3, p. 397-424 | DOI | MR | Zbl
[Pre02] - “Special transverse slices and their enveloping algebras”, Adv. Math. 170 (2002) no. 1, p. 1-55 | DOI | MR | Zbl
[RT92] - “Indice et polynômes invariants pour certaines algèbres de Lie”, J. reine angew. Math. 425 (1992), p. 123-140 | Zbl
[Slo80] - Simple singularities and simple algebraic groups, Lect. Notes in Math., vol. 815, Springer, Berlin, 1980 | MR | Zbl
[XY19] - “4d SCFTs and lisse W-algebras”, 2019 | arXiv
[Zhu96] - “Modular invariance of characters of vertex operator algebras”, J. Amer. Math. Soc. 9 (1996) no. 1, p. 237-302 | DOI | MR | Zbl
Cité par Sources :