Let be a finite extension of and let be a connected reductive group over . We assume that is large relatively to . Let be an endoscopic group of . Following Arthur, we have, roughly speaking, a spectral transfer morphism, denoted by , which, to a stable finite linear combination of irreducible admissible representations of , associates a finite linear combination of irreducible admissible representations of . Let be the Bernstein’s projector such that, for an irreducible admissible representation of , we have if has level and if has strictly positive level. Define similarly . We prove that preserves the space of stable finite linear combinations of irreducible admissible representations of and that .
Soient une extension finie de et un groupe réductif connexe défini sur . On suppose que est grand relativement à . Soit un groupe endoscopique de . D’après Arthur, il existe un homomorphisme de transfert spectral. Grosso modo, à une combinaison linéaire stable de représentations admissibles et irréductibles de , il associe une combinaison linéaire de représentations admissibles et irréductibles de . On note cet homomorphisme. Notons le projecteur de Bernstein tel que, pour une représentation admissible et irréductible de , on a si est de niveau et si est de niveau strictement positif. On définit de même . On démontre que préserve l’espace des combinaisons linéaires stables de représentations admissibles et irréductibles de et que .
Accepted:
Published online:
Mot clés : Représentations de niveau $0$, transfert endoscopique
Keywords: Representations of depth $0$, endoscopic transfer
Jean-Loup Waldspurger 1
@article{JEP_2021__8__193_0, author = {Jean-Loup Waldspurger}, title = {Repr\'esentations et quasi-caract\`eres de~niveau~$0$~; endoscopie}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {193--278}, publisher = {\'Ecole polytechnique}, volume = {8}, year = {2021}, doi = {10.5802/jep.145}, language = {fr}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.145/} }
TY - JOUR AU - Jean-Loup Waldspurger TI - Représentations et quasi-caractères de niveau $0$ ; endoscopie JO - Journal de l’École polytechnique — Mathématiques PY - 2021 SP - 193 EP - 278 VL - 8 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.145/ DO - 10.5802/jep.145 LA - fr ID - JEP_2021__8__193_0 ER -
%0 Journal Article %A Jean-Loup Waldspurger %T Représentations et quasi-caractères de niveau $0$ ; endoscopie %J Journal de l’École polytechnique — Mathématiques %D 2021 %P 193-278 %V 8 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.145/ %R 10.5802/jep.145 %G fr %F JEP_2021__8__193_0
Jean-Loup Waldspurger. Représentations et quasi-caractères de niveau $0$ ; endoscopie. Journal de l’École polytechnique — Mathématiques, Volume 8 (2021), pp. 193-278. doi : 10.5802/jep.145. https://jep.centre-mersenne.org/articles/10.5802/jep.145/
[1] - “The local behaviour of weighted orbital integrals”, Duke Math. J. 56 (1988) no. 2, p. 223-293 | DOI | MR | Zbl
[2] - “On elliptic tempered characters”, Acta Math. 171 (1993) no. 1, p. 73-138 | DOI | MR | Zbl
[3] - “On local character relations”, Selecta Math. (N.S.) 2 (1996) no. 4, p. 501-579 | DOI | MR | Zbl
[4] - “Séries de Harish-Chandra de modules et correspondance de Howe modulaire”, J. Algebra 165 (1994) no. 3, p. 576-601 | DOI | MR | Zbl
[5] - “Le “centre” de Bernstein”, in Representations of reductive groups over a local field (J. N. Bernstein, P. Deligne, D. Kazhdan & M.-F. Vignéras, eds.), Travaux en Cours, Hermann, Paris, 1984, p. 1-32, rédigé par P. Deligne
[6] - “Groupes réductifs sur un corps local : I. Données radicielles valuées”, Publ. Math. Inst. Hautes Études Sci. 41 (1972), p. 5-251 | DOI
[7] - “Characters and Jacquet modules”, Math. Ann. 230 (1977) no. 2, p. 101-105 | DOI | MR | Zbl
[8] - “Homogeneity results for invariant distributions of a reductive -adic group”, Ann. Sci. École Norm. Sup. (4) 35 (2002) no. 3, p. 391-422 | DOI | Numdam | MR | Zbl
[9] - “Depth-zero supercuspidal -packets and their stability”, Ann. of Math. (2) 169 (2009) no. 3, p. 795-901 | DOI | MR | Zbl
[10] - “Théorème de l’indice et formule des traces”, Manuscripta Math. 124 (2007) no. 3, p. 363-390 | DOI | MR | Zbl
[11] - “On parahoric subgroups”, appendice à [28]
[12] - Admissible invariant distributions on reductive -adic groups, University Lecture Series, vol. 16, American Mathematical Society, Providence, RI, 1999, rédigé par S. DeBacker et P. Sally | DOI | MR | Zbl
[13] - “A Satake isomorphism for representations modulo of reductive groups over local fields”, J. reine angew. Math. 701 (2015), p. 33-75 | DOI | MR | Zbl
[14] - “On functoriality of Zelevinski involutions”, Compositio Math. 140 (2004) no. 6, p. 1625-1656 | DOI | MR | Zbl
[15] - “Cuspidal geometry of -adic groups”, J. Analyse Math. 47 (1986), p. 1-36 | DOI | MR | Zbl
[16] - “Endoscopic decomposition of certain depth zero representations”, in Studies in Lie theory, Progress in Math., vol. 243, Birkhäuser Boston, Boston, MA, 2006, p. 223-301 | DOI | MR | Zbl
[17] - “Character expansions and unrefined minimal -types”, Amer. J. Math. 125 (2003) no. 6, p. 1199-1234 | MR | Zbl
[18] - “Isocrystals with additional structure. II”, Compositio Math. 109 (1997) no. 3, p. 255-339 | DOI | MR | Zbl
[19] - “Sur les -blocs de niveau zéro des groupes -adiques”, Compositio Math. 154 (2018) no. 7, p. 1473-1507 | DOI | MR | Zbl
[20] - “Sur les -blocs de niveau zéro des groupes -adiques II”, 2018 | arXiv
[21] - “Stable conjugacy : definitions and lemmas”, Canad. J. Math. 31 (1979) no. 4, p. 700-725 | DOI | MR | Zbl
[22] - “On the definition of transfer factors”, Math. Ann. 278 (1987) no. 1-4, p. 219-271 | DOI | MR | Zbl
[23] - “Classification of unipotent representations of simple -adic groups”, Internat. Math. Res. Notices (1995) no. 11, p. 517-589 | DOI | MR | Zbl
[24] - Stabilisation de la formule des traces tordue, Progress in Math., vol. 316 & 317, Birkhäuser/Springer, Cham, 2016 | Zbl
[25] - “Unrefined minimal -types for -adic groups”, Invent. Math. 116 (1994) no. 1-3, p. 393-408 | DOI | MR | Zbl
[26] - “Jacquet functors and unrefined minimal -types”, Comment. Math. Helv. 71 (1996) no. 1, p. 98-121 | DOI | MR | Zbl
[27] - “Depth preserving property of the local Langlands correspondence for quasi-split classical groups in a large residual characteristic”, 2018 | arXiv
[28] - “Twisted loop groups and their affine flag varieties”, Adv. Math. 219 (2008) no. 1, p. 118-198 | DOI | MR | Zbl
[29] - “Finite group actions on reductive groups and buildings and tamely-ramified descent in Bruhat-Tits theory”, Amer. J. Math. 142 (2020) no. 4, p. 1239-1267 | DOI | MR | Zbl
[30] - “On finite group actions on reductive groups and buildings”, Invent. Math. 147 (2002) no. 3, p. 545-560 | DOI | MR | Zbl
[31] - “On unipotent representations of ramified -adic groups”, 2019 | arXiv
[32] - “Reductive groups over local fields”, in Automorphic forms, representations and -functions (Oregon State Univ., Corvallis, Ore., 1977), Part 1, Proc. Sympos. Pure Math., vol. XXXIII, American Mathematical Society, Providence, RI, 1979, p. 29-69 | DOI | Zbl
[33] - L’endoscopie tordue n’est pas si tordue, Mem. Amer. Math. Soc., vol. 194 no. 908, American Mathematical Society, Providence, RI, 2008 | DOI | Zbl
[34] - “Une formule intégrale reliée à la conjecture locale de Gross-Prasad”, Compositio Math. 146 (2010) no. 5, p. 1180-1290 | DOI | Zbl
[35] - “Une formule intégrale reliée à la conjecture locale de Gross-Prasad, 2e partie : extension aux représentations tempérées”, in Sur les conjectures de Gross et Prasad. I, Astérisque, vol. 346, Société Mathématique de France, Paris, 2012, p. 171-312 | Numdam | MR | Zbl
[36] - “Caractères de représentations de niveau 0”, Ann. Fac. Sci. Toulouse Math. (6) 27 (2018) no. 5, p. 925-984 | DOI | Numdam | MR | Zbl
Cited by Sources: