Differential transcendence criteria for second-order linear difference equations and elliptic hypergeometric functions
[Critères de transcendance différentielle pour les équations aux différences du deuxième ordre et les fonctions hypergéométriques elliptiques]
Journal de l’École polytechnique — Mathématiques, Tome 8 (2021) , pp. 147-168.

Dans cet article, nous développons des critères généraux garantissant la transcendance différentielle d’une solution non nulle donnée d’une équation aux différences du deuxième ordre. Ces critères s’appliquent à de nombreuses équations, telles que les équations aux différences finies, les équations aux q-différences, les équations de Mahler, ou encore les équations aux différences elliptiques. Notre approche repose sur la théorie de Galois des équations aux différences. En guise d’application, nous démontrons que la plupart des fonctions hypergéométriques elliptiques sont différentiellement transcendantes.

We develop general criteria that ensure that any non-zero solution of a given second-order difference equation is differentially transcendental, which apply uniformly in particular cases of interest, such as shift difference equations, q-dilation difference equations, Mahler difference equations, and elliptic difference equations. These criteria are obtained as an application of differential Galois theory for difference equations. We apply our criteria to prove a new result to the effect that most elliptic hypergeometric functions are differentially transcendental.

Reçu le :
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/jep.143
Classification : 39A06,  12H05
Mots clés : Équations aux différences linéaires, théorie de Galois aux différences, courbe elliptiques, algèbre différentielle
@article{JEP_2021__8__147_0,
     author = {Carlos E. Arreche and Thomas Dreyfus and Julien Roques},
     title = {Differential transcendence criteria for second-order linear difference equations and elliptic hypergeometric functions},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {147--168},
     publisher = {\'Ecole polytechnique},
     volume = {8},
     year = {2021},
     doi = {10.5802/jep.143},
     mrnumber = {4201803},
     zbl = {07315954},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.143/}
}
Carlos E. Arreche; Thomas Dreyfus; Julien Roques. Differential transcendence criteria for second-order linear difference equations and elliptic hypergeometric functions. Journal de l’École polytechnique — Mathématiques, Tome 8 (2021) , pp. 147-168. doi : 10.5802/jep.143. https://jep.centre-mersenne.org/articles/10.5802/jep.143/

[Arr17] C. E. Arreche - “Computation of the difference-differential Galois group and differential relations among solutions for a second-order linear difference equation”, Commun. Contemp. Math. 19 (2017) no. 6, article ID 1650056, 42 pages | Article | MR 3691498 | Zbl 1384.65091

[AS17] C. E. Arreche & M. F. Singer - “Galois groups for integrable and projectively integrable linear difference equations”, J. Algebra 480 (2017), p. 423-449 | Article | MR 3633315 | Zbl 1364.39002

[DHR18] T. Dreyfus, C. Hardouin & J. Roques - “Hypertranscendence of solutions of Mahler equations”, J. Eur. Math. Soc. (JEMS) 20 (2018) no. 9, p. 2209-2238 | Article | MR 3836845 | Zbl 06941800

[DHR21] T. Dreyfus, C. Hardouin & J. Roques - “Functional relations of solutions of q-difference equations”, Math. Z. (2021), doi:10.1007/s00209-020-02669-4 | Article

[DHRS18] T. Dreyfus, C. Hardouin, J. Roques & M. F. Singer - “On the nature of the generating series of walks in the quarter plane”, Invent. Math. 213 (2018) no. 1, p. 139-203 | Article | MR 3815564 | Zbl 1392.05007

[DHRS20] T. Dreyfus, C. Hardouin, J. Roques & M. F. Singer - “Walks in the quarter plane: genus zero case”, J. Combin. Theory Ser. A 174 (2020), p. 105251, 25 | Article | MR 4080851 | Zbl 1439.05015

[DR15] T. Dreyfus & J. Roques - “Galois groups of difference equations of order two on elliptic curves”, SIGMA Symmetry Integrability Geom. Methods Appl. 11 (2015), article ID 003, 23 pages | Article | MR 3313679 | Zbl 1311.39002

[DR19] T. Dreyfus & K. Raschel - “Differential transcendence & algebraicity criteria for the series counting weighted quadrant walks”, Publ. Math. Besançon (2019) no. 1, p. 41-80 | Article | Zbl 07272578

[Hen97] P. A. Hendriks - “An algorithm for computing a standard form for second-order linear q-difference equations”, J. Pure Appl. Algebra 117/118 (1997), p. 331-352, Algorithms for algebra (Eindhoven, 1996) | Article | MR 1457845 | Zbl 0877.12004

[Hen98] P. A. Hendriks - “An algorithm determining the difference Galois group of second order linear difference equations”, J. Symbolic Comput. 26 (1998) no. 4, p. 445-461 | Article | MR 1646675 | Zbl 0908.68080

[HS08] C. Hardouin & M. F. Singer - “Differential Galois theory of linear difference equations”, Math. Ann. 342 (2008) no. 2, p. 333-377, Erratum: Ibid. 350 (2011), no. 1, p. 243–244 | Article | MR 2425146 | Zbl 1163.12002

[Höl86] O. Hölder - “Ueber die Eigenschaft der Gammafunction keiner algebraischen Differentialgleichung zu genügen”, Math. Ann. 28 (1886), p. 1-13 | Article | Zbl 18.0440.02

[Kol73] E. R. Kolchin - Differential algebra and algebraic groups, Pure and Applied Math., vol. 54, Academic Press, New York-London, 1973 | MR 568864 | Zbl 0264.12102

[Kol74] E. R. Kolchin - “Constrained extensions of differential fields”, Adv. Math. 12 (1974), p. 141-170 | Article | MR 340227 | Zbl 0279.12103

[Mag09] A. P. Magnus - “Elliptic hypergeometric solutions to elliptic difference equations”, SIGMA Symmetry Integrability Geom. Methods Appl. 5 (2009), article ID 038, 12 pages | Article | MR 2506174 | Zbl 1163.39012

[Mum07] D. Mumford - Tata lectures on theta. I, Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2007, Reprint of the 1983 edition | Article | Zbl 1112.14002

[Rai10] E. M. Rains - “Transformations of elliptic hypergeometric integrals”, Ann. of Math. (2) 171 (2010) no. 1, p. 169-243 | Article | MR 2630038 | Zbl 1209.33014

[Roq11] J. Roques - “Generalized basic hypergeometric equations”, Invent. Math. 184 (2011) no. 3, p. 499-528 | Article | MR 2800693 | Zbl 1241.33017

[Roq18] J. Roques - “On the algebraic relations between Mahler functions”, Trans. Amer. Math. Soc. 370 (2018) no. 1, p. 321-355 | Article | MR 3717982 | Zbl 1376.39002

[RS20] H. Rosengren & M. J. Schlosser - “Multidimensional matrix inversions and elliptic hypergeometric series on root systems”, SIGMA Symmetry Integrability Geom. Methods Appl. 16 (2020), article ID 088, 21 pages | Article | MR 4153158

[Spi16] V. P. Spiridonov - “Elliptic hypergeometric functions”, 2016 | arXiv:1610.01557

[vdB + 07] F. J. van de Bult & et al. - Hyperbolic hypergeometric functions, University of Amsterdam, Amsterdam Netherlands, 2007

[vdBR09] F. J. van de Bult & E. M. Rains - “Basic hypergeometric functions as limits of elliptic hypergeometric functions”, SIGMA Symmetry Integrability Geom. Methods Appl. 5 (2009), article ID 059, 31 pages | Article | MR 2529188 | Zbl 1188.33025

[vdPS97] M. van der Put & M. F. Singer - Galois theory of difference equations, Lect. Notes in Math., vol. 1666, Springer-Verlag, Berlin, 1997 | Article | MR 1480919 | Zbl 0930.12006