[Critères de transcendance différentielle pour les équations aux différences du deuxième ordre et les fonctions hypergéométriques elliptiques]
Dans cet article, nous développons des critères généraux garantissant la transcendance différentielle d’une solution non nulle donnée d’une équation aux différences du deuxième ordre. Ces critères s’appliquent à de nombreuses équations, telles que les équations aux différences finies, les équations aux -différences, les équations de Mahler, ou encore les équations aux différences elliptiques. Notre approche repose sur la théorie de Galois des équations aux différences. En guise d’application, nous démontrons que la plupart des fonctions hypergéométriques elliptiques sont différentiellement transcendantes.
We develop general criteria that ensure that any non-zero solution of a given second-order difference equation is differentially transcendental, which apply uniformly in particular cases of interest, such as shift difference equations, -dilation difference equations, Mahler difference equations, and elliptic difference equations. These criteria are obtained as an application of differential Galois theory for difference equations. We apply our criteria to prove a new result to the effect that most elliptic hypergeometric functions are differentially transcendental.
Accepté le :
Publié le :
DOI : 10.5802/jep.143
Keywords: Linear difference equations, difference Galois theory, elliptic curves, differential algebra
Mots-clés : Équations aux différences linéaires, théorie de Galois aux différences, courbe elliptiques, algèbre différentielle
Carlos E. Arreche 1 ; Thomas Dreyfus 2 ; Julien Roques 3
@article{JEP_2021__8__147_0, author = {Carlos E. Arreche and Thomas Dreyfus and Julien Roques}, title = {Differential transcendence criteria for second-order linear difference equations and elliptic hypergeometric functions}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {147--168}, publisher = {\'Ecole polytechnique}, volume = {8}, year = {2021}, doi = {10.5802/jep.143}, mrnumber = {4201803}, zbl = {07315954}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.143/} }
TY - JOUR AU - Carlos E. Arreche AU - Thomas Dreyfus AU - Julien Roques TI - Differential transcendence criteria for second-order linear difference equations and elliptic hypergeometric functions JO - Journal de l’École polytechnique — Mathématiques PY - 2021 SP - 147 EP - 168 VL - 8 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.143/ DO - 10.5802/jep.143 LA - en ID - JEP_2021__8__147_0 ER -
%0 Journal Article %A Carlos E. Arreche %A Thomas Dreyfus %A Julien Roques %T Differential transcendence criteria for second-order linear difference equations and elliptic hypergeometric functions %J Journal de l’École polytechnique — Mathématiques %D 2021 %P 147-168 %V 8 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.143/ %R 10.5802/jep.143 %G en %F JEP_2021__8__147_0
Carlos E. Arreche; Thomas Dreyfus; Julien Roques. Differential transcendence criteria for second-order linear difference equations and elliptic hypergeometric functions. Journal de l’École polytechnique — Mathématiques, Tome 8 (2021), pp. 147-168. doi : 10.5802/jep.143. https://jep.centre-mersenne.org/articles/10.5802/jep.143/
[Arr17] - “Computation of the difference-differential Galois group and differential relations among solutions for a second-order linear difference equation”, Commun. Contemp. Math. 19 (2017) no. 6, article ID 1650056, 42 pages | DOI | MR | Zbl
[AS17] - “Galois groups for integrable and projectively integrable linear difference equations”, J. Algebra 480 (2017), p. 423-449 | DOI | MR | Zbl
[DHR18] - “Hypertranscendence of solutions of Mahler equations”, J. Eur. Math. Soc. (JEMS) 20 (2018) no. 9, p. 2209-2238 | DOI | MR | Zbl
[DHR21] - “Functional relations of solutions of -difference equations”, Math. Z. (2021), doi:10.1007/s00209-020-02669-4 | DOI
[DHRS18] - “On the nature of the generating series of walks in the quarter plane”, Invent. Math. 213 (2018) no. 1, p. 139-203 | DOI | MR | Zbl
[DHRS20] - “Walks in the quarter plane: genus zero case”, J. Combin. Theory Ser. A 174 (2020), p. 105251, 25 | DOI | MR | Zbl
[DR15] - “Galois groups of difference equations of order two on elliptic curves”, SIGMA Symmetry Integrability Geom. Methods Appl. 11 (2015), article ID 003, 23 pages | DOI | MR | Zbl
[DR19] - “Differential transcendence & algebraicity criteria for the series counting weighted quadrant walks”, Publ. Math. Besançon (2019) no. 1, p. 41-80 | DOI | Zbl
[Hen97] - “An algorithm for computing a standard form for second-order linear -difference equations”, J. Pure Appl. Algebra 117/118 (1997), p. 331-352, Algorithms for algebra (Eindhoven, 1996) | DOI | MR | Zbl
[Hen98] - “An algorithm determining the difference Galois group of second order linear difference equations”, J. Symbolic Comput. 26 (1998) no. 4, p. 445-461 | DOI | MR | Zbl
[HS08] - “Differential Galois theory of linear difference equations”, Math. Ann. 342 (2008) no. 2, p. 333-377, Erratum: Ibid. 350 (2011), no. 1, p. 243–244 | DOI | MR | Zbl
[Höl86] - “Ueber die Eigenschaft der Gammafunction keiner algebraischen Differentialgleichung zu genügen”, Math. Ann. 28 (1886), p. 1-13 | DOI | Zbl
[Kol73] - Differential algebra and algebraic groups, Pure and Applied Math., vol. 54, Academic Press, New York-London, 1973 | MR | Zbl
[Kol74] - “Constrained extensions of differential fields”, Adv. Math. 12 (1974), p. 141-170 | DOI | MR | Zbl
[Mag09] - “Elliptic hypergeometric solutions to elliptic difference equations”, SIGMA Symmetry Integrability Geom. Methods Appl. 5 (2009), article ID 038, 12 pages | DOI | MR | Zbl
[Mum07] - Tata lectures on theta. I, Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2007, Reprint of the 1983 edition | DOI | Zbl
[Rai10] - “Transformations of elliptic hypergeometric integrals”, Ann. of Math. (2) 171 (2010) no. 1, p. 169-243 | DOI | MR | Zbl
[Roq11] - “Generalized basic hypergeometric equations”, Invent. Math. 184 (2011) no. 3, p. 499-528 | DOI | MR | Zbl
[Roq18] - “On the algebraic relations between Mahler functions”, Trans. Amer. Math. Soc. 370 (2018) no. 1, p. 321-355 | DOI | MR | Zbl
[RS20] - “Multidimensional matrix inversions and elliptic hypergeometric series on root systems”, SIGMA Symmetry Integrability Geom. Methods Appl. 16 (2020), article ID 088, 21 pages | DOI | MR
[Spi16] - “Elliptic hypergeometric functions”, 2016 | arXiv
[vdB + 07] et al. - Hyperbolic hypergeometric functions, University of Amsterdam, Amsterdam Netherlands, 2007
[vdBR09] - “Basic hypergeometric functions as limits of elliptic hypergeometric functions”, SIGMA Symmetry Integrability Geom. Methods Appl. 5 (2009), article ID 059, 31 pages | DOI | MR | Zbl
[vdPS97] - Galois theory of difference equations, Lect. Notes in Math., vol. 1666, Springer-Verlag, Berlin, 1997 | DOI | MR | Zbl
Cité par Sources :