The diagonal of the associahedra
[La diagonale de l’associaèdre]
Journal de l’École polytechnique — Mathématiques, Tome 8 (2021) , pp. 121-146.

Cet article introduit pour la première fois une méthode générale permettant de résoudre le problème de l’approximation de la diagonale de familles de polytopes satisfaisant à une propriété de cohérence par faces. On retrouve les cas classiques des simplexes et des cubes et on résout celui des associaèdres, appelés aussi polytopes de Stasheff. On montre que ce dernier cas vérifie une formule cellulaire facile à énoncer. Pour la première fois, nous munissons une famille de réalisations des associaèdres (celle de Loday) d’une structure d’opérade topologique cellulaire, dont nous montrons qu’elle est compatible avec les diagonales.

This paper introduces the first general method to solve the problem of the approximation of the diagonal for face-coherent families of polytopes. We recover the classical cases of the simplices and the cubes and we solve it for the associahedra, also known as Stasheff polytopes. We show that it satisfies an easy-to-state cellular formula. For the first time, we endow a family of realizations of the associahedra (the Loday realizations) with a topological and cellular operad structure; it is shown to be compatible with the diagonal maps.

Reçu le :
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/jep.142
Classification : 52B11,  18M75,  18M70,  06A07
Mots clés : Associaèdres, approximation de la diagonale, opérades, polytopes fibrés, A -algèbres
@article{JEP_2021__8__121_0,
     author = {Naruki Masuda and Hugh Thomas and Andy Tonks and Bruno Vallette},
     title = {The diagonal of the associahedra},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {121--146},
     publisher = {\'Ecole polytechnique},
     volume = {8},
     year = {2021},
     doi = {10.5802/jep.142},
     mrnumber = {4191110},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.142/}
}
Naruki Masuda; Hugh Thomas; Andy Tonks; Bruno Vallette. The diagonal of the associahedra. Journal de l’École polytechnique — Mathématiques, Tome 8 (2021) , pp. 121-146. doi : 10.5802/jep.142. https://jep.centre-mersenne.org/articles/10.5802/jep.142/

[AA17] M. Aguiar & F. Ardila - “Hopf monoids and generalized permutahedra”, 2017 | arXiv:1709.07504

[Amo17] L. Amorim - “The Künneth theorem for the Fukaya algebra of a product of Lagrangians”, Internat. J. Math. 28 (2017) no. 4, article ID 1750026, 38 pages | MR 3639044 | Zbl 1368.53057

[Bro59] E. H. Brown Jr. - “Twisted tensor products. I”, Ann. of Math. (2) 69 (1959), p. 223-246 | Article | MR 105687 | Zbl 0199.58201

[BS92] L. J. Billera & B. Sturmfels - “Fiber polytopes”, Ann. of Math. (2) 135 (1992) no. 3, p. 527-549 | Article | MR 1166643 | Zbl 0762.52003

[BV73] J. M. Boardman & R. M. Vogt - Homotopy invariant algebraic structures on topological spaces, Lect. Notes in Math., vol. 347, Springer-Verlag, Berlin, 1973 | MR 420609 | Zbl 0285.55012

[CFZ02] F. Chapoton, S. Fomin & A. Zelevinsky - “Polytopal realizations of generalized associahedra”, Canad. J. Math. 45 (2002) no. 4, p. 537-566 | Article | MR 1941227 | Zbl 1018.52007

[CSZ15] C. Ceballos, F. Santos & G. M. Ziegler - “Many non-equivalent realizations of the associahedron”, Combinatorica 35 (2015) no. 5, p. 513-551 | Article | MR 3437894 | Zbl 1389.52013

[EML54] S. Eilenberg & S. Mac Lane - “On the groups H(Π,n). II. Methods of computation”, Ann. of Math. (2) 60 (1954), p. 49-139 | Article | MR 65162

[EZ53] S. Eilenberg & J. A. Zilber - “On products of complexes”, Amer. J. Math. 75 (1953), p. 200-204 | Article | MR 52767 | Zbl 0050.17301

[For08] S. Forcey - “Convex hull realizations of the multiplihedra”, Topology Appl. 156 (2008) no. 2, p. 326-347 | Article | MR 2475119 | Zbl 1158.55012

[GKZ08] I. M. Gelfand, M. M. Kapranov & A. V. Zelevinsky - Discriminants, resultants and multidimensional determinants, Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2008 | Zbl 1138.14001

[GZ97] M. R. Gaberdiel & B. Zwiebach - “Tensor constructions of open string theories. I. Foundations”, Nuclear Phys. B 505 (1997) no. 3, p. 569-624 | Article | MR 1490781 | Zbl 0911.53044

[Lod04] J.-L. Loday - “Realization of the Stasheff polytope”, Arch. Math. (Basel) 83 (2004) no. 3, p. 267-278 | MR 2108555 | Zbl 1059.52017

[LV12] J.-L. Loday & B. Vallette - Algebraic operads, Grundlehren Math. Wiss., vol. 346, Springer-Verlag, Berlin, 2012 | MR 2954392 | Zbl 1260.18001

[May72] J. May - The geometry of iterated loop spaces, Lect. Notes in Math., vol. 271, Springer-Verlag, Berlin, 1972 | MR 420610

[MS06] M. Markl & S. Shnider - “Associahedra, cellular W-construction and products of A -algebras”, Trans. Amer. Math. Soc. 358 (2006) no. 6, p. 2353-2372 | Article | MR 2204035 | Zbl 1093.18005

[MSS02] M. Markl, S. Shnider & J. D. Stasheff - Operads in algebra, topology and physics, Math. Surveys and Monographs, vol. 96, American Mathematical Society, Providence, RI, 2002 | MR 1898414 | Zbl 1017.18001

[Pro11] A. Prouté - “A -structures. Modèles minimaux de Baues-Lemaire et Kadeishvili et homologie des fibrations”, Repr. Theory Appl. Categ. (2011) no. 21, p. 1-99, Reprint of the 1986 original, With a preface to the reprint by Jean-Louis Loday | MR 2844537 | Zbl 1245.55007

[Sei08] P. Seidel - Fukaya categories and Picard-Lefschetz theory, Zürich Lectures in Advanced Math., European Mathematical Society, Zürich, 2008 | Article | MR 2441780 | Zbl 1159.53001

[Ser51] J.-P. Serre - “Homologie singulière des espaces fibrés. Applications”, Ann. of Math. (2) 54 (1951), p. 425-505 | Article | Zbl 0045.26003

[SS97] J. D. Stasheff & S. Shnider - “From operads to “physically” inspired theories (Appendix B)”, in Operads: Proceedings of Renaissance Conferences (Hartford, CT/Luminy, 1995), Contemp. Math., vol. 202, American Mathematical Society, Providence, RI, 1997, p. 53-81

[Sta63] J. D. Stasheff - “Homotopy associativity of H-spaces. I & II”, Trans. Amer. Math. Soc. 108 (1963), p. 275-292 & 293–312 | MR 158400 | Zbl 0114.39402

[Sta70] J. D. Stasheff - H-spaces from a homotopy point of view, Lect. Notes in Math., vol. 161, Springer-Verlag, Berlin, 1970 | MR 270372 | Zbl 0205.27701

[Ste47] N. E. Steenrod - “Products of cocycles and extensions of mappings”, Ann. of Math. (2) 48 (1947), p. 290-320 | Article | MR 22071 | Zbl 0030.41602

[SU04] S. Saneblidze & R. Umble - “Diagonals on the permutahedra, multiplihedra and associahedra”, Homology Homotopy Appl. 6 (2004) no. 1, p. 363-411 | Article | MR 2118493 | Zbl 1069.55015

[Tam51] D. Tamari - Monoïdes préordonnés et chaînes de Malcev, Thèse de Mathématique, Paris, 1951

[Zie95] G. M. Ziegler - Lectures on polytopes, Graduate Texts in Math., vol. 152, Springer-Verlag, New York, 1995 | MR 1311028 | Zbl 0823.52002