Approximate and exact controllability of linear difference equations
Yacine Chitour; Guilherme Mazanti; Mario Sigalotti
Journal de l'École polytechnique — Mathématiques, Volume 7  (2020), p. 93-142

In this paper, we study approximate and exact controllability of the linear difference equation x(t)= j=1 N A j x(t-Λ j )+Bu(t) in L 2 , with x(t) d and u(t) m , using as a basic tool a representation formula for its solution in terms of the initial condition, the control u, and some suitable matrix coefficients. When Λ 1 ,,Λ N are commensurable, approximate and exact controllability are equivalent and can be characterized by a Kalman criterion. This paper focuses on providing characterizations of approximate and exact controllability without the commensurability assumption. In the case of two-dimensional systems with two delays, we obtain an explicit characterization of approximate and exact controllability in terms of the parameters of the problem. In the general setting, we prove that approximate controllability from zero to constant states is equivalent to approximate controllability in L 2 . The corresponding result for exact controllability is true at least for two-dimensional systems with two delays.

Cet article traite de la contrôlabilité approchée et exacte de l’équation aux différences linéaire x(t)= j=1 N A j x(t-Λ j )+Bu(t) dans L 2 , avec x(t) d et u(t) m , en s’appuyant sur une formule de représentation de la solution x en termes de la condition initiale, du contrôle u et de coefficients matriciels appropriés. Lorsque Λ 1 ,,Λ N sont commensurables, les contrôlabilités approchée et exacte sont équivalentes et peuvent être caractérisées par un critère de type Kalman. Cet article s’attache à donner des caractérisations des contrôlabilités approchée et exacte sans hypothèse de commensurabilité. Dans le cas d’un système bi-dimensionnel avec deux retards, nous obtenons une caractérisation explicite des contrôlabilités approchée et exacte en termes des paramètres du problème. Pour le cas général, nous prouvons que la contrôlabilité approchée de zéro vers les états constants est équivalente à la contrôlabilité approchée dans L 2 . Le résultat correspondant à la contrôlabilité exacte est vrai au moins pour les systèmes bi-dimensionnels avec deux retards.

Received : 2019-02-15
Accepted : 2019-10-04
Published online : 2019-11-08
DOI : https://doi.org/10.5802/jep.112
Classification:  39A06,  93B05,  93C65
Keywords: Linear difference equation, delay, approximate controllability, exact controllability
@article{JEP_2020__7__93_0,
     author = {Yacine Chitour and Guilherme Mazanti and Mario Sigalotti},
     title = {Approximate and exact controllability of linear difference equations},
     journal = {Journal de l'\'Ecole polytechnique --- Math\'ematiques},
     publisher = {\'Ecole polytechnique},
     volume = {7},
     year = {2020},
     pages = {93-142},
     doi = {10.5802/jep.112},
     language = {en},
     url = {https://jep.centre-mersenne.org/item/JEP_2020__7__93_0}
}
Chitour, Yacine; Mazanti, Guilherme; Sigalotti, Mario. Approximate and exact controllability of linear difference equations. Journal de l'École polytechnique — Mathématiques, Volume 7 (2020) , pp. 93-142. doi : 10.5802/jep.112. https://jep.centre-mersenne.org/item/JEP_2020__7__93_0/

[1] C. E. de Avellar & J. K. Hale - “On the zeros of exponential polynomials”, J. Math. Anal. Appl. 73 (1980) no. 2, p. 434-452 | Article | MR 563994 | Zbl 0435.30005

[2] J. W. S. Cassels - An introduction to Diophantine approximation, Cambridge Tracts in Math. and Math. Physics, vol. 45, Cambridge University Press, New York, 1957 | MR 87708 | Zbl 0077.04801

[3] Y. Chitour, G. Mazanti & M. Sigalotti - “Stability of non-autonomous difference equations with applications to transport and wave propagation on networks”, Netw. Heterog. Media 11 (2016) no. 4, p. 563-601 | Article | MR 3577220 | Zbl 1388.39008

[4] Y. Chitour, G. Mazanti & M. Sigalotti - “Persistently damped transport on a network of circles”, Trans. Amer. Math. Soc. 369 (2017) no. 6, p. 3841-3881 | Article | MR 3624395 | Zbl 1364.35401

[5] D. H. Chyung - “On the controllability of linear systems with delay in control”, IEEE Trans. Automatic Control 15 (1970) no. 2, p. 255-257 | Article | MR 274077

[6] K. L. Cooke & D. W. Krumme - “Differential-difference equations and nonlinear initial-boundary value problems for linear hyperbolic partial differential equations”, J. Math. Anal. Appl. 24 (1968), p. 372-387 | Article | MR 232089 | Zbl 0186.16902

[7] J.-M. Coron - Control and nonlinearity, Math. Surveys and Monographs, vol. 136, American Mathematical Society, Providence, RI, 2007 | Article | MR 2302744 | Zbl 1140.93002

[8] J.-M. Coron, G. Bastin & B. d’Andréa-Novel - “Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems”, SIAM J. Control Optim. 47 (2008) no. 3, p. 1460-1498 | Article | MR 2407024 | Zbl 1172.35008

[9] J.-M. Coron & H.-M. Nguyen - “Dissipative boundary conditions for nonlinear 1-D hyperbolic systems: sharp conditions through an approach via time-delay systems”, SIAM J. Math. Anal. 47 (2015) no. 3, p. 2220-2240 | Article | MR 3356982 | Zbl 1320.35196

[10] M. Cruz A. & J. K. Hale - “Stability of functional differential equations of neutral type”, J. Differential Equations 7 (1970), p. 334-355 | Article | MR 257516 | Zbl 0191.38901

[11] R. Datko - “Linear autonomous neutral differential equations in a Banach space”, J. Differential Equations 25 (1977) no. 2, p. 258-274 | Article | MR 447743 | Zbl 0402.34066

[12] J. Diblík, D. Y. Khusainov & M. Růžičková - “Controllability of linear discrete systems with constant coefficients and pure delay”, SIAM J. Control Optim. 47 (2008) no. 3, p. 1140-1149 | Article | MR 2407011 | Zbl 1161.93004

[13] G. F. Franklin, J. D. Powell & M. L. Workman - Digital Control of Dynamic Systems, Addison-Wesley, 1997 | Zbl 0697.93002

[14] E. Fridman, S. Mondié & B. Saldivar - “Bounds on the response of a drilling pipe model”, IMA J. Math. Control Inform. 27 (2010) no. 4, p. 513-526 | Article | MR 2762988 | Zbl 1213.35150

[15] I. Gohberg & T. Shalom - “On inversion of square matrices partitioned into nonsquare blocks”, Integral Equations Operator Theory 12 (1989) no. 4, p. 539-566 | Article | MR 1001656 | Zbl 0676.15002

[16] J. K. Hale, E. F. Infante & F. S. P. Tsen - “Stability in linear delay equations”, J. Math. Anal. Appl. 105 (1985) no. 2, p. 533-555 | Article | MR 778486 | Zbl 0569.34061

[17] J. K. Hale & S. M. Verduyn Lunel - Introduction to functional-differential equations, Applied Math. Sciences, vol. 99, Springer-Verlag, New York, 1993 | Article | MR 1243878 | Zbl 0787.34002

[18] J. K. Hale & S. M. Verduyn Lunel - “Strong stabilization of neutral functional differential equations”, IMA J. Math. Control Inform. 19 (2002) no. 1-2, p. 5-23 | Article | MR 1899001 | Zbl 1005.93026

[19] D. Henry - “Linear autonomous neutral functional differential equations”, J. Differential Equations 15 (1974), p. 106-128 | Article | MR 338520 | Zbl 0294.34047

[20] B. Klöss - “The flow approach for waves in networks”, Oper. Matrices 6 (2012) no. 1, p. 107-128 | Article | MR 2952439 | Zbl 1253.47022

[21] J.-L. Lions - “Contrôlabilité exacte des systèmes distribués”, C. R. Acad. Sci. Paris Sér. I Math. 302 (1986) no. 13, p. 471-475 | Article | Zbl 0589.49022

[22] J.-L. Lions - “Exact controllability, stabilization and perturbations for distributed systems”, SIAM Rev. 30 (1988) no. 1, p. 1-68 | Article | MR 931277

[23] R. Mañé - Ergodic theory and differentiable dynamics, Ergeb. Math. Grenzgeb. (3), vol. 8, Springer-Verlag, Berlin, 1987 | Article | MR 889254 | Zbl 0616.28007

[24] G. Mazanti - “Relative controllability of linear difference equations”, SIAM J. Control Optim. 55 (2017) no. 5, p. 3132-3153 | Article | MR 3711581 | Zbl 1373.39001

[25] W. R. Melvin - “Stability properties of functional difference equations”, J. Math. Anal. Appl. 48 (1974), p. 749-763 | Article | MR 361494 | Zbl 0311.39002

[26] W. Michiels, T. Vyhlídal, P. Zítek, H. Nijmeijer & D. Henrion - “Strong stability of neutral equations with an arbitrary delay dependency structure”, SIAM J. Control Optim. 48 (2009) no. 2, p. 763-786 | Article | MR 2486093 | Zbl 1194.93190

[27] P. H. A. Ngoc & N. D. Huy - “Exponential stability of linear delay difference equations with continuous time”, Vietnam J. Math. 43 (2015) no. 2, p. 195-205 | Article | MR 3349811 | Zbl 1320.39019

[28] D. A. O’Connor & T. J. Tarn - “On stabilization by state feedback for neutral differential-difference equations”, IEEE Trans. Automatic Control 28 (1983) no. 5, p. 615-618 | Article | MR 712958 | Zbl 0527.93049

[29] D. A. O’Connor & T. J. Tarn - “On the function space controllability of linear neutral systems”, SIAM J. Control Optim. 21 (1983) no. 2, p. 306-329 | Article | MR 690229 | Zbl 0509.93014

[30] L. Pandolfi - “Stabilization of neutral functional differential equations”, J. Optimization Theory Appl. 20 (1976) no. 2, p. 191-204 | Article | MR 419027 | Zbl 0313.93023

[31] M. Pospíšil, J. Diblík & M. Fečkan - “On relative controllability of delayed difference equations with multiple control functions”, in Proceedings of the International conference on numerical analysis and applied mathematics 2014 (ICNAAM-2014), vol. 1648, AIP Publishing, 2015, article ID 130001 | Article

[32] W. Rudin - Real and complex analysis, McGraw-Hill Book Co., New York, 1987 | Zbl 0925.00005

[33] W. Rudin - Functional analysis, International Series in Pure and Applied Math., McGraw-Hill, Inc., New York, 1991 | Zbl 0867.46001

[34] D. Salamon - Control and observation of neutral systems, Research Notes in Math., vol. 91, Pitman, Boston, MA, 1984 | MR 724934 | Zbl 0554.93011

[35] M. Slemrod - “Nonexistence of oscillations in a nonlinear distributed network”, J. Math. Anal. Appl. 36 (1971), p. 22-40 | Article | MR 282028 | Zbl 0217.29103

[36] E. D. Sontag - Mathematical control theory. Deterministic finite-dimensional systems, Texts in Applied Math., vol. 6, Springer-Verlag, New York, 1998 | Article | Zbl 0945.93001

[37] M. Viana - “Ergodic theory of interval exchange maps”, Rev. Mat. Univ. Complut. Madrid 19 (2006) no. 1, p. 7-100 | Article | MR 2219821 | Zbl 1112.37003

[38] P. Walters - An introduction to ergodic theory, Graduate Texts in Math., vol. 79, Springer-Verlag, New York-Berlin, 1982 | MR 648108 | Zbl 0475.28009