Multiple mixing and disjointness for time changes of bounded-type Heisenberg nilflows
[Mélange multiple et disjonction pour les reparamétrisations des flots nilpotents de type borné]
Journal de l’École polytechnique — Mathématiques, Tome 7 (2020) , pp. 63-91.

Nous étudions les reparamétrisations (ϕ t τ ) des flots nilpotents de Heisenberg de type borné sur une variété nilpotente de Heisenberg M. Nous montrons que, pour des fonctions positives τW s (M) (espace de Sobolev) avec s>7/2, toute reparamétrisation non triviale (ϕ t τ ) a la propriété de Ratner. En conséquence, toute reparamétrisation mélangeante est mélangeante de tous les ordres. De plus, nous montrons que pour toutes les fonctions τW s (M), avec s>9/2 et pour tous p,q, pq, les flots (ϕ pt τ ) et (ϕ qt τ ) sont disjoints. Il s’ensuit, en particulier, que la conjecture de Sarnak sur la disjonction de la fonction de Möbius est valable pour toutes ces reparamétrisations.

We study time changes of bounded type Heisenberg nilflows (ϕ t ) acting on the Heisenberg nilmanifold M. We show that for every positive τW s (M), s>7/2, every non-trivial time change (ϕ t τ ) enjoys the Ratner property. As a consequence, every mixing time change is mixing of all orders. Moreover, we show that for every τW s (M), s>9/2 and every p,q, pq, (ϕ pt τ ) and (ϕ qt τ ) are disjoint. As a consequence, Sarnak conjecture on Möbius disjointness holds for all such time changes.

Reçu le :
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/jep.111
Classification : 37C40,  28D10
Mots clés : Flots nilpotents, reparamétrisations, propriété de Ratner
@article{JEP_2020__7__63_0,
     author = {Giovanni Forni and Adam Kanigowski},
     title = {Multiple mixing and disjointness for time changes of bounded-type {Heisenberg} nilflows},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {63--91},
     publisher = {\'Ecole polytechnique},
     volume = {7},
     year = {2020},
     doi = {10.5802/jep.111},
     zbl = {07128377},
     mrnumber = {4033750},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.111/}
}
Giovanni Forni; Adam Kanigowski. Multiple mixing and disjointness for time changes of bounded-type Heisenberg nilflows. Journal de l’École polytechnique — Mathématiques, Tome 7 (2020) , pp. 63-91. doi : 10.5802/jep.111. https://jep.centre-mersenne.org/articles/10.5802/jep.111/

[1] H. Anzai - “Ergodic skew product transformations on the torus”, Osaka J. Math. 3 (1951), p. 83-99 | MR 40594 | Zbl 0043.11203

[2] L. Auslander, L. Green & F. Hahn - Flows on homogeneous spaces, Annals of Math. Studies, vol. 53, Princeton University Press, Princeton, NJ, 1963 | MR 167569 | Zbl 0099.39103

[3] A. Avila, G. Forni & C. Ulcigrai - “Mixing for time-changes of Heisenberg nilflows”, J. Differential Geom. 89 (2011) no. 3, p. 369-410 | Article | MR 2879246 | Zbl 1281.37012

[4] A. Avila, D. Ravotti, G. Forni & C. Ulcigrai - “Mixing for smooth time-changes of general nilflows”, 2019 | arXiv:1905.11628

[5] J. Bourgain, P. Sarnak & T. Ziegler - “Disjointness of Moebius from horocycle flows”, in From Fourier analysis and number theory to Radon transforms and geometry, Dev. Math., vol. 28, Springer, New York, 2013, p. 67-83 | Article | MR 2986954 | Zbl 1336.37030

[6] B. Fayad, G. Forni & A. Kanigowski - “Lebesgue spectrum of countable multiplicity for conservative flows on the torus”, 2016 | arXiv:1609.03757v2

[7] B. Fayad & A. Kanigowski - “Multiple mixing for a class of conservative surface flows”, Invent. Math. 203 (2016) no. 2, p. 555-614 | Article | MR 3455157 | Zbl 1358.37018

[8] S. Ferenczi, J. Kułaga-Przymus & M. Lemańczyk - “Sarnak’s conjecture: what’s new”, in Ergodic theory and dynamical systems in their interactions with arithmetics and combinatorics (CIRM Jean-Morlet Chair, Fall 2016), Lect. Notes in Math., vol. 2213, Springer, Cham, 2018, p. 163-235 | Article | MR 3821717 | Zbl 1421.37003

[9] L. Flaminio & G. Forni - “Equidistribution of nilflows and applications to theta sums”, Ergodic Theory Dynam. Systems 26 (2006) no. 2, p. 409-433 | Article | MR 2218767 | Zbl 1087.37026

[10] L. Flaminio & G. Forni - “Orthogonal powers and Möbius conjecture for smooth time changes of horocycle flows”, Electron. Res. Announc. Math. Sci. 26 (2019), p. 16-23 | Zbl 07138890

[11] L. Flaminio, K. Frączek, J. Kułaga-Przymus & M. Lemańczyk - “Approximate orthogonality of powers for ergodic affine unipotent diffeomorphisms on nilmanifolds”, Studia Math. 244 (2019) no. 1, p. 43-97 | Article | MR 3850672 | Zbl 06970467

[12] G. Forni - “Effective equidistribution of nilflows and bounds on Weyl sums”, in Dynamics and analytic number theory, London Math. Soc. Lecture Note Ser., vol. 437, Cambridge Univ. Press, Cambridge, 2016, p. 136-188 | Article | MR 3618789 | Zbl 06984497

[13] G. Forni & A. Kanigowski - “Time-changes of Heisenberg nilflows”, 2017 | arXiv:1711.05543v1

[14] G. Forni & C. Ulcigrai - “Time-changes of horocycle flows”, J. Modern Dyn. 6 (2012) no. 2, p. 251-273 | Article | MR 2968956 | Zbl 1254.37006

[15] P. Gabriel, M. Lemańczyk & K. Schmidt - “Extensions of cocycles for hyperfinite actions and applications”, Monatsh. Math. 123 (1997) no. 3, p. 209-228 | Article | MR 1442000 | Zbl 0887.28008

[16] E. Glasner - Ergodic theory via joinings, Math. Surveys and Monographs, vol. 101, American Mathematical Society, Providence, RI, 2003 | Article | MR 1958753 | Zbl 1038.37002

[17] B. Green & T. Tao - “The Möbius function is strongly orthogonal to nilsequences”, Ann. of Math. (2) 175 (2012) no. 2, p. 541-566 | Article | Zbl 1347.37019

[18] B. Hasselblatt & A. Katok - “Principal structures”, in Handbook of dynamical systems, Vol. 1A, North-Holland, Amsterdam, 2002, p. 1-203 | Article | Zbl 1047.37001

[19] A. Kanigowski & J. Kułaga-Przymus - “Ratner’s property and mild mixing for smooth flows on surfaces”, Ergodic Theory Dynam. Systems 36 (2016) no. 8, p. 2512-2537 | Article | MR 3570023 | Zbl 1362.37011

[20] A. Kanigowski, J. Kułaga-Przymus & C. Ulcigrai - “Multiple mixing and parabolic divergence in smooth area-preserving flows on higher genus surfaces”, J. Eur. Math. Soc. (JEMS) 21 (2019) no. 12, p. 3797-3855 | Article | MR 4022716 | Zbl 1427.37035

[21] A. Kanigowski & M. Lemańczyk - “Flows with Ratner’s property have discrete essential centralizer”, Studia Math. 237 (2017) no. 2, p. 185-194 | Article | MR 3620751 | Zbl 1375.37005

[22] A. Kanigowski, M. Lemańczyk & C. Ulcigrai - “On disjointness properties of some parabolic flows”, 2018 | arXiv:1810.11576

[23] I. Kátai - “A remark on a theorem of H. Daboussi”, Acta Math. Hungar. 47 (1986) no. 1-2, p. 223-225 | Article | MR 836415 | Zbl 0607.10034

[24] A. Katok - Combinatorial constructions in ergodic theory and dynamics, University Lect. Series, vol. 30, American Mathematical Society, Providence, RI, 2003 | Article | MR 2008435 | Zbl 1030.37001

[25] M. Ratner - “Horocycle flows, joinings and rigidity of products”, Ann. of Math. (2) 118 (1983) no. 2, p. 277-313 | Article | MR 717825 | Zbl 0556.28020

[26] M. Ratner - “Rigid reparametrizations and cohomology for horocycle flows”, Invent. Math. 88 (1987) no. 2, p. 341-374 | Article | MR 880955 | Zbl 0697.58046

[27] D. Ravotti - “Mixing for suspension flows over skew-translations and time-changes of quasi-abelian filiform nilflows”, Ergodic Theory Dynam. Systems 39 (2018) no. 12, p. 3407-3436 | Article | MR 4027556 | Zbl 07128556

[28] P. Sarnak - “Three lectures on the Möbius function randomness and dynamics”, 2011, https://publications.ias.edu/sarnak/paper/512

[29] R. Tiedra de Aldecoa - “Spectral analysis of time changes of horocycle flows”, J. Modern Dyn. 6 (2012) no. 2, p. 275-285 | Article | MR 2968957 | Zbl 1290.37013

[30] R. Tiedra de Aldecoa - “Commutator methods for the spectral analysis of uniquely ergodic dynamical systems”, Ergodic Theory Dynam. Systems 35 (2015) no. 3, p. 944-967 | Article | MR 3334911 | Zbl 1355.37014