Given an open book decomposition of a closed contact three manifold with pseudo-Anosov monodromy, connected binding, and fractional Dehn twist coefficient , we construct a Legendrian knot close to the stable foliation of a page, together with a small Legendrian pushoff . When , we apply the techniques of [CH13] to show that the strip Legendrian contact homology of is well-defined and has an exponential growth property. The work [Alv19] then implies that all Reeb vector fields for have positive topological entropy.
On associe à toute décomposition en livre ouvert d’une variété de contact close de dimension , de monodromie pseudo-Anosov, de reliure connexe et de coefficient de Dehn fractionnaire , un nœud legendrien proche du feuilletage stable d’une page accompagné d’un petit translaté legendrien . Lorsque , on applique les techniques de [CH13] pour montrer que l’homologie de contact legendrienne cylindrique de est bien définie et a une propriété de croissance exponentielle. Le travail [Alv19] implique alors que tout champ de Reeb pour a une entropie topologique non nulle.
Accepted:
Published online:
DOI: 10.5802/jep.89
Keywords: Topological entropy, contact structure, open book decomposition, mapping class group, Reeb dynamics, pseudo-Anosov, contact homology
Mot clés : Entropie topologique, structure de contact, livre ouvert, groupe de difféotopie, dynamique de Reeb, pseudo-Anosov, homologie de contact
Marcelo R.R. Alves 1; Vincent Colin 2; Ko Honda 3
@article{JEP_2019__6__119_0, author = {Marcelo R.R. Alves and Vincent Colin and Ko Honda}, title = {Topological entropy for {Reeb} vector fields in dimension three via open book decompositions}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {119--148}, publisher = {\'Ecole polytechnique}, volume = {6}, year = {2019}, doi = {10.5802/jep.89}, mrnumber = {3915194}, zbl = {1415.57011}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.89/} }
TY - JOUR AU - Marcelo R.R. Alves AU - Vincent Colin AU - Ko Honda TI - Topological entropy for Reeb vector fields in dimension three via open book decompositions JO - Journal de l’École polytechnique — Mathématiques PY - 2019 SP - 119 EP - 148 VL - 6 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.89/ DO - 10.5802/jep.89 LA - en ID - JEP_2019__6__119_0 ER -
%0 Journal Article %A Marcelo R.R. Alves %A Vincent Colin %A Ko Honda %T Topological entropy for Reeb vector fields in dimension three via open book decompositions %J Journal de l’École polytechnique — Mathématiques %D 2019 %P 119-148 %V 6 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.89/ %R 10.5802/jep.89 %G en %F JEP_2019__6__119_0
Marcelo R.R. Alves; Vincent Colin; Ko Honda. Topological entropy for Reeb vector fields in dimension three via open book decompositions. Journal de l’École polytechnique — Mathématiques, Volume 6 (2019), pp. 119-148. doi : 10.5802/jep.89. https://jep.centre-mersenne.org/articles/10.5802/jep.89/
[Abb99] - “Finite energy surfaces and the chord problem”, Duke Math. J. 96 (1999) no. 2, p. 241-316 | DOI | MR | Zbl
[Alv16a] - “Cylindrical contact homology and topological entropy”, Geom. Topol. 20 (2016) no. 6, p. 3519-3569 | DOI | MR | Zbl
[Alv16b] - “Positive topological entropy for Reeb flows on 3-dimensional Anosov contact manifolds”, J. Modern Dyn. 10 (2016), p. 497-509 | DOI | MR | Zbl
[Alv19] - “Legendrian contact homology and topological entropy”, J. Topol. Anal. (2019), to appear, doi:10.1142/S1793525319500031, arXiv:1410.3381 | DOI | MR | Zbl
[BEE12] - “Effect of Legendrian surgery”, Geom. Topol. 16 (2012) no. 1, p. 301-389, With an appendix by S. Ganatra and M. Maydanskiy | DOI | MR | Zbl
[BEH + 03] - “Compactness results in symplectic field theory”, Geom. Topol. 7 (2003), p. 799-888 | DOI | MR | Zbl
[BH15] - “Semi-global Kuranishi charts and the definition of contact homology” (2015), arXiv:1512.00580
[Bou09] - “A survey of contact homology”, in New perspectives and challenges in symplectic field theory, CRM Proc. Lecture Notes, vol. 49, American Mathematical Society, Providence, RI, 2009, p. 45-71 | DOI | MR | Zbl
[Bow70] - “Topological entropy and axiom A”, in Global Analysis (Berkeley, Calif., 1968), Proc. Sympos. Pure Math., vol. XIV, American Mathematical Society, Providence, R.I., 1970, p. 23-41 | Zbl
[CH08] - “Stabilizing the monodromy of an open book decomposition”, Geom. Dedicata 132 (2008), p. 95-103 | DOI | MR | Zbl
[CH13] - “Reeb vector fields and open book decompositions”, J. Eur. Math. Soc. (JEMS) 15 (2013) no. 2, p. 443-507 | DOI | MR | Zbl
[Che02] - “Differential algebra of Legendrian links”, Invent. Math. 150 (2002) no. 3, p. 441-483 | DOI | MR | Zbl
[EGH00] - “Introduction to symplectic field theory”, Geom. Funct. Anal. (2000), p. 560-673, Special volume GAFA 2000 (Tel Aviv, 1999), Part II | MR | Zbl
[Ekh08] - “Rational symplectic field theory over for exact Lagrangian cobordisms”, J. Eur. Math. Soc. (JEMS) 10 (2008) no. 3, p. 641-704 | DOI | Zbl
[FLP12] - Thurston’s work on surfaces, Mathematical Notes, vol. 48, Princeton University Press, Princeton, NJ, 2012, Translated from the 1979 French original | MR | Zbl
[FM12] - A primer on mapping class groups, Princeton Mathematical Series, vol. 49, Princeton University Press, Princeton, NJ, 2012 | MR
[FOOO09] - Lagrangian intersection Floer theory: anomaly and obstruction. Part II, AMS/IP Studies in Advanced Mathematics, vol. 46, American Mathematical Society, Providence, RI, 2009 | MR | Zbl
[FS05] - “Volume growth in the component of the Dehn-Seidel twist”, Geom. Funct. Anal. 15 (2005) no. 4, p. 809-838 | DOI | MR | Zbl
[FS06] - “Fiberwise volume growth via Lagrangian intersections”, J. Symplectic Geom. 4 (2006) no. 2, p. 117-148 | DOI | MR | Zbl
[Gir02] - “Géométrie de contact: de la dimension trois vers les dimensions supérieures”, in Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), Higher Ed. Press, Beijing, 2002, p. 405-414 | MR | Zbl
[HL88] - “Notions of category in differential algebra”, in Algebraic topology—rational homotopy (Louvain-la-Neuve, 1986), Lect. Notes in Math., vol. 1318, Springer, Berlin, 1988, p. 138-154 | DOI | MR | Zbl
[Hof93] - “Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three”, Invent. Math. 114 (1993) no. 3, p. 515-563 | DOI | MR | Zbl
[HWZ96] - “Properties of pseudoholomorphic curves in symplectisations. I. Asymptotics”, Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996) no. 3, p. 337-379, Correction: Ibid. 15 (1998) no. 4, p. 535–538 | DOI | MR | Zbl
[HWZ07] - “A general Fredholm theory. I. A splicing-based differential geometry”, J. Eur. Math. Soc. (JEMS) 9 (2007) no. 4, p. 841-876 | DOI | MR | Zbl
[Kat80] - “Lyapunov exponents, entropy and periodic orbits for diffeomorphisms”, Publ. Math. Inst. Hautes Études Sci. (1980) no. 51, p. 137-173 | DOI | MR | Zbl
[Kat82] - “Entropy and closed geodesics”, Ergodic Theory Dynam. Systems 2 (1982) no. 3-4, p. 339-365 | DOI | MR | Zbl
[KH95] - Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications, vol. 54, Cambridge University Press, Cambridge, 1995 | MR | Zbl
[LS19] - “Symbolic dynamics for three-dimensional flows with positive topological entropy”, J. Eur. Math. Soc. (JEMS) 21 (2019) no. 1, p. 199-256 | DOI | MR | Zbl
[MS11] - “Positive topological entropy of Reeb flows on spherizations”, Math. Proc. Cambridge Philos. Soc. 151 (2011) no. 1, p. 103-128 | DOI | MR | Zbl
[New89] - “Continuity properties of entropy”, Ann. of Math. (2) 129 (1989) no. 2, p. 215-235, Correction: Ibid. 131 (1990) no. 2, p. 409–410 | DOI | MR | Zbl
[Par15] - “Contact homology and virtual fundamental cycles” (2015), arXiv:1508.03873
[Par16] - “An algebraic approach to virtual fundamental cycles on moduli spaces of pseudo-holomorphic curves”, Geom. Topol. 20 (2016) no. 2, p. 779-1034 | DOI | MR | Zbl
[Sar13] - “Symbolic dynamics for surface diffeomorphisms with positive entropy”, J. Amer. Math. Soc. 26 (2013) no. 2, p. 341-426 | DOI | MR | Zbl
[Sta] - “Differential Graded Algebra”, in Stacks Project, http://stacks.math.columbia.edu/download/dga.pdf
[Yom87] - “Volume growth and entropy”, Israel J. Math. 57 (1987) no. 3, p. 285-300 | DOI | MR | Zbl
Cited by Sources: