Topological entropy for Reeb vector fields in dimension three via open book decompositions
Journal de l’École polytechnique — Mathématiques, Volume 6 (2019), pp. 119-148.

Given an open book decomposition of a closed contact three manifold (M,ξ) with pseudo-Anosov monodromy, connected binding, and fractional Dehn twist coefficient c=k/n, we construct a Legendrian knot Λ close to the stable foliation of a page, together with a small Legendrian pushoff Λ ^. When k5, we apply the techniques of [CH13] to show that the strip Legendrian contact homology of ΛΛ ^ is well-defined and has an exponential growth property. The work [Alv19] then implies that all Reeb vector fields for ξ have positive topological entropy.

On associe à toute décomposition en livre ouvert d’une variété de contact close (M,ξ) de dimension 3, de monodromie pseudo-Anosov, de reliure connexe et de coefficient de Dehn fractionnaire c=k/n, un nœud legendrien Λ proche du feuilletage stable d’une page accompagné d’un petit translaté legendrien Λ ^. Lorsque k5, on applique les techniques de [CH13] pour montrer que l’homologie de contact legendrienne cylindrique de ΛΛ ^ est bien définie et a une propriété de croissance exponentielle. Le travail [Alv19] implique alors que tout champ de Reeb pour ξ a une entropie topologique non nulle.

Received:
Accepted:
Published online:
DOI: 10.5802/jep.89
Classification: 57M50, 37B40, 53C15
Keywords: Topological entropy, contact structure, open book decomposition, mapping class group, Reeb dynamics, pseudo-Anosov, contact homology
Mot clés : Entropie topologique, structure de contact, livre ouvert, groupe de difféotopie, dynamique de Reeb, pseudo-Anosov, homologie de contact

Marcelo R.R. Alves 1; Vincent Colin 2; Ko Honda 3

1 Département de Mathématique, Université Libre de Bruxelles, CP 218, Boulevard du Triomphe, B-1050 Bruxelles, Belgique
2 Université de Nantes, UMR 6629 du CNRS 44322 Nantes, France
3 University of California, Los Angeles Los Angeles, CA 90095, USA
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{JEP_2019__6__119_0,
     author = {Marcelo R.R. Alves and Vincent Colin and Ko Honda},
     title = {Topological entropy for {Reeb} vector fields in dimension three via open book decompositions},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {119--148},
     publisher = {\'Ecole polytechnique},
     volume = {6},
     year = {2019},
     doi = {10.5802/jep.89},
     mrnumber = {3915194},
     zbl = {1415.57011},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.89/}
}
TY  - JOUR
AU  - Marcelo R.R. Alves
AU  - Vincent Colin
AU  - Ko Honda
TI  - Topological entropy for Reeb vector fields in dimension three via open book decompositions
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2019
SP  - 119
EP  - 148
VL  - 6
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.89/
DO  - 10.5802/jep.89
LA  - en
ID  - JEP_2019__6__119_0
ER  - 
%0 Journal Article
%A Marcelo R.R. Alves
%A Vincent Colin
%A Ko Honda
%T Topological entropy for Reeb vector fields in dimension three via open book decompositions
%J Journal de l’École polytechnique — Mathématiques
%D 2019
%P 119-148
%V 6
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.89/
%R 10.5802/jep.89
%G en
%F JEP_2019__6__119_0
Marcelo R.R. Alves; Vincent Colin; Ko Honda. Topological entropy for Reeb vector fields in dimension three via open book decompositions. Journal de l’École polytechnique — Mathématiques, Volume 6 (2019), pp. 119-148. doi : 10.5802/jep.89. https://jep.centre-mersenne.org/articles/10.5802/jep.89/

[Abb99] C. Abbas - “Finite energy surfaces and the chord problem”, Duke Math. J. 96 (1999) no. 2, p. 241-316 | DOI | MR | Zbl

[Alv16a] M. R. R. Alves - “Cylindrical contact homology and topological entropy”, Geom. Topol. 20 (2016) no. 6, p. 3519-3569 | DOI | MR | Zbl

[Alv16b] M. R. R. Alves - “Positive topological entropy for Reeb flows on 3-dimensional Anosov contact manifolds”, J. Modern Dyn. 10 (2016), p. 497-509 | DOI | MR | Zbl

[Alv19] M. R. R. Alves - “Legendrian contact homology and topological entropy”, J. Topol. Anal. (2019), to appear, doi:10.1142/S1793525319500031, arXiv:1410.3381 | DOI | MR | Zbl

[BEE12] F. Bourgeois, T. Ekholm & Y. Eliashberg - “Effect of Legendrian surgery”, Geom. Topol. 16 (2012) no. 1, p. 301-389, With an appendix by S. Ganatra and M. Maydanskiy | DOI | MR | Zbl

[BEH + 03] F. Bourgeois, Y. Eliashberg, H. Hofer, K. Wysocki & E. Zehnder - “Compactness results in symplectic field theory”, Geom. Topol. 7 (2003), p. 799-888 | DOI | MR | Zbl

[BH15] E. Bao & K. Honda - “Semi-global Kuranishi charts and the definition of contact homology” (2015), arXiv:1512.00580

[Bou09] F. Bourgeois - “A survey of contact homology”, in New perspectives and challenges in symplectic field theory, CRM Proc. Lecture Notes, vol. 49, American Mathematical Society, Providence, RI, 2009, p. 45-71 | DOI | MR | Zbl

[Bow70] R. Bowen - “Topological entropy and axiom A”, in Global Analysis (Berkeley, Calif., 1968), Proc. Sympos. Pure Math., vol. XIV, American Mathematical Society, Providence, R.I., 1970, p. 23-41 | Zbl

[CH08] V. Colin & K. Honda - “Stabilizing the monodromy of an open book decomposition”, Geom. Dedicata 132 (2008), p. 95-103 | DOI | MR | Zbl

[CH13] V. Colin & K. Honda - “Reeb vector fields and open book decompositions”, J. Eur. Math. Soc. (JEMS) 15 (2013) no. 2, p. 443-507 | DOI | MR | Zbl

[Che02] Y. Chekanov - “Differential algebra of Legendrian links”, Invent. Math. 150 (2002) no. 3, p. 441-483 | DOI | MR | Zbl

[EGH00] Y. Eliashberg, A. Givental & H. Hofer - “Introduction to symplectic field theory”, Geom. Funct. Anal. (2000), p. 560-673, Special volume GAFA 2000 (Tel Aviv, 1999), Part II | MR | Zbl

[Ekh08] T. Ekholm - “Rational symplectic field theory over 2 for exact Lagrangian cobordisms”, J. Eur. Math. Soc. (JEMS) 10 (2008) no. 3, p. 641-704 | DOI | Zbl

[FLP12] A. Fathi, F. Laudenbach & V. Poénaru - Thurston’s work on surfaces, Mathematical Notes, vol. 48, Princeton University Press, Princeton, NJ, 2012, Translated from the 1979 French original | MR | Zbl

[FM12] B. Farb & D. Margalit - A primer on mapping class groups, Princeton Mathematical Series, vol. 49, Princeton University Press, Princeton, NJ, 2012 | MR

[FOOO09] K. Fukaya, Y.-G. Oh, H. Ohta & K. Ono - Lagrangian intersection Floer theory: anomaly and obstruction. Part II, AMS/IP Studies in Advanced Mathematics, vol. 46, American Mathematical Society, Providence, RI, 2009 | MR | Zbl

[FS05] U. Frauenfelder & F. Schlenk - “Volume growth in the component of the Dehn-Seidel twist”, Geom. Funct. Anal. 15 (2005) no. 4, p. 809-838 | DOI | MR | Zbl

[FS06] U. Frauenfelder & F. Schlenk - “Fiberwise volume growth via Lagrangian intersections”, J. Symplectic Geom. 4 (2006) no. 2, p. 117-148 | DOI | MR | Zbl

[Gir02] E. Giroux - “Géométrie de contact: de la dimension trois vers les dimensions supérieures”, in Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), Higher Ed. Press, Beijing, 2002, p. 405-414 | MR | Zbl

[HL88] S. Halperin & J.-M. Lemaire - “Notions of category in differential algebra”, in Algebraic topology—rational homotopy (Louvain-la-Neuve, 1986), Lect. Notes in Math., vol. 1318, Springer, Berlin, 1988, p. 138-154 | DOI | MR | Zbl

[Hof93] H. Hofer - “Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three”, Invent. Math. 114 (1993) no. 3, p. 515-563 | DOI | MR | Zbl

[HWZ96] H. Hofer, K. Wysocki & E. Zehnder - “Properties of pseudoholomorphic curves in symplectisations. I. Asymptotics”, Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996) no. 3, p. 337-379, Correction: Ibid. 15 (1998) no. 4, p. 535–538 | DOI | MR | Zbl

[HWZ07] H. Hofer, K. Wysocki & E. Zehnder - “A general Fredholm theory. I. A splicing-based differential geometry”, J. Eur. Math. Soc. (JEMS) 9 (2007) no. 4, p. 841-876 | DOI | MR | Zbl

[Kat80] A. Katok - “Lyapunov exponents, entropy and periodic orbits for diffeomorphisms”, Publ. Math. Inst. Hautes Études Sci. (1980) no. 51, p. 137-173 | DOI | MR | Zbl

[Kat82] A. Katok - “Entropy and closed geodesics”, Ergodic Theory Dynam. Systems 2 (1982) no. 3-4, p. 339-365 | DOI | MR | Zbl

[KH95] A. Katok & B. Hasselblatt - Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications, vol. 54, Cambridge University Press, Cambridge, 1995 | MR | Zbl

[LS19] Y. Lima & O. M. Sarig - “Symbolic dynamics for three-dimensional flows with positive topological entropy”, J. Eur. Math. Soc. (JEMS) 21 (2019) no. 1, p. 199-256 | DOI | MR | Zbl

[MS11] L. Macarini & F. Schlenk - “Positive topological entropy of Reeb flows on spherizations”, Math. Proc. Cambridge Philos. Soc. 151 (2011) no. 1, p. 103-128 | DOI | MR | Zbl

[New89] S. E. Newhouse - “Continuity properties of entropy”, Ann. of Math. (2) 129 (1989) no. 2, p. 215-235, Correction: Ibid. 131 (1990) no. 2, p. 409–410 | DOI | MR | Zbl

[Par15] J. Pardon - “Contact homology and virtual fundamental cycles” (2015), arXiv:1508.03873

[Par16] J. Pardon - “An algebraic approach to virtual fundamental cycles on moduli spaces of pseudo-holomorphic curves”, Geom. Topol. 20 (2016) no. 2, p. 779-1034 | DOI | MR | Zbl

[Sar13] O. M. Sarig - “Symbolic dynamics for surface diffeomorphisms with positive entropy”, J. Amer. Math. Soc. 26 (2013) no. 2, p. 341-426 | DOI | MR | Zbl

[Sta] - “Differential Graded Algebra”, in Stacks Project, http://stacks.math.columbia.edu/download/dga.pdf

[Yom87] Y. Yomdin - “Volume growth and entropy”, Israel J. Math. 57 (1987) no. 3, p. 285-300 | DOI | MR | Zbl

Cited by Sources: