In this paper we give an alternative proof of Schreiber’s theorem which says that an infinite discrete approximate subgroup in is relatively dense around a subspace. We also deduce from Schreiber’s theorem two new results. The first one says that any infinite discrete approximate subgroup in is a restriction of a Meyer set to a thickening of a linear subspace in , and the second one provides an extension of Schreiber’s theorem to the case of the Heisenberg group.
Dans cet article, nous donnons une autre démonstration du théorème de Schreiber : un sous-groupe approximatif discret infini de est relativement dense au voisinage d’un sous-espace. Nous déduisons aussi du théorème de Schreiber deux nouveaux résultats : le premier affirme qu’un sous-groupe approximatif discret infini de est la restriction d’un ensemble de Meyer à un épaississement d’un sous-espace linéaire de , et le second propose une extension du théorème de Schreiber au cas du groupe de Heisenberg.
Accepted:
Published online:
DOI: 10.5802/jep.90
Keywords: Approximate groups, approximate lattices, Meyer sets
Mots-clés : Groupes approximatifs, réseaux approximatifs, ensembles de Meyer
Alexander Fish 1

@article{JEP_2019__6__149_0, author = {Alexander Fish}, title = {Extensions of {Schreiber{\textquoteright}s} theorem on discrete approximate subgroups in~$\protect \mathbb{R}^d$}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {149--162}, publisher = {\'Ecole polytechnique}, volume = {6}, year = {2019}, doi = {10.5802/jep.90}, mrnumber = {3915195}, zbl = {07033368}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.90/} }
TY - JOUR AU - Alexander Fish TI - Extensions of Schreiber’s theorem on discrete approximate subgroups in $\protect \mathbb{R}^d$ JO - Journal de l’École polytechnique — Mathématiques PY - 2019 SP - 149 EP - 162 VL - 6 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.90/ DO - 10.5802/jep.90 LA - en ID - JEP_2019__6__149_0 ER -
%0 Journal Article %A Alexander Fish %T Extensions of Schreiber’s theorem on discrete approximate subgroups in $\protect \mathbb{R}^d$ %J Journal de l’École polytechnique — Mathématiques %D 2019 %P 149-162 %V 6 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.90/ %R 10.5802/jep.90 %G en %F JEP_2019__6__149_0
Alexander Fish. Extensions of Schreiber’s theorem on discrete approximate subgroups in $\protect \mathbb{R}^d$. Journal de l’École polytechnique — Mathématiques, Volume 6 (2019), pp. 149-162. doi : 10.5802/jep.90. https://jep.centre-mersenne.org/articles/10.5802/jep.90/
[1] - “Approximate lattices”, Duke Math. J. 167 (2018) no. 15, p. 2903-2964 | DOI | MR
[2] - “The structure of approximate groups”, Publ. Math. Inst. Hautes Études Sci. 116 (2012), p. 115-221 | DOI | MR
[3] - Foundations of a structural theory of set addition, Translations of Mathematical Monographs, vol. 37, American Mathematical Society, Providence, R. I., 1973 | MR | Zbl
[4] - “Freiman’s theorem in an arbitrary abelian group”, J. London Math. Soc. (2) 75 (2007) no. 1, p. 163-175 | DOI | MR | Zbl
[5] - “Stable group theory and approximate subgroups”, J. Amer. Math. Soc. 25 (2012) no. 1, p. 189-243 | DOI | MR | Zbl
[6] - “Meyer’s concept of quasicrystal and quasiregular sets”, Comm. Math. Phys. 179 (1996) no. 2, p. 365-376 | DOI | MR | Zbl
[7] - Nombres de Pisot, nombres de Salem et analyse harmonique, Lect. Notes in Math., vol. 117, Springer-Verlag, Berlin-New York, 1970 | MR | Zbl
[8] - “Model sets: survey” (2000), arXiv:math/0002020
[9] - Approximations diophantiennes et problèmes additifs dans les groupes abéliens localement compacts, Ph. D. Thesis, Université Paris-Sud, 1972
Cited by Sources: