In this article we produce an example of a non-residually finite group which admits a uniformly proper action on a Gromov hyperbolic space.
Dans cet article nous construisons un exemple de groupe qui n’est pas résiduellement fini et qui est muni d’une action uniformément propre sur un espace hyperbolique au sens de Gromov.
Accepted:
Published online:
DOI: 10.5802/jep.86
Keywords: Hyperbolic spaces, residually finite group, small cancellation theory, uniformly proper action, bounded geometry
Mot clés : Espaces hyperboliques, groupes résiduellement finis, théorie de la petite simplification, action uniformément propre, géométrie bornée
Rémi Coulon 1; Denis Osin 2
@article{JEP_2019__6__19_0, author = {R\'emi Coulon and Denis Osin}, title = {A non-residually finite group acting uniformly properly on a hyperbolic space}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {19--30}, publisher = {\'Ecole polytechnique}, volume = {6}, year = {2019}, doi = {10.5802/jep.86}, mrnumber = {3896034}, zbl = {07003360}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.86/} }
TY - JOUR AU - Rémi Coulon AU - Denis Osin TI - A non-residually finite group acting uniformly properly on a hyperbolic space JO - Journal de l’École polytechnique — Mathématiques PY - 2019 SP - 19 EP - 30 VL - 6 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.86/ DO - 10.5802/jep.86 LA - en ID - JEP_2019__6__19_0 ER -
%0 Journal Article %A Rémi Coulon %A Denis Osin %T A non-residually finite group acting uniformly properly on a hyperbolic space %J Journal de l’École polytechnique — Mathématiques %D 2019 %P 19-30 %V 6 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.86/ %R 10.5802/jep.86 %G en %F JEP_2019__6__19_0
Rémi Coulon; Denis Osin. A non-residually finite group acting uniformly properly on a hyperbolic space. Journal de l’École polytechnique — Mathématiques, Volume 6 (2019), pp. 19-30. doi : 10.5802/jep.86. https://jep.centre-mersenne.org/articles/10.5802/jep.86/
[1] - “Rips construction and Kazhdan property (T)”, Groups Geom. Dyn. 2 (2008) no. 1, p. 1-12 | DOI | MR | Zbl
[2] - “Tight geodesics in the curve complex”, Invent. Math. 171 (2008) no. 2, p. 281-300 | DOI | MR | Zbl
[3] - Metric spaces of non-positive curvature, Grundlehren Math. Wiss., vol. 319, Springer-Verlag, Berlin, 1999 | MR | Zbl
[4] - Géométrie et théorie des groupes. Les groupes hyperboliques de Gromov, Lect. Notes in Math., vol. 1441, Springer-Verlag, Berlin, 1990 | Zbl
[5] - “Asphericity and small cancellation theory for rotation families of groups”, Groups Geom. Dyn. 5 (2011) no. 4, p. 729-765 | DOI | MR | Zbl
[6] - “On the geometry of Burnside quotients of torsion free hyperbolic groups”, Internat. J. Algebra Comput. 24 (2014) no. 3, p. 251-345 | DOI | MR | Zbl
[7] - “Partial periodic quotients of groups acting on a hyperbolic space”, Ann. Inst. Fourier (Grenoble) 66 (2016) no. 5, p. 1773-1857 | DOI | MR
[8] - Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces, Mem. Amer. Math. Soc., vol. 245, no. 1156, American Mathematical Society, Providence, RI, 2017 | Zbl
[9] - “Courbure mésoscopique et théorie de la toute petite simplification”, J. Topology 1 (2008) no. 4, p. 804-836 | DOI | Zbl
[10] - Sur les groupes hyperboliques d’après Mikhael Gromov (É. Ghys & P. de la Harpe, eds.), Progress in Math., vol. 83, Birkhäuser Boston, Inc., Boston, MA, 1990 | Zbl
[11] - “Hyperbolic groups”, in Essays in group theory, Springer, New York, 1987, p. 75-263 | DOI | Zbl
[12] - Mesoscopic curvature and hyperbolicity, Contemporary Mathematics, vol. 288, American Mathematical Society, Providence, RI, 2001 | MR | Zbl
[13] - “Dehn filling in relatively hyperbolic groups”, Israel J. Math. 168 (2008) no. 1, p. 317-429 | DOI | MR | Zbl
[14] - “Conjugacy in normal subgroups of hyperbolic groups”, Forum Math. 24 (2012) no. 5, p. 889-910 | DOI | MR | Zbl
[15] - “On residualing homomorphisms and G-subgroups of hyperbolic groups”, Internat. J. Algebra Comput. 3 (1993) no. 4, p. 365-409 | DOI | MR | Zbl
[16] - “Acylindrically hyperbolic groups”, Trans. Amer. Math. Soc. 368 (2016) no. 2, p. 851-888 | DOI | MR | Zbl
[17] - Arbres, amalgames, , Astérisque, vol. 46, Société Mathématique de France, Paris, 1977 | Zbl
Cited by Sources: