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A NON-RESIDUALLY FINITE GROUP ACTING

UNIFORMLY PROPERLY ON A HYPERBOLIC SPACE

by Rémi Coulon & Denis Osin

Abstract. — In this article we produce an example of a non-residually finite group which
admits a uniformly proper action on a Gromov hyperbolic space.

Résumé (Un exemple de groupe non résiduellement fini muni d’une action uniformément propre
sur un espace hyperbolique)

Dans cet article nous construisons un exemple de groupe qui n’est pas résiduellement fini et
qui est muni d’une action uniformément propre sur un espace hyperbolique au sens de Gromov.
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1. Introduction

By default, all actions of groups on metric spaces considered in this paper are
by isometries. Recall that a group is hyperbolic if and only if it acts properly and
cocompactly on a hyperbolic metric space. It is natural to ask what kind of groups
we get if we remove the requirement of cocompactness from this definition. However,
it turns out that every countable group admits a proper action on a hyperbolic space,
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20 R. Coulon & D. Osin

namely the parabolic action on a combinatorial horoball [13]. Thus to obtain an
interesting class of groups we have to strengthen our properness assumptions.

In this paper we propose to study the class of groups that admit a uniformly proper
action on a hyperbolic length space. We denote this class of groups by P. Recall that
an action of a group G on a metric space X is uniformly proper if for every r > 0,
there exists N ∈ N, such that for all x ∈ X,

|{g ∈ G | dX(x, gx) 6 r}| 6 N.

Having a uniformly proper action on a hyperbolic space is a rather restrictive con-
dition. For instance, [16, Th. 1.2] implies that every group G ∈ P (as well as each
of its subgroups) is either virtually cyclic or acylindrically hyperbolic, which imposes
strong restrictions on the algebraic structure of G. In this article we actually focus
on a smaller class P0 ⊂P which is easier to manipulate. It consists of all groups G
having an action on a hyperbolic graph with bounded valence, whose restriction to
the vertex set is free.

Hyperbolic groups and their subgroups obviously belong to P0. Indeed if H is
a subgroup of a hyperbolic group G, then the action of H on a Cayley graph of G
satisfies the above properties. In general, groups from the class P0 have many prop-
erties similar to those of hyperbolic groups. In fact, we do not know the answer to
the following question: Does P0 coincide with the class of all subgroups of hyperbolic
groups? Although the affirmative answer seems unlikely, we are not aware of any
counterexamples.

This paper is inspired by the well-known open problem of whether every hyperbolic
group is residually finite. Our main result shows that the answer to this question is
negative if one replaces the class of hyperbolic groups with the class P0.

Theorem 1.1. — There exists a finitely generated non-trivial group G with an action
on a hyperbolic graph of bounded valence whose restriction to the vertex set is free
such that every amenable quotient of G is trivial. In particular, G ∈P0 and G is not
residually finite.

In the process of constructing such a group G, we show that P0 is closed under
taking certain small cancellation quotients (see Section 4). This result seems to be
of independent interest and can potentially be used to construct other interesting
examples of groups from the class P0.

The proof of the second claim of Theorem 1.1 can be illustrated as follows. We
first use a variant of the Rips construction given in [1] to construct a subgroup N of
a torsion-free hyperbolic group H and two elements a, b ∈ N which are “sufficiently
independent” in N (more precisely, non-commensurable – see Section 2 for the defini-
tion) but are conjugate in every finite quotient of N . The fact that these elements are
“sufficiently independent” together with the result about small cancellation quotients
mentioned above imply that the quotient group G = N/〈〈ap, bq〉〉 belongs to P0 for
some (in fact, all sufficiently large) primes p and q. If p 6= q, the images of a and b are
clearly trivial in every finite quotient of G. In particular, G is not residually finite.
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A non-residually finite group acting uniformly properly on a hyperbolic space 21

A slightly more elaborated version of this idea involving Kazhdan’s property (T) leads
to the proof of the first claim of the theorem.

Acknowledgments. — We are grateful to Ashot Minasyan for useful comments and
suggestions, which allowed us to simplify the original proof of Theorem 5.2. We also
thank the referees for their helpful remarks.

2. A short review of hyperbolic geometry

In this section we recall a few notations and definitions regarding hyperbolic spaces
in the sense of Gromov. For more details, refer the reader to Gromov’s original article
[11] or [4, 10].

The four point inequality. — Let (X, d) be a length space. Recall that the Gromov
product of three points x, y, z ∈ X is defined by

〈x, y〉z =
1

2
{d(x, z) + d(y, z)− d(x, y)} .

In the remainder of this section, we assume that X is δ-hyperbolic, i.e., for every
x, y, z, t ∈ X,

(1) 〈x, z〉t > min {〈x, y〉t , 〈y, z〉t} − δ.

We denote by ∂X the boundary at infinity of X, see [4, Chap. 2].

Quasi-convex subsets. — Let Y be a subset of X. Recall that Y is α-quasi-convex if
for every x ∈ X, for every y, y′ ∈ Y , we have d(x, Y ) 6 〈y, y′〉x + α. If Y is path-
connected, we denote by dY the length pseudo-metric on Y induced by the restriction
of dX on Y . The set Y is strongly quasi-convex if Y is 2δ-quasi-convex and for every
y, y′ ∈ Y we have

dX(y, y′) 6 dY (y, y′) 6 dX(y, y′) + 8δ.

We denote by Y +α, the α-neighborhood of Y , i.e., the set of points x ∈ X such that
d(x, Y ) 6 α.

Isometries of a hyperbolic space. — Let G be a group acting uniformly properly on X.
An element g ∈ G is either elliptic (it has bounded orbits, hence finite order) or
loxodromic (it has exactly two accumulation points in ∂X) [2, Lem. 2.2]. A subgroup
of G is either elementary (it is virtually cyclic) or contains a copy of the free group F2

[11, §8.2]. In order to measure the action of g on X, we use the translation length
defined as follows

‖g‖X = inf
x∈X

d(gx, x) .

If there is no ambiguity, we omit the space X in the notation. A loxodromic element
g ∈ G fixes exactly two points g− and g+ in ∂X. We denote by E(g) the stabilizer
of {g−, g+}. It is the maximal elementary subgroup containing g. Moreover 〈g〉 has
finite index in E(g) [8, Lem. 6.5].

J.É.P. — M., 2019, tome 6



22 R. Coulon & D. Osin

Given a loxodromic element g ∈ G, there exists a g-invariant strongly quasi-convex
subset Yg of X which is quasi-isometric to a line; its stabilizer is E(g) and the quo-
tient Yg/E(g) is bounded [7, Def. 3.12 and Lemma 3.13]. We call this set Yg the
cylinder of g.

We say that two elements g, h ∈ G are commensurable, if there exist n,m ∈ Zr{0}
and u ∈ G such that gn = uhmu−1. Every loxodromic element is contained in a unique
maximal elementary subgroup [7, Lem. 3.28]. Hence two loxodromic elements g and h
are commensurable if and only if there exists u ∈ G such that g and uhu−1 generate
an elementary subgroup.

Lemma 2.1. — Let S be a finite collection of pairwise non commensurable loxodromic
elements of G. There exists ∆ > 0 with the following property. For every g, g′ ∈ S,
for every u ∈ G, if

diam
(
Y +5δ
g ∩ uY +5δ

g′

)
> ∆,

then g = g′ and u ∈ E(g).

Proof. — Since the action of G on X is uniformly proper, it is also acylindrical – see
for instance [2, p. 284] for a definition. According to [7, Prop. 3.44 and Lem. 6.14] there
exist constants A,B > 0 with the following property: if h, h′ ∈ G are two loxodromic
elements generating a non-elementary subgroup, then

diam
(
Y +5δ
h ∩ Y +5δ

h′

)
6 Amax{‖h‖ , ‖h′‖}+B.

We now let
∆ = Amax

g∈S
‖g‖+B.

Let g, g′ ∈ S, and u ∈ G such that

diam
(
Y +5δ
g ∩ uY +5δ

g′

)
> ∆.

Recall that uYg′ is the cylinder of ug′u−1. It follows from our choice of ∆, that g
and ug′u−1 generate an elementary subgroup. Since the elements of S are pairwise
non-commensurable it forces g = g′ and u ∈ E(g). �

3. The class P0

Definition 3.1. — A subset S of a metric space X is r-separated if for every distinct
points s, s′ ∈ S, d(s, s′) > r. Given a subset Y of X and r > 0, we define the r-capacity
of Y , denoted by Cr(Y ), as the maximal number of points in an r-separated subset
of Y . We say that X has r-bounded geometry if for every R > 0, there is an integer N
bounding from above the r-capacity of every ball of radius R. If there exists r > 0

such that X has r-bounded geometry we simply say that X has bounded geometry.

The class P0 we are interested in consists of all groups admitting a uniformly
proper action on a hyperbolic length space with bounded geometry. It is clear that
P0 ⊆ P. We will show that the class P0 is closed under certain small cancellation
quotients. Before we discuss the precise statements and proofs, a few remarks are in

J.É.P. — M., 2019, tome 6



A non-residually finite group acting uniformly properly on a hyperbolic space 23

order. First, we do not know whether P0 is indeed a proper subclass of P. Second, it is
possible to prove the results of the next section for the whole class P. Nevertheless,
the proofs become much easier for P0. Therefore we restrict our attention to this
subclass.

We start with a few equivalent characterizations of the class P0. In this article
all the graphs are undirected, we refer to [17] for a precise definition. Observe that a
graph Γ = (V,E) has bounded geometry whenever it has uniformly bounded valence
i.e., there exists d ∈ N, such that the valence of any vertex v ∈ V is at most d.

Remark 3.2. — The converse statement is false. Indeed, consider the real line, which
we think of as a graph with the vertex set Z and the obvious edges; to each vertex,
attach infinitely many edges of length 1. The resulting graph has 3-bounded geometry
while some vertices have infinite valence.

If Γ is a graph with uniformly bounded valence, the action of a group G on Γ is
uniformly proper if and only if there exists N ∈ N such that the stabilizer of any
vertex contains at most N elements. Recall that a group G acts on a graph Γ without
inversion if there is no element g ∈ G sending an edge e ∈ E to e (where e is the
same edge with the reverse orientation).

Proposition 3.3. — Let G be a group. The following assertions are equivalent.
(1) G belongs to P0.
(2) G acts uniformly properly without inversion on a hyperbolic graph Γ with uni-

formly bounded valence.
(3) G acts on a hyperbolic graph Γ with uniformly bounded valence such that the

action of G is free when restricted to the vertex set of Γ.

Proof. — To show that (3)⇒ (2) one simply takes the barycentric subdivision of the
graph. The implication (2) ⇒ (1) directly follows from the definition. We now focus
on (1) ⇒ (3). By definition there exists r > 0 such that G acts uniformly properly
on a hyperbolic length space X with r-bounded geometry. Using Zorn’s Lemma we
choose an r-separated subset S of X = X/G which is maximal for this property. We
denote by S the pre-image of S in X. We fix S0 ⊂ S to be a set of representatives for
the action of G on S. Let R = 2r + 1. We now define a graph Γ = (V,E) as follows.
Its vertex set is V = G×S0. The edge set E is the set of pairs ((u, s), (u′, s′)) ∈ V ×V
such that dX(us, u′s′) 6 R. The initial and terminal vertices of such an edge are (u, s)

and (u′, s′) respectively. The group G acts freely on V as follows: for every g ∈ G,
for every (u, s) ∈ V , we have g · (u, s) = (gu, s). This action induces an action by
isometries of G on Γ. Recall that R > 2r. A variation on the Milnor-Svarč Lemma
implies that the map V → X sending (u, s) to us induces a (G-equivariant) quasi-
isometry from Γ to X. In particular Γ is hyperbolic. We are left to prove that Γ has
uniformly bounded valence.

Since X has r-bounded geometry, there exists N1 ∈ N such that the r-capacity
of any ball of radius R in X is at most N1. The group G acting uniformly properly

J.É.P. — M., 2019, tome 6



24 R. Coulon & D. Osin

on X, there exists N2 ∈ N such that for every x ∈ X, the cardinality of the set

U(x) = {g ∈ G | dX(x, gx) 6 2R}

is bounded above by N2. We now fix a vertex v0 = (u0, s0) of Γ. We fix a subset S1

of B(u0s0, R) such that any G-orbit of S intersecting B(u0s0, R) contains exactly
one point in S1. It follows from our choice of S that if s, s′ ∈ S belong to distinct
G-orbits, then dX(s, s′) > r. Consequently the cardinality of S1 is bounded above
by the r-capacity of this ball, i.e., N1. By construction for every s ∈ S1, there exists
us ∈ G such that uss belongs to S0. It follows from the definition of Γ combined with
the triangle inequality that any neighbor of v0 belongs to the set{

(uu−1s , uss) | s ∈ S1, u ∈ U(s)
}
.

The cardinality of this set is bounded above by d = N1N2, which does not depend
on v0, hence Γ has uniformly bounded valence. �

4. Stability of the class P0

We now explain how P0 behaves under small cancellation. To that end we first
review the geometric theory of small cancellation as it has been introduced by
M.Gromov [12] and further developed in [9, 5, 8]. For a detailed exposition we refer
the reader to [6, §§4-6].

The setting. — Let X be a δ-hyperbolic length space and G a group acting on X.
Let Q be a family of pairs (H,Y ) such that Y is a strongly quasi-convex subset of X
and H a subgroup of Stab(Y ). We assume that Q is closed under the following action
of G: for every (H,Y ) ∈ Q, for every g ∈ G, g(H,Y ) = (gHg−1, gY ). In addition we
require that Q/G is finite. We denote by K the (normal) subgroup generated by the
union of the subgroups H such that (H,Y ) ∈ Q. The goal is to study the quotient
G = G/K and the corresponding quotient map π : G→ G. To that end we define the
following two small cancellation parameters

∆(Q, X) = sup
{

diam
(
Y +5δ
1 ∩ Y +5δ

2

) ∣∣ (H1, Y1) 6= (H2, Y2) ∈ Q
}
,

inj (Q, X) = inf {‖h‖ | h ∈ H r {1}, (H,Y ) ∈ Q} .

They play the role of the lengths of the longest piece and the shortest relation respec-
tively. We now fix a number ρ > 0 whose value will be specified later. It should be
thought of as a very large parameter.

Hyperbolic cones. — Let (H,Y ) ∈ Q. The cone of radius ρ over Y , denoted by Z(Y ),
is the quotient of Y × [0, ρ] by the equivalence relation that identifies all the points
of the form (y, 0). The equivalence class of (y, 0), denoted by a, is called the apex of
the cone. By abuse of notation, we still write (y, r) for the equivalence class of (y, r).
The map ι : Y → Z(Y ) that sends y to (y, ρ) provides a natural embedding form Y to
Z(Y ). This space can be endowed with a metric as described below. For the geometric
interpretation of the distance see [6, §4.1].

J.É.P. — M., 2019, tome 6



A non-residually finite group acting uniformly properly on a hyperbolic space 25

Proposition 4.1 ([3, Chap. I.5, Prop. 5.9]). — The cone Z(Y ) is endowed with a met-
ric characterized in the following way. Let x = (y, r) and x′ = (y′, r′) be two points
of Z(Y ) then

cosh dZ(Y )(x, x
′) = cosh r cosh r′ − sinh r sinh r′ cos θ(y, y′),

where θ(y, y′) is the angle at the apex defined by θ(y, y′) = min {π, dY (y, y′)/ sinh ρ}.

Coning-off. — The cone-off of radius ρ over X relative to Q denoted by Ẋρ(Q)

(or simply Ẋ) is obtained by attaching for every (H,Y ) ∈ Q, the cone Z(Y ) on X
along Y according to ι. We endow Ẋ with the largest pseudo-metric dẊ for which
all the maps X → Ẋ and Z(Y ) → Ẋ – when (H,Y ) runs over Q – are 1-Lipschitz.
It turns out that this pseudo-distance is actually a length metric on Ẋ [6, Prop. 5.10].

The action of G on X naturally extends to an action by isometries on Ẋ as follows.
Let (H,Y ) ∈ Q. For every x = (y, r) ∈ Z(Y ), for every g ∈ G, gx is the point
of Z(gY ) defined by gx = (gy, r). The space Xρ(Q) (or simply X) is the quotient
X = Ẋ/K. The metric on Ẋ induces a pseudo-metric on X. We write ζ : Ẋ → X for
the canonical projection from Ẋ to X. The quotient G naturally acts by isometries
on X.

Proposition 4.2. — Assume that for every (H,Y ) ∈ Q, the space Y/H is bounded.
Then the spaces X and X/K are quasi-isometric.

Proof. — Recall that the embedding X → Ẋ is 1-Lipschitz. Hence it induces a 1-
Lipschitz embedding X/K → X. We claim that the map X/K → X is actually
bi-Lipschitz. For simplicity, we implicitly identify X/K with its image in X. Recall
that Q/G is finite. It follows from our assumption that there exists D > 0 such that
for every (H,Y ) ∈ Q, the image of Y in X/K has diameter at most D.

Let x, x′ ∈ X/K. Let η > 0. There exist x, x′ ∈ X, respective pre-images of x
and x′, such that dẊ(x, x′) < dX(x, x′) + η. Following the construction of the metric
on Ẋ – see for instance [6, §5.1] – we observe that there exists a sequence of points
(x0, y0, x1, y1, . . . , xm, ym) which approximates the distance between x and x′ in the
following sense:

(i) x0 = x and ym = x′;
(ii) For every i ∈ {0, . . . ,m− 1}, there exists (Hi, Yi) ∈ Q such that yi, xi+1 ∈ Yi;
(iii)

(2)
m∑
i=0

dX(xi, yi) +

m−1∑
i=0

dZ(Yi)(yi, xi+1) < dẊ(x, x′) + η.

For every i ∈ {0, . . . ,m}, we write xi and yi for the images in X/K of xi and yi
respectively. It follows from the triangle inequality that

(3) dX/K(x, x′) 6
m∑
i=0

dX/K(xi, yi) +

m−1∑
i=0

dX/K(yi, xi+1) .

J.É.P. — M., 2019, tome 6



26 R. Coulon & D. Osin

We are going to compare the terms of the latter inequality with the ones of (2). Note
first that for every i ∈ {0, . . . ,m}, we have

(4) dX/K(xi, yi) 6 dX(xi, yi) .

Let i ∈ {0, . . . ,m− 1}. In order to estimate dX/K(yi, xi+1), we distinguish two cases.
Assume first that dYi(yi, xi+1) 6 π sinh ρ. It follows from the definition of the metric
on Z(Yi) that

(5) dX/K(yi, xi+1) 6 dX(yi, xi+1) 6 dYi(yi, xi+1) 6
π sinh ρ

2ρ
dZ(Yi)(yi, xi+1) .

Assume now that dYi(yi, xi+1) > π sinh ρ. In particular dZ(Yi)(yi, xi+1) = 2ρ. Recall
that the diameter of the image of Yi in X/K is at most D. Hence

(6) dX/K(yi, xi+1) 6
D

2ρ
dZ(Yi)(yi, xi+1) .

Combining (2)–(6) we get that

dX/K(x, x′) 6 λ (dẊ(x, x′) + η) 6 λ (dX(x, x′) + 2η) ,

where
λ = max

{
1,
π sinh ρ

2ρ
,
D

2ρ

}
.

The previous inequality holds for every η > 0, hence X/K → X is bi-Lipschitz, which
completes the proof of our claim. Note that the diameter of the cones attached to X
to form the cone-off space Ẋ have diameter at most 2ρ. Hence any point of X is a
distance at most 2ρ from a point of X/K. Consequently the map X/K → X is a
quasi-isometry. �

Small cancellation theorem. — The small cancellation theorem recalled bellow is a
compilation of Proposition 6.7, Corollary 3.12, and Proposition 6.12 from [6].

Theorem 4.3. — There exist positive constants δ0, δ1, ∆0 and ρ0 satisfying the follow-
ing property. Let X be a δ-hyperbolic length space and G a group acting by isometries
on X. Let Q be a G-invariant family of pairs (H,Y ) where Y is a strongly quasi-
convex subset of X and H a subgroup of G stabilizing Y . We assume that Q/G is
finite. Let ρ > ρ0. If δ 6 δ0, ∆(Q, X) 6 ∆0 and inj (Q, X) > 2π sinh ρ then the
following holds.

(1) The space X = Xρ(Q) is a δ1-hyperbolic length space.
(2) Let (H,Y ) ∈ Q. Let a be the apex of Z(Y ) and a its image in X. The quotient

map π : G� G induces an isomorphism from Stab(Y )/H onto Stab(a).
(3) For every x ∈ X, the quotient map π : G→ G induces a bijection from the set

{g ∈ G | d(gx, x) 6 ρ/100} onto its image.
(4) Let F be an elliptic subgroup of G. Either there exists an elliptic subgroup F

of G such that the quotient map π : G→ G induces an isomorphism from F onto F ,
or there exists (H,Y ) ∈ Q such that F is contained in Stab(a), where a stands for
the image in X of the apex a of the cone Z(Y ).
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A non-residually finite group acting uniformly properly on a hyperbolic space 27

We are now in position to prove the following statement.

Proposition 4.4. — Let G be a group acting uniformly properly without inversion
on a hyperbolic graph Γ with uniformly bounded valence. Let {g1, . . . , gm} be a finite
subset of G whose elements are loxodromic (with respect to the action of G on Γ) and
pairwise non-commensurable. In addition, we assume that for every i ∈ {1, . . . ,m},
the group 〈gi〉 is normal in E(gi). Then for every finite subset U ⊆ G there exists
N ∈ N with the following property. Let n1, . . . , nm ∈ N, all bounded below by N . Let K
be the normal closure of {gn1

1 , . . . , gnm
m } in G. Then the quotient G = G/K belongs

to P0. Moreover, we have the following.
(1) For every i ∈ {1, . . . ,m}, the natural homomorphism π : G → G induces an

embedding of E(gi)/〈gi〉 into G.
(2) The quotient map π is injective when restricted to U .
(3) Let F be a finite subgroup of G. Then either there exists a finite subgroup F

of G such that π(F ) = F or F is conjugate to a subgroup of π(E(gi)) for some
i ∈ {1, . . . ,m}.

Proof. — The constant δ0 δ1, ∆0, and ρ0 are the one given by Theorem 4.3. We
choose an arbitrary ρ > ρ0. We write δ for the hyperbolicity constant of Γ. According
to Lemma 2.1 there exists a constant ∆ such that for every u ∈ G, for every i 6= j in
{1, . . . ,m}, if

diam
(
Y +5δ
gi ∩ uY +5δ

gj

)
> ∆,

then i = j and u belongs to E(gi). Up to replacing Γ by a rescaled version of Γ, that
we denote X, we may assume that the following holds

– δ 6 δ0 and ∆ 6 ∆0,
– there exists x ∈ X, such that for every u ∈ U we have dX(ux, x) 6 ρ/100.

Since the gi’s are loxodromic, there exists N ∈ N such that for every n > N , for
every i ∈ {1, . . . ,m}, we have ‖gni ‖X > 2π sinh ρ. Let n1, . . . , nm ∈ N, all bounded
below by N . Let K be the normal closure of {gn1

1 , . . . , gnm
m } and G be the quotient

G = G/K.
Since G acts without inversion on Γ, the quotient of Γ = Γ/K is a graph endowed

with an action without inversion of G. According to our assumptions there exist
d,M ∈ N such that given any vertex v of Γ, its valence is at most d and the cardinality
of its stabilizer is bounded above by M . Observe that the same holds for the vertices
of Γ. By the second characterization of Proposition 3.3, to prove that G belongs to P0,
it suffices to show that Γ is hyperbolic. To that end, we use small cancellation theory.
Let Q be the following collection

Q =
{(
〈ugni

i u
−1〉, uYg

) ∣∣ u ∈ G, 1 6 i 6 m
}
.

By construction ∆(Q, X) 6 ∆0 and inj (Q, X) > 2π sinh ρ. The cone-off space
Ẋ = Ẋρ(Q) and the quotient X = Ẋ/K are built as above. The parameters have
been chosen in such a way so that the family Q satisfies the assumptions of Theo-
rem 4.3. It follows thatX is a hyperbolic length space. Note that for every (H,Y ) ∈ Q,
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the quotient Y/H is bounded, hence X is quasi-isometric to X/K (Proposition 4.2).
Nevertheless X/K is just a rescaled copy of Γ. Thus Γ is quasi-isometric to X, and
therefore hyperbolic. Points (1)–(3) directly follow from Theorem 4.3. �

5. Proof of the main theorem

We begin with an auxiliary result, which is similar to [14, Prop. 4.2].

Lemma 5.1. — Let Q be a finitely presented infinite simple group and let H be a
torsion-free hyperbolic group splitting as

1 −→ N −→ H −→ Q −→ 1,

where the subgroup N is finitely generated. Let a ∈ N r {1}. Then there exists b ∈
N r {1} such that a and b are not commensurable in N but are conjugate in every
finite quotient of N .

Proof. — Let C = 〈c〉 be the maximal cyclic subgroup of H containing a. Note
that CN/N = C/(C ∩ N) is a cyclic subgroup, hence either non-simple or finite. In
particular, CN/N is a proper subgroup of Q, thus CN 6= H. Let h ∈ H r CN . Let
b = h−1ah and a = cn for some n ∈ Z r {0}.

If a and b are commensurable in N , then there exist t ∈ N and k, ` ∈ Zr {0} such
that ckn = t−1h−1c`nht. Since H is torsion-free we have k = ` and by the uniqueness
of roots in a torsion-free hyperbolic group – see for instance [4, Cor. 7.2] – we obtain
c = t−1h−1cht. It follows that ht ∈ C and consequently h ∈ CN , which contradicts
our assumption. Thus a and b are not commensurable in N .

Assume now that there exists a finite index normal subgroup K of N such that
the images of a and b are not conjugate in N/K. Since N is finitely generated, there
are only finitely many subgroups of any finite index in N . Replacing K with the
intersection of all subgroups of N of index [N : K] if necessary, we can assume that K
is normal in H. The natural action of the group H on the finite set Ω of conjugacy
classes of N/K is non-trivial; indeed, the element h acts non-trivially as the images
of a and b are not conjugate in N/K. Since every element of N acts on Ω trivially, the
action of H on Ω gives rise to a non-trivial homomorphism ε : Q → Sym(Ω), which
contradicts the assumption that Q is infinite simple. �

Theorem 5.2. — There exists a finitely generated group G ∈ P0 such that every
amenable quotient of G is trivial.

Proof. — Let H1 be a torsion-free hyperbolic group with property (T) of Kazhdan
and

H2 =
〈
x, y | y = x

(
y−1xy

)
x2
(
y−1xy

)
· · ·x10

(
y−1xy

)〉
.

It is easy to see that H2 satisfies the C ′(1/6) small cancellation condition and hence
is hyperbolic. Moreover it is generated by some conjugates of x. Any two non-cyclic
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torsion-free hyperbolic groups have a common non-cyclic torsion-free hyperbolic quo-
tient group [15, Th. 2]. Let H0 denote a common non-cyclic torsion-free hyperbolic
quotient of H1 and H2.

By [1, Cor. 1.2], there exists a short exact sequence

1 −→ N −→ H −→ Q −→ 1

such that H is torsion-free hyperbolic, N is a quotient of H0, and Q is a finitely pre-
sented infinite simple group. Clearly N inherits property (T) from H1. As a subgroup
of a hyperbolic group, N belongs to the class P0. Let a denote the image of x ∈ H2

in N . Since N is a quotient group of H2, it is generated by conjugates of a (in N).
According to the Lemma 5.1, there exists b ∈ N such that a and b are not com-

mensurable in N but are conjugate in every finite quotient of N . By Proposition 4.4,
there exist distinct primes p and q such that G = N/〈〈ap, bq〉〉 belongs to P0, and the
images of a and b in G have orders p and q, respectively.

Let A be an amenable quotient of G. Being a quotient group of N , A has prop-
erty (T) and, therefore, is finite. It follows that the images of a and b in A, denoted
by a and b, are conjugate. As ap = b

q
= 1 and gcd(p, q) = 1, we have a = b = 1.

Since N is generated by conjugates of a, A is generated by conjugates of a, which
implies A = {1}. �
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