Hyperbolicity of singular spaces
Journal de l’École polytechnique — Mathématiques, Volume 6 (2019), pp. 1-18.

We study the hyperbolicity of singular quotients of bounded symmetric domains. We give effective criteria for such quotients to satisfy Green-Griffiths-Lang’s conjectures in both analytic and algebraic settings. As an application, we show that Hilbert modular varieties, except for a few possible exceptions, satisfy all expected conjectures.

Nous étudions l’hyperbolicité des quotients singuliers de domaines symétriques bornés. Nous donnons des critères effectifs assurant que de tels quotients vérifient les conjectures de Green-Griffiths-Lang, à la fois dans le cadre analytique et algébrique. Comme application, nous établissons que les variétés modulaires de Hilbert, à part quelques exceptions possibles, satisfont les conjectures attendues.

Received:
Accepted:
Published online:
DOI: 10.5802/jep.85
Classification: 32Q45, 32M15, 11F41
Keywords: Green-Griffiths-Lang’s conjectures, bounded symmetric domains, quotient singularities, Hilbert modular varieties
Mot clés : Conjectures de Green-Griffiths-Lang, domaines symétriques bornés, singularités quotients, variétés modulaires de Hilbert

Benoît Cadorel 1; Erwan Rousseau 2; Behrouz Taji 3

1 Institut de Mathématiques de Toulouse (IMT), Université Paul Sabatier 118 route de Narbonne, F-31062 Toulouse Cedex 9, France
2 Institut Universitaire de France & Université d’Aix Marseille, CNRS, Centrale Marseille, I2M 39, rue Frédéric Joliot-Curie, 13453 Marseille Cedex 13, France
3 University of Notre Dame, Department of Mathematics 278 Hurley, Notre Dame, IN 46556, USA
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{JEP_2019__6__1_0,
     author = {Beno{\^\i}t Cadorel and Erwan Rousseau and Behrouz Taji},
     title = {Hyperbolicity of singular spaces},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {1--18},
     publisher = {\'Ecole polytechnique},
     volume = {6},
     year = {2019},
     doi = {10.5802/jep.85},
     mrnumber = {3882579},
     zbl = {07003359},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.85/}
}
TY  - JOUR
AU  - Benoît Cadorel
AU  - Erwan Rousseau
AU  - Behrouz Taji
TI  - Hyperbolicity of singular spaces
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2019
SP  - 1
EP  - 18
VL  - 6
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.85/
DO  - 10.5802/jep.85
LA  - en
ID  - JEP_2019__6__1_0
ER  - 
%0 Journal Article
%A Benoît Cadorel
%A Erwan Rousseau
%A Behrouz Taji
%T Hyperbolicity of singular spaces
%J Journal de l’École polytechnique — Mathématiques
%D 2019
%P 1-18
%V 6
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.85/
%R 10.5802/jep.85
%G en
%F JEP_2019__6__1_0
Benoît Cadorel; Erwan Rousseau; Behrouz Taji. Hyperbolicity of singular spaces. Journal de l’École polytechnique — Mathématiques, Volume 6 (2019), pp. 1-18. doi : 10.5802/jep.85. https://jep.centre-mersenne.org/articles/10.5802/jep.85/

[AMRT75] A. Ash, D. Mumford, M. Rapoport & Y. Tai - Smooth compactification of locally symmetric varieties, Lie Groups: History, Frontiers and Applications, vol. IV, Math. Sci. Press, Brookline, MA, 1975 | Zbl

[BC18] Y. Brunebarbe & B. Cadorel - “Hyperbolicity of varieties supporting a variation of Hodge structure”, Internat. Math. Res. Notices (2018), article no. rny054 | DOI

[BD18] S. Boucksom & S. Diverio - “A note on Lang’s conjecture for quotients of bounded domains” (2018), arXiv:1809.02398

[Bor69] A. Borel - Introduction aux groupes arithmétiques, Actualités scientifiques et industrielles, Hermann, Paris, 1969 | Zbl

[Bru16] Y. Brunebarbe - “A strong hyperbolicity property of locally symmetric varieties” (2016), arXiv:1606.03972

[Cad16] B. Cadorel - “Symmetric differentials on complex hyperbolic manifolds with cusps” (2016), arXiv:1606.05470

[Cam04] F. Campana - “Orbifolds, special varieties and classification theory”, Ann. Inst. Fourier (Grenoble) 54 (2004) no. 3, p. 499-630 | DOI | MR | Zbl

[CKT16] B. Claudon, S. Kebekus & B. Taji - “Generic positivity and applications to hyperbolicity of moduli spaces” (2016), arXiv:1610.09832

[CP15] F. Campana & M. Păun - “Orbifold generic semi-positivity: an application to families of canonically polarized manifolds”, Ann. Inst. Fourier (Grenoble) 65 (2015) no. 2, p. 835-861 | DOI | MR | Zbl

[Dem97] J.-P. Demailly - “Algebraic criteria for Kobayashi hyperbolic projective varieties and jet differentials”, in Algebraic geometry—Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, American Mathematical Society, Providence, RI, 1997, p. 285-360 | DOI | MR | Zbl

[GG80] M. Green & P. Griffiths - “Two applications of algebraic geometry to entire holomorphic mappings”, in The Chern Symposium 1979 (Proc. Internat. Sympos., Berkeley, Calif., 1979), Springer, New York, 1980, p. 41-74 | DOI | Zbl

[GKK10] D. Greb, S. Kebekus & S. J. Kovács - “Extension theorems for differential forms, and Bogomolov-Sommese vanishing on log canonical varieties”, Compositio Math. 146 (2010), p. 193-219, Extended version: arXiv:0808.3647 | DOI | MR | Zbl

[GP16] H. Guenancia & M. Păun - “Conic singularities metrics with prescribed Ricci curvature: General cone angles along normal crossing divisors”, J. Differential Geom. 103 (2016) no. 1, p. 15-57 | DOI | MR | Zbl

[GRVR18] J. Grivaux, J. Restrepo Velasquez & E. Rousseau - “On Lang’s conjecture for some product-quotient surfaces”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 18 (2018) no. 4, p. 1483-1501 | MR | Zbl

[GT16] H. Guenancia & B. Taji - “Orbifold stability and Miyaoka-Yau inequality for minimal pairs” (2016), arXiv:1611.05981

[Gue18] H. Guenancia - “Quasi-projective manifolds with negative holomorphic sectional curvature” (2018), arXiv:1808.01854

[JK11] K. Jabbusch & S. Kebekus - “Families over special base manifolds and a conjecture of Campana”, Math. Z. 269 (2011) no. 3-4, p. 847-878 | DOI | MR | Zbl

[Keu08] J. Keum - “Quotients of fake projective planes”, Geom. Topol. 12 (2008) no. 4, p. 2497-2515 | DOI | MR | Zbl

[KM08] J. Kollár & S. Mori - Birational Geometry of Algebraic Varieties, Cambridge Tracts in Mathematics, Cambridge University Press, 2008

[Kol07] J. Kollár - Lectures on resolution of singularities, Annals of Math. Studies, vol. 166, Princeton University Press, Princeton, NJ, 2007 | MR | Zbl

[Lan86] S. Lang - “Hyperbolic and Diophantine analysis”, Bull. Amer. Math. Soc. (N.S.) 14 (1986) no. 2, p. 159-205 | DOI | MR | Zbl

[Laz04] R. Lazarsfeld - Positivity in algebraic geometry. I. Classical setting: line bundles and linear series, Ergeb. Math. Grenzgeb. (3), vol. 48, Springer-Verlag, Berlin, 2004 | Zbl

[Mum77] D. Mumford - “Hirzebruch’s proportionality theorem in the noncompact case”, Invent. Math. 42 (1977), p. 239-272 | DOI | MR | Zbl

[Nad89] A. M. Nadel - “The nonexistence of certain level structures on abelian varieties over complex function fields”, Ann. of Math. (2) 129 (1989) no. 1, p. 161-178 | DOI | MR | Zbl

[Pre68] A. Prestel - “Die elliptischen Fixpunkte der Hilbertschen Modulgruppen”, Math. Ann. 177 (1968), p. 181-209 | DOI | MR | Zbl

[Rou16] E. Rousseau - “Hyperbolicity, automorphic forms and Siegel modular varieties”, Ann. Sci. École Norm. Sup. (4) 49 (2016) no. 1, p. 249-255 | DOI | MR | Zbl

[RT18] E. Rousseau & F. Touzet - “Curves in Hilbert modular varieties”, Asian J. Math. 22 (2018) no. 4, p. 673-690 | DOI | MR | Zbl

[Taj16] B. Taji - “The isotriviality of smooth families of canonically polarized manifolds over a special quasi-projective base”, Compositio Math. 152 (2016) no. 7, p. 1421-1434 | DOI | MR | Zbl

[Tsu85] S. Tsuyumine - “On the Kodaira dimensions of Hilbert modular varieties”, Invent. Math. 80 (1985) no. 2, p. 269-281 | DOI | MR | Zbl

[Tsu86] S. Tsuyumine - “Multitensors of differential forms on the Hilbert modular variety and on its subvarieties”, Math. Ann. 274 (1986) no. 4, p. 659-670 | DOI | MR | Zbl

Cited by Sources: