Dans cet article, on démontre un théorème de comparaison entre la théorie des cycles évanescents à la SGA7 et la catégorie des singularités d’un modèle de Landau-Ginzburg définie sur un anneau de valuation discrète, complet. Dans une première partie, nous étendons au cadre infini-catégorique le théorème de comparaison d’Orlov entre catégories de singularités et catégories de factorisations matricielles. Dans une seconde partie nous démontrons l’énoncé de comparaison, à l’aide d’une notion de réalisations motiviques de catégories.
In this article we establish a precise comparison between vanishing cycles and the singularity category of Landau–Ginzburg models over an excellent Henselian discrete valuation ring. By using noncommutative motives, we first construct a motivic -adic realization functor for dg-categories. Our main result, then asserts that, given a Landau–Ginzburg model over a complete discrete valuation ring with potential induced by a uniformizer, the -adic realization of its singularity category is given by the inertia-invariant part of vanishing cohomology. We also prove a functorial and -categorical lax symmetric monoidal version of Orlov’s comparison theorem between the derived category of singularities and the derived category of matrix factorizations for a Landau–Ginzburg model over a Noetherian regular local ring.
Accepté le :
Publié le :
DOI : 10.5802/jep.81
Keywords: Landau-Ginzburg model, dg-categories of singularities, matrix factorisations, vanishing cycles, nearby cycles, motives, noncommutative motives, motivic homotopy theory Morel-Voevodsky, motivic realisations, $\ell $-adic sheaves, algebraic K-theory
Mot clés : Modèles de Landau-Ginzburg, dg-catégories de singularités, factorisations matricielles, cycles évanescents, cycles proches, motifs, motifs non-commutatifs, théorie homotopique motivique des schémas, réalisations motiviques, faisceaux $\ell $-adiques, K-théorie algébrique
Anthony Blanc 1 ; Marco Robalo 2 ; Bertrand Toën 3 ; Gabriele Vezzosi 4
@article{JEP_2018__5__651_0, author = {Anthony Blanc and Marco Robalo and Bertrand To\"en and Gabriele Vezzosi}, title = {Motivic realizations of singularity~categories and vanishing~cycles}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {651--747}, publisher = {\'Ecole polytechnique}, volume = {5}, year = {2018}, doi = {10.5802/jep.81}, zbl = {06988591}, mrnumber = {3877165}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.81/} }
TY - JOUR AU - Anthony Blanc AU - Marco Robalo AU - Bertrand Toën AU - Gabriele Vezzosi TI - Motivic realizations of singularity categories and vanishing cycles JO - Journal de l’École polytechnique — Mathématiques PY - 2018 SP - 651 EP - 747 VL - 5 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.81/ DO - 10.5802/jep.81 LA - en ID - JEP_2018__5__651_0 ER -
%0 Journal Article %A Anthony Blanc %A Marco Robalo %A Bertrand Toën %A Gabriele Vezzosi %T Motivic realizations of singularity categories and vanishing cycles %J Journal de l’École polytechnique — Mathématiques %D 2018 %P 651-747 %V 5 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.81/ %R 10.5802/jep.81 %G en %F JEP_2018__5__651_0
Anthony Blanc; Marco Robalo; Bertrand Toën; Gabriele Vezzosi. Motivic realizations of singularity categories and vanishing cycles. Journal de l’École polytechnique — Mathématiques, Tome 5 (2018), pp. 651-747. doi : 10.5802/jep.81. https://jep.centre-mersenne.org/articles/10.5802/jep.81/
[AG15] - “Singular support of coherent sheaves and the geometric Langlands conjecture”, Selecta Math. (N.S.) 21 (2015) no. 1, p. 1-199 | DOI | MR | Zbl
[AHW18] - “Affine representability results in -homotopy theory: II: Principal bundles and homogeneous spaces”, Geom. Topol. 22 (2018) no. 2, p. 1181-1225 | DOI | MR | Zbl
[Ayo07a] - Les six opérations de Grothendieck et le formalisme des cycles évanescents dans le monde motivique. I, Astérisque, vol. 314, Société Mathématique de France, Paris, 2007 | MR | Zbl
[Ayo07b] - Les six opérations de Grothendieck et le formalisme des cycles évanescents dans le monde motivique. II, Astérisque, vol. 315, Société Mathématique de France, Paris, 2007 | MR | Zbl
[Ayo10] - “Note sur les opérations de Grothendieck et la réalisation de Betti”, J. Inst. Math. Jussieu 9 (2010) no. 2, p. 225-263 | DOI | Zbl
[Ayo14] - “La réalisation étale et les opérations de Grothendieck”, Ann. Sci. École Norm. Sup. (4) 47 (2014) no. 1, p. 1-145 | DOI | Zbl
[Bar15] - “On exact infinity-categories and the Theorem of the Heart”, Compositio Math. 151 (2015), p. 2160-2186, arXiv:1212.5232 | DOI | MR | Zbl
[BBD82] - “Faisceaux pervers”, in Analyse et topologie sur les espaces singuliers, I (Luminy, 1981), Astérisque, vol. 100, Société Mathématique de France, Paris, 1982, p. 5-171 | MR | Zbl
[BH17] - “Norms in motivic homotopy theory” (2017), arXiv:1711.03061
[Bla13] - Invariants topologiques des espaces non commutatifs, Université Montpellier 2, 2013, PhD thesis
[Bla15] - “Topological K-theory of complex noncommutative spaces”, Compositio Math. (2015), p. 1-67 | MR
[Blo85] - “Cycles on arithmetic schemes and Euler characteristics of curves”, in Algebraic geometry (Bowdoin, 1985), Proc. Symp. Pure Math., vol. 46, part II, American Mathematical Society, Providence, 1985, p. 421-450 | MR
[BvdB03] - “Generators and representability of functors in commutative and noncommutative geometry”, Moscow Math. J. 3 (2003) no. 1, p. 1-36, 258 | DOI | MR | Zbl
[BW12] - “Matrix factorizations over projective schemes”, Homology Homotopy Appl. 14 (2012) no. 2, p. 37-61 | DOI | MR | Zbl
[BZFN10] - “Integral transforms and Drinfeld centers in derived algebraic geometry”, J. Amer. Math. Soc. 23 (2010) no. 4, p. 909-966 | DOI | MR | Zbl
[CD12] - “Triangulated categories of mixed motives” (2012), arXiv:0912.2110
[CD16] - “Etale motives”, Compositio Math. 152 (2016), p. 556-666 | DOI | Zbl
[Cis13] - “Descente par éclatements en K-théorie invariante par homotopie”, Ann. of Math. (2) 177 (2013), p. 425-448 | DOI | Zbl
[Coh13] - “Differential graded categories are -linear stable infinity categories” (2013), arXiv:1308.2587
[CT11] - “Non-connective K-theory via universal invariants”, Compositio Math. 147 (2011) no. 4, p. 1281-1320 | DOI | MR | Zbl
[CT12] - “Symmetric monoidal structure on non-commutative motives”, J. K-Theory 9 (2012) no. 2, p. 201-268 | DOI | MR | Zbl
[CT13] - “Curved algebras and Landau-Ginzburg models”, New York J. Math. 19 (2013), p. 305-342 | MR | Zbl
[Del77] - Cohomologie étale, Lect. Notes in Math., vol. 569, Springer-Verlag, Berlin-New York, 1977, Séminaire de Géométrie Algébrique du Bois-Marie SGA 4, Avec la collaboration de J. F. Boutot, A. Grothendieck, L. Illusie et J. L. Verdier
[Dri04] - “DG quotients of DG categories”, J. Algebra 272 (2004), p. 643-691 | DOI | MR | Zbl
[Dyc11] - “Compact generators in categories of matrix factorizations”, Duke Math. J. 159 (2011) no. 2, p. 223-274 | DOI | MR | Zbl
[Efi18] - “Cyclic homology of categories of matrix factorizations”, Internat. Math. Res. Notices (2018) no. 12, p. 3834-3869, arXiv:1212.2859 | DOI | MR
[Eke90] - “On the adic formalism”, in The Grothendieck Festschrift, Vol. II, Progress in Math., vol. 87, Birkhäuser Boston, Boston, MA, 1990, p. 197-218 | MR | Zbl
[EP15] - “Coherent analogues of matrix factorizations and relative singularity categories”, Algebra Number Theory 9 (2015) no. 5, p. 1159-1292 | DOI | MR | Zbl
[Fuj02] - “A proof of the absolute purity conjecture (after Gabber)”, in Algebraic geometry 2000, Azumino (Hotaka), Adv. Stud. Pure Math., vol. 36, Math. Soc. Japan, Tokyo, 2002, p. 153-183 | MR | Zbl
[GR17] - A study in derived algebraic geometry. Vol. I. Correspondences and duality, Mathematical Surveys and Monographs, vol. 221, American Mathematical Society, Providence, RI, 2017 | MR | Zbl
[Gro65] - “Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II”, Publ. Math. Inst. Hautes Études Sci. 24 (1965), p. 5-231 | Zbl
[GS09] - “On the motivic spectra representing algebraic cobordism and algebraic K-theory”, Documents Math. 14 (2009), p. 359-396 | MR | Zbl
[HLP14] - “Mapping stacks and categorical notions of properness” (2014), arXiv:1402.3204
[Hov99] - Model categories, Mathematical Surveys and Monographs, vol. 63, American Mathematical Society, Providence, RI, 1999 | MR | Zbl
[Ill94] - “Autour du théorème de monodromie locale”, in Périodes -adiques (Bures-sur-Yvette, 1988), vol. 223, Société Mathématique de France, Paris, 1994, p. 9-57
[ILO14] - “Introduction”, in Travaux de Gabber sur l’uniformisation locale et la cohomologie étale des schémas quasi-excellents, Astérisque, vol. 363-364, Société Mathématique de France, Paris, 2014, p. xiii-xix | Zbl
[IS13] - “Nearby motives and motivic nearby cycles”, Selecta Math. (N.S.) 19 (2013) no. 4, p. 879-902 | DOI | MR | Zbl
[Kap91] - “On DG-modules over the de Rham complex and the vanishing cycles functor”, in Algebraic geometry (Chicago, 1989), Lect. Notes in Math., vol. 1479, Springer, Berlin, 1991, p. 57-86 | DOI | MR | Zbl
[Kas83] - “Vanishing cycle sheaves and holonomic systems of differential equations”, in Algebraic geometry (Tokyo/Kyoto, 1982), Lect. Notes in Math., vol. 1016, Springer, Berlin, 1983, p. 134-142 | DOI | MR | Zbl
[Kha16a] - “Brave new motivic homotopy theory I” (2016), arXiv:1610.06871
[Kha16b] - Motivic homotopy theory in derived algebraic geometry, Universität Duisburg-Essen, 2016, PhD Thesis
[Kha18] - “Virtual Cartier divisors and blow-ups” (2018), arXiv:1802.05702
[Kra08] - “Localization theory for triangulated categories” (2008), arXiv:0806.1324
[KS05] - “On the conductor formula of Bloch”, Publ. Math. Inst. Hautes Études Sci. 100 (2005), p. 5-151 | DOI
[KS11] - “Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson-Thomas invariants”, Commun. Number Theory Phys. 5 (2011) no. 2, p. 231-352 | MR | Zbl
[LG14] - “Weil’s conjecture for function fields” (2014), tamagawa.pdf
[LP11] - “Global matrix factorizations” (2011), arXiv:1101.5847
[LS16] - “Motivic vanishing cycles as a motivic measure”, Pure Appl. Math. Q 12 (2016) no. 1, p. 33-74 | MR | Zbl
[Lur09] - Higher topos theory, Annals of Mathematics Studies, vol. 170, Princeton University Press, Princeton, NJ, 2009 | MR | Zbl
[Lur11a] - “Derived algebraic geometry VIII: Quasi-coherent sheaves and Tannaka duality theorems” (2011), DAG-VIII.pdf
[Lur11b] - “Derived algebraic geometry XIII: Rational and -adic homotopy theory” (2011), DAG-XIII.pdf
[Lur17] - “Higher algebra” (2017), higheralgebra.pdf
[Lur18] - “Spectral algebraic geometry” (2018), SAG-rootfile.pdf
[LZ12a] - “Enhanced six operations and base change theorem for sheaves on Artin stacks” (2012), arXiv:1211.5948
[LZ12b] - “Gluing restricted nerves of infinity-categories” (2012), arXiv:1211.5294
[MV99] - “-homotopy theory of schemes”, Publ. Math. Inst. Hautes Études Sci. (1999) no. 90, p. 45-143 (2001) | DOI | MR
[NS17] - “On topological cyclic homology” (2017), arXiv:1707.01799
[NSØ15] - “Existence and uniqueness of structures on motivic K-theory spectra”, J. Homotopy Relat. Struct. 10 (2015) no. 3, p. 333-346 | DOI | MR | Zbl
[Orl04] - “Triangulated categories of singularities and D-branes in Landau-Ginzburg models”, in Algebr. Geom. Metody, Svyazi i Prilozh., Trudy Mat. Inst. Steklov., vol. 246, 2004, p. 240-262 | Zbl
[Orl12] - “Matrix factorizations for nonaffine LG-models”, Math. Ann. 353 (2012) no. 1, p. 95-108 | MR | Zbl
[Pre11] - “Thom-Sebastiani and duality for matrix factorizations” (2011), arXiv:1101.5834
[Qui73] - “Higher algebraic K-theory. I”, in Algebraic K-theory, I: Higher K-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), Lect. Notes in Math., vol. 341, Springer, Berlin, 1973, p. 85-147 | MR | Zbl
[Rio10] - “Algebraic K-theory, -homotopy and Riemann-Roch theorems”, J. Topology 3 (2010) no. 2, p. 229-264 | DOI | MR | Zbl
[Rob14] - Motivic homotopy theory of non-commutative spaces, Université Montpellier 2, 2014, PhD thesis
[Rob15] - “K-theory and the bridge from motives to noncommutative motives”, Adv. Math. 269 (2015), p. 399-550 | DOI | MR | Zbl
[RZ82] - “Über die lokale Zetafunktion von Shimuravarietäten. Monodromiefiltration und verschwindende Zyklen in ungleicher Charakteristik”, Invent. Math. 68 (1982) no. 1, p. 21-101 | Zbl
[Sab10] - “On a twisted de Rham complex, II” (2010), arXiv:1012.3818
[Seg13] - “The closed state space of affine Landau-Ginzburg B-models”, J. Noncommut. Geom. 7 (2013) no. 3, p. 857-883 | DOI | MR | Zbl
[Ser62] - Corps locaux, Publications de l’Institut de Mathématique de l’Université de Nancago, VIII, Actualités Sci. Indust., vol. 1296, Hermann, Paris, 1962 | Zbl
[Ser65] - Algèbre locale. Multiplicités, Lect. Notes in Math., vol. 11, Springer-Verlag, Berlin-New York, 1965 | Zbl
[SGA6] - Théorie des intersections et théorème de Riemann-Roch, Séminaire de Géométrie Algébrique du Bois-Marie 1966–1967 (SGA 6), Lect. Notes in Math., vol. 225, Springer-Verlag, Berlin-New York, 1971, dirigé par P. Berthelot, A. Grothendieck et L. Illusie. Avec la collaboration de D. Ferrand, J.-P. Jouanolou, O. Jussila, S. Kleiman, M. Raynaud et J.-P. Serre
[SGA7 I] - Groupes de monodromie en géométrie algébrique. I, Séminaire de Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 I), Lect. Notes in Math., vol. 288, Springer-Verlag, Berlin, 1972, dirigé par A. Grothendieck. Avec la collaboration de M. Raynaud et D. S. Rim | Zbl
[SGA7 II] - Groupes de monodromie en géométrie algébrique. II, Séminaire de Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 II), Lect. Notes in Math., vol. 340, Springer-Verlag, Berlin-New York, 1973, dirigé par P. Deligne et N. Katz | Zbl
[Shk14] - “Non-commutative Hodge structures: towards matching categorical and geometric examples”, Trans. Amer. Math. Soc. 366 (2014) no. 6, p. 2923-2974 | DOI | MR | Zbl
[SS14] - “Kontsevich’s conjecture on an algebraic formula for vanishing cycles of local systems”, Algebraic Geom. 1 (2014) no. 1, p. 107-130 | MR | Zbl
[Tab05] - “Une structure de catégorie de modèles de Quillen sur la catégorie des dg-catégories”, Comptes Rendus Mathématique 340 (2005) no. 1, p. 15-19 | DOI | Zbl
[Tab08] - “Higher K-theory via universal invariants”, Duke Math. J. 145 (2008) no. 1, p. 121-206 | DOI | MR | Zbl
[Toë07] - “The homotopy theory of dg-categories and derived Morita theory”, Invent. Math. 167 (2007) no. 3, p. 615-667 | DOI | MR | Zbl
[Toë11] - “Lectures on dg-categories”, in Topics in algebraic and topological K-theory, Lect. Notes in Math., vol. 2008, Springer, Berlin, 2011, p. 243-302 | MR | Zbl
[Toë12a] - “Derived Azumaya algebras and generators for twisted derived categories”, Invent. Math. 189 (2012) no. 3, p. 581-652 | MR | Zbl
[Toë12b] - “Proper local complete intersection morphisms preserve perfect complexes” (2012), arXiv:1210.2827
[Toë14] - “Derived algebraic geometry”, EMS Surv. Math. Sci. 1 (2014) no. 2, p. 153-240 | DOI | MR | Zbl
[TT90] - “Higher algebraic K-theory of schemes and of derived categories”, in The Grothendieck Festschrift, Vol. III, Progress in Math., vol. 88, Birkhäuser Boston, Boston, MA, 1990, p. 247-435 | DOI | MR | Zbl
[TV07] - “Moduli of objects in dg-categories”, Ann. Sci. École Norm. Sup. (4) 40 (2007) no. 3, p. 387-444 | DOI | Numdam | MR | Zbl
[TV16] - “The -adic trace formula for dg-categories and Bloch’s conductor conjecture” (2016), Research announcement, arXiv:1605.08941
[TV17] - “A non-commutative trace formula and Bloch’s conductor conjecture”, in preparation, 2017 | Zbl
[Voe96] - “Homology of schemes”, Selecta Math. (N.S.) 2 (1996) no. 1, p. 111-153 | DOI | MR | Zbl
[Wei89] - “Homotopy algebraic K-theory”, in Algebraic K-theory and algebraic number theory (Honolulu, HI, 1987), Contemp. Math., vol. 83, American Mathematical Society, Providence, RI, 1989, p. 461-488 | DOI | MR | Zbl
Cité par Sources :