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MOTIVIC REALIZATIONS OF

SINGULARITY CATEGORIES AND VANISHING CYCLES

by Anthony Blanc, Marco Robalo, Bertrand Toën
& Gabriele Vezzosi

Abstract. — In this article we establish a precise comparison between vanishing cycles and the
singularity category of Landau–Ginzburg models over an excellent Henselian discrete valuation
ring. By using noncommutative motives, we first construct a motivic `-adic realization functor
for dg-categories. Our main result, then asserts that, given a Landau–Ginzburg model over a
complete discrete valuation ring with potential induced by a uniformizer, the `-adic realization
of its singularity category is given by the inertia-invariant part of vanishing cohomology. We
also prove a functorial and ∞-categorical lax symmetric monoidal version of Orlov’s compari-
son theorem between the derived category of singularities and the derived category of matrix
factorizations for a Landau–Ginzburg model over a Noetherian regular local ring.

Résumé (Réalisations motiviques des catégories de singularités et cycles évanescents)
Dans cet article, on démontre un théorème de comparaison entre la théorie des cycles éva-

nescents à la SGA7 et la catégorie des singularités d’un modèle de Landau-Ginzburg définie
sur un anneau de valuation discrète, complet. Dans une première partie, nous étendons au
cadre infini-catégorique le théorème de comparaison d’Orlov entre catégories de singularités et
catégories de factorisations matricielles. Dans une seconde partie nous démontrons l’énoncé de
comparaison, à l’aide d’une notion de réalisations motiviques de catégories.
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1. Introduction

The main objective of this paper is to use both derived and non-commutative
geometry in order to establish a precise and fairly general relation between singularity
categories and vanishing cycles. In a first section we work with S = SpecA with A

a commutative Noetherian regular local ring (e.g. a discrete valuation ring). We will
consider LG-pairs or LG-models over S (LG for Landau-Ginzburg), i.e., pairs (X/S, f)

where X is a scheme flat of finite type over S, and f : X → A1
S is an arbitrary

map. One can associate to an LG-pair (X/S, f) two, a priori different, triangulated
categories: the derived category of matrix factorization MF(X/S, f), and the derived
category of singularities Sing(X/S, f) ([Orl04], [EP15]). A fundamental insight of
Orlov ([Orl04]) is that, whenever X is regular, and f is not a zero-divisor, then there
is an equivalence(1) of triangulated categories between MF(X/S, f) and Sing(X/S, f).

Now, both MF(X/S, f) and Sing(X/S, f) can be naturally enhanced to dg-
categories over A whose associated homotopy categories are the given triangulated
categories of matrix factorizations and of singularities. Moreover, Orlov’s functor
can be enhanced (using derived geometry) to a functor of A-dg-categories, which
is furthermore natural in the pair (X/S, f), and shown to be an equivalence under
appropriate hypotheses. This is the content of Theorem 2.49, below, where we also
discuss a lax monoidal strengthening.

Once we have the A-dg-category Sing(X/S, f) at our disposal, following [Rob15],
we may look at it as an object in the ∞-category SHncS of non-commutative mo-
tives over S. By [Rob15], we have an ∞-functor MS : SHncS → SHS , from non-
commutative motives to the (∞-categorical version of) Morel and Voevodsky stable
category SHS of commutative motives over S. The functor MS is the lax monoidal
right adjoint to the functor SHS → SHncS canonically induced by the rule Y 7→
Perf(Y ), where Perf(Y ) denotes the A-dg-category of perfect complexes on a smooth
S-scheme Y . By [Rob15, Th. 1.8], MS sends the image of the tensor unit A ∈ SHncS
to the object BUS , representing homotopy algebraic K-theory, i.e., to the commu-
tative motive identified by the fact that BUS(Y ) is the spectrum of non-connective
homotopy invariant algebraic K-theory of Y , for any smooth S-scheme Y . As a conse-
quence, BUS is endowed with the structure of a commutative algebra in the symmetric
monoidal∞-category SHS . Therefore, MS actually factors, as a lax monoidal functor,
MS : SHncS → ModBUS (SHS) via the category of BUS-modules in SHS .

The first main idea in this paper (see Section 3.2) is to modify the functor MS in
order to obtain different informations, better suited to our goal. Instead of MS , we
consider a somewhat dual version

M∨
S : SHncS −→ ModBUS (SHS)

(1)Orlov works with pairs (X/S, f) defined over S the spectrum of a field, and where f is actually
flat. This is not enough for out purposes, and we refer the reader to Section 2 of this paper for a
discussion of this point.
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Motivic realizations of singularity categories and vanishing cycles 653

which is, roughly speaking, defined by sending an A-dg-category T to the commutative
motive M∨

S (T ) that sends a smooth S-scheme Y to the spectrum KH(Perf(Y )⊗A T )

of (non-connective) homotopy invariant algebraic K-theory of the A-dg-category
Perf(Y ) ⊗A T (see Section 3.2 for details). In particular, for p : X → S, with X

quasi-compact and quasi-separated, we get (Proposition 3.13) an equivalence

M∨
S (Perf(X)) ' p∗(BUX) in ModBUS (SHS),

where BUX denotes a relative version homotopy invariant algebraic K-theory, and
(Proposition 3.30) an equivalence

M∨
S (Sing(S, 0S)) ' BUS ⊕ BUS [1] in ModBUS (SHS).

As consequence of this, the motive M∨
S (Sing(X, f)) is a module over BUS ⊕BUS [1],

for any LG-pair (X, f) over S.
The second main idea in this paper (see Section 3.7) is to compose the functor

M∨
S : SHncS → ModBUS (SHS) with the `-adic realization functor R`

S : SHS →
ShQ`(S) with values in the ∞-categorical version of Ind-constructible `-adic sheaves
on S with Q`-coefficients of [Eke90].

Building on results of Cisinski-Deglise and Riou, we prove (see Section 4.2) that
one can refine R`

S to a functor, still denoted by the same symbol,

R`
S : ModBUS (SHS) −→ ModQ`(β)(ShQ`(S)),

where β denotes the algebraic Bott element. We then denote by R`
S the composite

R`
S : SHncS

M∨
S−−−−→ ModBUS (SHS)

R`
S−−−→ ModQ`(β)(ShQ`(S)).

We are now in a position to state our main theorem comparing singularity cate-
gories and vanishing cycles (see Section 4). Let us take S = SpecA to be a Henselian
trait with A excellent(2) and with algebraically closed residue field k, quotient field K,
and let us fix a uniformizer π in A, so that A/π=k. We denote by iσ : σ := Spec k → S

the canonical closed immersion, and by η the generic point of S.
Given now a regular scheme X, together with a morphism p : X → S which is

proper and flat, we consider the LG-pair (X/S, π), where π is defined as the composite

π : X
p−−→ S

π−−→ A1
S .

For a prime ` different from the characteristic of k, we may consider the following two
objects inside ShQ`(σ) = ShQ`(k):

– the homotopy invariants Hét(Xk,V (β)[−1])hI, where Hét denotes `-adic étale
hypercohomology (i.e., derived global sections), V is the complex of vanishing cy-
cles relative to the map p, V (β)[−1] := V [−1] ⊗ Q`(β) (see Remark 4.28) and
I = Gal(Ksep/K) is the inertia group;

(2)In practice we will be working with complete discrete valuation rings. In this case excellence
conditions is always satisfied.
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654 A. Blanc, M. Robalo, B. Toën & G. Vezzosi

– the derived pullback i∗σ(R`
S(Sing(X,π))) of the `-adic realization of the commu-

tative motive given by the image under M∨
S of the dg-category of singularities for the

LG-pair (X/S, π).
One way to state our main result is then

Main Theorem (Theorem 4.39). — There is a canonical equivalence

i∗σ(R`
S(Sing(X,π))) ' Hét(Xk,V (β)[−1])hI

inside ShQ`(k).
Moreover, this equivalence is compatible with the actions of i∗σM∨

S (Sing(S, 0S)) on
the l.h.s and BUσ ⊕ BUσ[1] on the r.h.s.

What this theorem tells us is that one can recover vanishing cohomology through
the dg-category of singularities, i.e., in a purely non-commutative (and derived) geo-
metrical setting. We think of this result as both an evidence and a first step in the
application of non-commutative derived geometry to problems in arithmetic geome-
try, that we expect to be very fruitful. It is crucial, especially for future applications,
to remark that our result holds over an arbitrary base Henselian trait S (with perfect
residue field), so that it holds both in pure and mixed characteristics. In particular, we
do not need to work over a base field. The main theorem above is also at the basis of
the research announcement [TV16], where a trace formula for dg-categories is estab-
lished, and then used to propose a strategy of proof of Bloch’s conductor conjecture
([Blo85, KS05]). Full details will appear in [TV17].

Remark 1.1. — The result of Theorem 4.39 is stated for the `-adic realization but can
also be given a motivic interpretation. Indeed, one can use the formalism of motivic
vanishing cycles of [Ayo07b, Ayo14] to produce a motivic statement that realizes to our
formula. We thank an anonymous referee for his comments and suggestions regarding
this motivic presentation. The proof is mutatis mudantis the one presented here for
the `-adic realization and we will leave it for further works.

Related works. — The research conducted in the second part of this work has its
origins in Kashiwara’s computation of vanishing cycles in terms of D-modules via
the Riemann-Hilbert correspondence [Kas83]. A further deep and pioneering work is
undoubtedly Kapranov’s influential paper [Kap91] which starts with the identifica-
tion of D-modules with modules over the de Rham algebra. This relation between
vanishing cycle cohomology and twisted de Rham cohomology as been fully under-
stood by Sabbah and Saito in [SS14, Sab10] establishing proofs for the conjectures of
Kontsevich-Soibelman in [KS11]. In parallel, the works of [CT13, Dyc11, Seg13, Shk14]
established the first link between twisted de Rham cohomology and the Hochschild
cohomology of matrix factorizations and more recently, the situation has been clar-
ified with Efimov’s results [Efi18]. The combination of these results express a link
between the theory of matrix factorizations and the formalism of vanishing cycles.
The recent works of Lunts and Schnürer’s [LS16, Th. 1.2] built upon Efimov’s work,
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Motivic realizations of singularity categories and vanishing cycles 655

combined with those of [IS13], show that this connection between the two theories
can be expressed as an equivalence of classes in a certain Grothendieck group of mo-
tives. The main result (Theorem 4.39) of this paper might, in some sense, be seen as
categorification of Lunts and Schnürer’s results.

Acknowledgements. — We warmly thank the anonymous referee for her/his excep-
tionally insightful and useful corrections and suggestions that led, as we hope, to a
more readable paper. MR wishes to thank Mauro Porta for very useful discussions
on the subject matter of this paper. GV wishes to thank A. Efimov for an helpful
exchange about his joint work with L. Positselski. GV would like to thank the Lab-
oratoire IMJ-PRG, Paris 6, for a very fruitful visit in May 2016, when a part of our
collaboration took place. We would also like to thank the anonymous referees for their
comments.

2. Matrix factorizations and derived categories of singularities

Context 2.1. — Throughout this section A will be a commutative Noetherian regular
local ring, S := SpecA and SchS the category of schemes of finite type over S.

Definition 2.2. — We introduce the category of Landau-Ginzburg models over S as
the subcategory of (SchS)/A1

S
spanned by those pairs

(p : X → S, f : X → A1
S),

where p is a flat morphism. We will denote it by LGS . We will denote by LGaff
S its

full subcategory spanned by those LG-models where X is affine over S.

Definition 2.3. — We also introduce the category of flat Landau-Ginzburg models
over S as the full subcategory of LGS consisting of (S, 0 : S → A1

S) (where 0 denotes
the zero section of the canonical projection A1

S → S) together with those pairs

(p : X → S, f : X → A1
S),

where both p and f are flat morphisms. We will denote it by LGfl
S . We will denote by

LGfl,aff
S its full subcategory spanned by those LG-models where X is affine over S.

Construction 2.4. — The category LGS (resp. LGfl
S) has a natural symmetric

monoidal structure � given by the fact that the additive group structure on A1
S

(3)

defines a monoidal structure on the category (SchS)/A1
S
,

� : (SchS)/A1
S
× (SchS)/A1

S
−→ (SchS)/A1

S

given by

(2.0.1) (X, f), (Y, g) 7−→ (X, f)� (Y, g) := (X ×S Y, f � g),

where f � g := p∗X(f) + p∗Y (g) for pX : X ×S Y → X and pY : X ×S Y → Y the two
projections. Notice that as the maps to S are flat, the fiber product X×S Y is also flat
over S, and thus it belongs to LGS . Moreover, if f and g are flat, then f�g is also flat

(3)Given, on functions, by A[T ] 7→ A[X]⊗A A[Y ], T 7→ X ⊗ 1 + 1⊗ Y .
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656 A. Blanc, M. Robalo, B. Toën & G. Vezzosi

(since flatness is stable by arbitrary base-change, and the sum map A1
S ×S A1

S → A1
S

is flat), and if g = 0 : S → A1
S , then f � g = f , which is again flat. In particular, the

unit for this monoidal structure is (S, 0).
We will denote this monoidal structure on LGS (resp. LGfl

S) by LG�S (resp. LGfl�
S ).

Obviously LGfl�
S is a full symmetric monoidal subcategory of LG�S . We use similar

notations for the symmetric monoidal subcategories of (flat) affine LG-pairs (recall
that S is affine, so that also the affine versions have (S, 0) as the unit).

Remark 2.5. — Orlov works inside LGfl
S in [Orl04], while Efimov and Positselski work

in the whole LGS in [EP15].

In this section we discuss two well known constructions, namely matrix factoriza-
tions and categories of singularities. For us, these will be defined as ∞-functors with
values in dg-categories

MF, Sing : LGop
S −→ dgcatidem

A ,

from the category of LG-models to the ∞-category of (small) A-linear idempotent
complete dg-categories. Our MF will be in fact a lax symmetric monoidal ∞-functor
MF : LG�,op

S → dgcatidem
A . The first construction we want to describe sends (X, f) to

the dg-category MF(X, f) of matrix factorizations of f . The second one sends (X, f)

to Sing(X, f), the dg-category of (relative) singularities of the scheme X0 of zeros of f .
We compare these two constructions by means of the so-called Orlov’s equivalence,
which for us will be stated as the existence of a natural transformation of∞-functors.

Sing −→ MF

which is an equivalence when restricted to pairs (X, f) with X regular.
The results of this section consist mainly in ∞-categorical enhancements of well

known results in the world of triangulated categories.

2.1. Review of dg-categories. — For the discussion in this section A can be any
commutative ring. In this paragraph we fix our notations for the theory of dg-cat-
egories, by recalling the main definitions and constructions used in the rest of the
paper. Our references for dg-categories will be [Toë11] and [Rob14, §§6.1.1& 6.1.2].

As an∞-category, dgcatidem
A is a Bousfield localization of the∞-category of (small)

A-linear dg-categories with respect to Morita equivalences, namely dg-functors in-
ducing equivalences on the the respective derived categories of perfect dg-modules.
The ∞-category dgcatidem

A is naturally identified with the full sub-∞-category of
dgcatA consisting of triangulated dg-categories(4) in the sense of Kontsevich. Recall
that these are small dg-categories T such that the Yoneda embedding T ↪→ T̂pe :=

{Perfect T op-dg-modules}, is an equivalence (i.e., any perfect T op-dg-module is quasi-
isomorphic to a representable dg-module). With this identification the localization

(4)This terminology is not standard, as for us triangulated also includes being idempotent
complete.
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Motivic realizations of singularity categories and vanishing cycles 657

∞-functor

(2.1.1) dgcatA −→ dgcatidem
A

simply sends T to T̂pe.
The ∞-category dgcatA can be obtained as a localization of the 1-category

dgcatstrict
A of small strict A-dg-categories with respect to Dwyer-Kan equivalences.

This localization is enhanced by the existence of a model structure on dgcatstrict
A

[Tab05].
Moreover, both dgcatidem

A and dgcatA come canonically equipped with symmet-
ric monoidal structures induced by the tensor product of locally flat dg-categories
dgcatstrict,loc-flat

A ⊆ dgcatstrict
A —namely, those strict dg-categories whose enriching

hom-complexes are flat in the category of chain complexes. The localization functor

(2.1.2) dgcatstrict,loc-flat
A −→ dgcatA

is monoidal with respect to these monoidal structures. We address the reader to
[Toë11] for a complete account of the dg-categories, to [CT12, Prop. 2.22] for the
monoidal structure and [Rob14, §6.1.1& 6.1.2] for an∞-categorical narrative of these
facts.(5)

Notation 2.6. — For a dg-category T , we will denote as [T ] its homotopy category.

At several occasions we will need to take dg-quotients: if T0 → T is a map in
dgcatidem

A , one considers its cofiber as a pushout

T0
//

��

T

��

{0} // T
∐
T0
{0} := T ′

in dgcatidem
A . By a result of Drinfeld [Dri04] the homotopy category of T ′ can be

canonically identified with the classical Verdier quotient of T by the image of T0.
This pushout is equivalent to the idempotent completion of the pushout taken in the
dgcatA, thus given by T̂ ′pe and its homotopy category can be identified with the
idempotent completion of the Verdier quotient of T by T0.

To conclude this review, let us mention that for any ring A, dgcatidem
A can also

be identified with the ∞-category of small stable idempotent complete A-linear ∞-
categories. The proof of [Coh13] adapts to any characteristic. We address the reader
to the discussion [Rob14, §6.2] for more helpful comments.

(5)where we use locally cofibrant dg-categories instead of locally flat. The two strategies are equiv-
alent as every locally cofibrant dg-category is locally flat [Toë07, 2.3(3)] and a cofibrant replacement
functor is an inverse. See also the discussion in [Rob14, p. 222].
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2.2. Matrix factorizations. — In this section we again work under Context 2.1. We
now deal with the construction of the symmetric lax monoidal ∞-functor

(2.2.1) MF : LGaff,op
S −→ dgcatidem

A .

To define this lax monoidal ∞-functor we will first construct an auxiliary strict
version and explain its lax structure.

2.2.1. — Let (X, f) ∈ LGaff
S and let us write X := SpecB, for B flat of finite type

over A. The function f is thus identified with an element f ∈ B. We associate to the
pair (B, f) a strict Z/2-graded A-dg-category MF(B, f) as follows.

Construction 2.7. — First we construct MF(B, f) as an object in the theory of
small strict Z/2-graded B-dg-categories, meaning, small strict dg-categories enriched
in Z/2-graded complexes of B-modules. Its objects are pairs (E, δ), consisting of the
following data.

(1) A Z/2-graded B-module E = E0⊕E1, with E0 and E1 projective and of finite
rank over B.

(2) A B-linear endomorphism δ : E → E of odd degree, and satisfying δ2 =

multiplication by f .
In a more explicit manner, objects in MF(X, f) can be written as 4-tuples,

(E0, E1, δ0, δ1), consisting of B-modules projective and of finite type Ei, together
with B-linear morphisms

E0
δ0−−−→ E1, E1

δ1−−−→ E0

such that δ0 ◦ δ1 = δ1 ◦ δ0 = ·f .
For two objects E = (E, δ) and F = (F, δ), we define a Z/2-graded complex

of B-modules of morphisms Hom(E,F ) in the usual manner. As a Z/2-graded
B-module, Hom(E,F ) simply is the usual decomposition of B-linear morphisms
E → F into odd and even parts. The differential is itself given by the usual
commutator formula: for t ∈ Hom(E,F ) homogenous of odd or even degree, we set

d(t) := [t, δ] = t ◦ δ − (−1)deg(t)δ ◦ t.

Even though δ does not square to zero, we do have d2 = 0. This defines Z/2-
graded complexes of B-modules Hom(E,F ) and sets MF(B, f) as a Z/2-graded
B-dg-category.

Composing with the structure map SpecB → SpecA = S, one can now understand
MF(B, f) as Z/2-graded A-linear dg-category. Notice that as A is by hypothesis a
local ring, and B is flat over A, being projective of finite rank over B implies being
projective of finite rank over A, as flat and projective become equivalent notions as
soon as the modules are finitely generated.

Construction 2.8. — The assignment (X, f) 7→ MF(X, f) acquires a pseudo-
functorial structure

(2.2.2) LGaff,op
S −→ dgcatstrict

Z/2,A
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Motivic realizations of singularity categories and vanishing cycles 659

as any morphism of A-algebras q : B → B′, with q(f) = f ′, defines by base change
from B to B′ a Z/2-graded A-linear dg-functor

B′ ⊗B − : MF(B, f) −→ MF(B′, f ′).

Notation 2.9. — Throughout this work we will always allow ourselves to freely inter-
change the notions of Z/2-graded complexes and 2-periodic Z-graded complexes via
an equivalence of strict categories

(2.2.3) dgMod
Z/2
A

θ
∼ // A[u, u−1]-dgMod,

where A[u, u−1] is the free strictly commutative differential graded algebra over A
with an invertible generator u sitting in cohomological degree 2. The functor θ sends
a Z/2-graded complex complex (E0, E1, δ0, δ1) to the A[u, u−1]-dg-module

[· · · −→ E1 −→ E0 −→ E1 −→ E0 −→ · · · ],

where u acts via the identity. The inverse equivalence to θ sends an A[u, u−1]-dg-
module F to the 2-periodic complex with F0 in degree 0 and F1 in degree 1, together
with the differential F0 → F1 of F and the new differential F1 → F2 ' F0 using the
action of u−1. Moreover, θ is symmetric monoidal: the tensor product of 2-periodic
complex identifies with the tensor product over A[u, u−1]. In particular, this induces
an equivalence of 1-categories between the theory of Z/2-graded A-dg-categories and
that of A[u, u−1]-dg-categories:

(2.2.4) dgcatstrict,⊗
Z/2,A

θ
∼ // dgcatstrict,⊗

A[u,u−1].

Applying θ to the enriching 2-periodic hom-complexes on the l.h.s of (2.2.3), the
equivalence (2.2.3) becomes an equivalence of strict A[u, u−1]-dg-categories.

This discussion descends to a monoidal equivalence of between the (Morita) ho-
motopy theories dg-categories, as explained in [Dyc11, §5.1]. Moreover, the results of
[Toë07] describing internal-homs in the Morita theory remains valid.

For our purposes we will work with the version of MF obtained by the composition
of (2.2.2) with (2.2.4).

2.2.2. — We will now give a strict version of the symmetric lax monoidal structure
on MF:

Construction 2.10. — Let (X, f) and (Y, g) be two objects in LGaff
S , withX = SpecB

and Y = SpecC (so f ∈ B and g ∈ C). We consider the pair (D,h), whereD = B⊗AC
and h = f ⊗ 1 + 1⊗ g ∈ D. We have a natural A-linear dg-functor

(2.2.5) � : MF(B, f)⊗A MF(C, g) −→ MF(D,h),

obtained by the external tensor product as follows. For two objects E = (E, δ) ∈
MF(B, f) and F = (F, ∂) ∈ MF(C, g), we define a projective D-module of finite type

E � F := E ⊗A F,
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with the usual induced Z/2-graduation: the even part of E � F is (E0 ⊗A F0) ⊕
(E1 ⊗A F1), and its odd part is (E1 ⊗A F0) ⊕ (E0 ⊗A F1). The odd endomorphism
δ : E � F → E � F is given by the usual formula on homogeneous generators

(2.2.6) δ(x⊗ y) := δ(x)⊗ y + (−1)deg xx⊗ ∂(y).

All together, this defines an object E � F ∈ MF(D,h), and with a bit more work
a morphism in dgcatstrict

Z/2,A giving shape to (2.2.5). These are clearly symmetric and
associative. Finally, the construction MF is also lax unital with unity given by the
natural Z/2-graded A-linear dg-functor

(2.2.7) A −→ MF(A, 0),

sending the unique point of A to (A[0], 0) where A[0] is A considered as a Z/2-graded
A-module pure of even degree (and A is considered as an Z/2-graded A-linear dg-
category with a unique object with A as endomorphism algebra). This finishes the
description of the lax symmetric structure on

(2.2.8) MF : LGaff,op,�
S −→ dgcatstrict,⊗

Z/2,A ' dgcatstrict,⊗
A[u,u−1].

Construction 2.11. — We must now explain how to use the strict lax structure of the
Construction 2.10 to produce a lax structure in the homotopy theory of dg-categories.
Following the discussion in the Section 2.1, it will be enough to show that MF has
values in locally-flat dg-categories. But this is indeed the case as by definition the
objects of MF(B, f) are pairs of B-modules that are finitely generated and projective,
hence in particular flat over B, and therefore also over A (as B is assumed flat over A).
Therefore, the enriching hom-complexes are flat over A. Following this discussion, the
lax symmetric monoidal functor (2.2.2) factors as

(2.2.9) LGaff,op,� −→ dgCatstrict,loc-flat,⊗
Z/2,A

and by composition with (2.2.4) and the restriction along A→ A[u, u−1] we obtain a
lax symmetric monoidal functor

(2.2.10) LGaff,op,� −→ dgCatstrict,loc-flat,⊗
Z/2,A '

(2.2.4)
dgCat

strict,loc-flat/A,⊗
A[u,u−1]

−→
rest.

dgCat
strict,loc-flat/A,⊗
A .

Finally, we compose this with the monoidal localization∞-functor (2.1.2) followed by
(2.1.1), to obtain a new lax monoidal ∞-functor

(2.2.11) MF : LGaff,op,� −→ dgcatidem,⊗
A .

Remark 2.12. — The restriction of scalars along A→ A[u, u−1] forgets the 2-periodic
structure. However, it is a consequence of the construction that we can recover this
2-periodic structure from the lax monoidal structure (2.2.11).

Indeed, the lax monoidal structure endows MF(S, 0) with a structure of object in
CAlg(dgcatidem

A ). At the same time, as MF(S, 0) admits a compact generator given by
A in degree 0, it follows that in dgcatidem

A , MF(S, 0) is equivalent to perfect complexes
over the dg-algebra θ(EndMF(S,0)(A)). But an explicit computation shows that this is
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a strict-dg-algebra given by A[u, u−1] with u a generator in cohomological degree 2.
In addition to this, the symmetric monoidal structure on MF(S, 0), which by con-
struction of the lax structure in fact exists in the strict theory of strict dg-categories,
produces a structure of strict commutative differential graded algebra on A[u, u−1]

which corresponds to the standard one. It follows that in CAlg(dgcatidem
A ), we have

a monoidal equivalence

(2.2.12) MF(S, 0)� ' Perf(A[u, u−1])⊗A[u,u−1] ,

where the r.h.s is equipped with the relative tensor product of A[u, u−1]. It follows
from the lax structure and the monoidal equivalence (2.2.12) that MF extends to a
lax monoidal functor

(2.2.13) MF : LGaff,op,� −→ ModPerf(A[u,u−1])(dgcat
idem
A )⊗.

We observe that this is precisely the 2-periodic structure of (2.2.9) before restricting
scalars along A→ A[u, u−1]. Indeed, this follows from the commutativity of the square
of lax monoidal ∞-functors

(2.2.14)

N(dgCat
strict,loc-flat/A,⊗
A[u,u−1] )

��

// N(dgCat
strict,loc-flat/A,⊗
A )

��

dgcatidem,⊗
A[u,u−1]

// dgcatidem,⊗
A

and the monadic equivalence

dgcatidem,⊗
A[u,u−1] ' ModPerf(A[u,u−1])(dgcat

idem
A )⊗

The construction of MF as a lax monoidal functor from affine LG-pairs to
A-dg-categories, can be extended to all LG-pairs: one way is to interpret MF as a
functor LGaff → dgcatidem,op

A and take its monoidal left Kan extension Kan MF to
presheaves of spaces P(LGaff) [Lur17, 4.8.1.10]. Now LGS embeds fully faithfully by
Yoneda inside P(LGaff) in a monoidal way with respect to the Day product. The
restriction to this full subcategory defines an ∞-functor

(2.2.15) Kan MF : LGop
S −→ dgcatidem

A

of matrix factorizations over S, naturally equipped with a lax symmetric monoidal
enhancement

(2.2.16) Kan MF� : LGop,�
S −→ dgcatidem,⊗

A .

Alternatively, there is a definition of matrix factorizations on non-affine LG-pairs
(X, f) under the assumption that X has enough vector bundles. Indeed, one should
work with matrix factorizations (E0, E1, δ0, δ1) where E0 and E1 are vector bundles
on X. See [Orl04, Orl12, LP11]. Under this assumption, this second definition agrees
with the Kan extension. See [LP11, 2.11], [Efi18, §5] or [BW12, §3].
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2.3. dg-Categories of singularities

2.3.1. — Let (X, f) be an LG-model. In this section we will study an invariant that
captures the singularities of X0 ⊂ X, the closed subscheme of zeros of f . As we
will not impose any condition on f , for instance f can be a zero divisor, we have to
allow X0 to be eventually a derived scheme. More precisely, we consider the derived
fiber product

(2.3.1)

X0 := S ×h
A1
S
X

��

i // X

f
��

S
0 // A1

S

where the canonical map i is an lci closed immersion,(6) as it is the base change of the
lci closed immersion 0S : S → A1

S .

Remark 2.13. — Note that if (X, f) ∈ LGfl
S (i.e., f is flat), then X0 is just the scheme

theoretic zero locus of f . In particular it coincides with the X0 consider by Orlov in
[Orl04]. Therefore, in this case, the derived categories of singularities considered in
this paper (see Definition 2.23 and Remark 2.26 below) is (an ∞- or dg-categorical
version of) the derived category of singularities of [Orl04].

For an LG-model (X, f), with associated derived scheme X0 of zeros of f , we
consider Qcoh(X0) the A-linear dg-category of quasi-coherent complexes on X0

(see [Toë14, §3.1] for a survey). We consider the following full sub-dg-categories of
Qcoh(X0):

– Perf(X0): perfect objects over X0, meaning, objects E ∈ Qcoh(X0) such that
locally it belong to the thick sub-category of Qcoh(X0) generated by the structure
sheaf of X0. These are exactly the ⊗-dualizable objects in Qcoh(X0). In our case,
as X0 is a fiber product of quasi-compact and quasi-separated schemes it has the
same property, and therefore by the results in [BZFN10, 3.6] (see also [Toë12a]) perfect
complexes agree with compact objects in Qcoh(X0).

– Cohb(X0): cohomologically bounded objects E ∈ Qcoh(X0) whose cohomology
H∗(E) is a coherent H0(OX0

)-module,
– Coh−(X0): cohomologically bounded above objects E ∈ Qcoh(X0) whose coho-

mology H∗(E) is a coherent H0(OX0)-module,(7)

(6)In this paper we will use the terminology “lci closed immersion” to mean a quasi-smooth
closed immersion, namely, a map of derived schemes whose truncation is a closed immersion and
whose relative cotangent complex is perfect and of Tor-amplitude [−1, 0]. See for instance [Toë12b,
AG15, Kha18]

(7)These are also known as pseudo-perfect complexes ([SGA6]) or almost perfect complexes
([Lur17]).
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– Cohb(X0)Perf(X): cohomologically bounded objects E ∈ Qcoh(X0) whose coho-
mology H∗(E) is a coherent H0(OX0)-module and such that the direct image of E
under i∗ is perfect over X,
where we always have inclusions(8)

Perf(X0) ⊆ Cohb(X0) ⊂ Coh−(X0) ⊂ Qcoh(X0)

Cohb(X0)Perf(X) ⊆ Cohb(X0)

and the fact the map X0 → X is a lci closed immersion (of derived schemes), thus
preserving perfect complexes under pushforward (see Remark 2.15 below), gives us
another inclusion

Perf(X0) ⊆ Cohb(X0)Perf(X).

Remark 2.14. — All Cohb(X0), Perf(X0) and Cohb(X0)Perf(X) are idempotent
complete A-dg-categories. This is well-known for Cohb(X0) and Perf(X0). For
Cohb(X0)Perf(X) this follows because both Cohb(X0) and Perf(X) are idempotent
complete and the pushforward along X0 → X is an exact functor thus preserving all
retracts that exist.

Remark 2.15. — The constructions of Cohb,Perf and Coh− possess different ∞-
functorial properties for maps of derived schemes, summarized in the following table:

Pullbacks Pushforwards

Cohb Finite Tor-amplitude
[GR17, Chap. 4, Lem. 3.1.3]

Proper locally almost finite type
[GR17, Chap. 4, Lem. 5.1.4]

Perf All (dualizable objects) Proper lci [Toë12b]

Coh− All [Lur18, 2.7.3.1] Proper loc. almost of finite type
[Lur18, 5.6.0.2]

We will use this table to deduce the functorialities for the construction

(X, f) 7−→ Cohb(X0)Perf(X).

This requires some observations. We thank the anonymous referee for suggesting the
following arguments, simplifying the discussion we had in previous versions of the
paper:

Lemma 2.16. — Let (X, f) be be an LG-pair over S. Then the functor i∗ : Qcoh(X0)→
Qcoh(X) preserves perfect complexes, is t-exact and conservative.

(8)For a general derived scheme Y , the inclusion Perf(Y ) ⊆ Cohb(Y ) is not guaranteed. Indeed,
it requires Y to be eventually coconnective—see [GR17, Chap. 1, Def. 1.1.6]. This is automatic for
Y = X0 using the table in Remark 2.15.
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Proof. — The first claim is explained in the table in Remark 2.15 as the map
i : X0 → X is a lci closed immersion. For t-exactness see [Lur18, 2.5.1.1]. Conserva-
tivity may be check on the hearts by t-exactness, but on the hears, i∗ induces the
classical pushfoward on the truncations t(X0)→ t(X), which is conservative. �

Proposition 2.17. — Let (X, f) be be an LG-pair over S. Then the inclusion

(2.3.2) Cohb(X0)Perf(X) −→ Coh−(X0)Perf(X)

is an equivalence.

Proof. — By t-exactness and conservativity of i∗, cohomological boundedness of an
object E ∈ Qcoh(X0) can be checked after applying i∗. But if i∗(E) is a perfect
complex then it is cohomologically bounded. �

Remark 2.18. — It follows from 2.17 that the category Cohb(X0)Perf(X) fits in a
pullback square of idempotent complete A-linear dg-categories

(2.3.3)

Coh−(X0)
i∗ // Coh−(X)

Cohb(X0)Perf(X)
//

?�

OO

Perf(X)
?�

OO

Indeed, by the t-exactness and conservativity in 2.16, the diagram

(2.3.4)

Coh−(X0)
i∗ // Coh−(X)

Cohb(X0) //

?�

OO

Cohb(X)
?�

OO

is cartesian. Combining the equivalence 2.3.2 with the fact the diagram

(2.3.5)

Coh−(X0)
i∗ // Coh−(X)

Coh−(X0)Perf(X)
//

?�

OO

Perf(X)
?�

OO

is cartesian, allows us to conclude.

Remark 2.19. — The construction (X, f) 7→ X0 can be presented as an ∞-functor.
We leave this as an easy exercise to the reader. Moreover, for any map of LG-pairs
u : (X, f)→ (Y, g) there is a well-defined pullback functor

(2.3.6) Cohb(Y0)Perf(Y ) −→ Cohb(X0)Perf(X).

Notice that the pullback map Cohb(Y0) → Cohb(X0) is not necessarily defined as
one would need the map X0 → Y0 to be of finite Tor-amplitude. What is true in
general (following the table above) is that Coh−(Y0)→ Coh−(X0) is defined and this
is enough to show that the restriction (2.3.6) is always well-defined via the equivalence
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2.3.2. Indeed, the proper base change formula [Lur18, 6.3.4.1] applied to the cartesian
diagram(9)

(2.3.7)
X0

u0

��

i // X

u
��

Y0
// Y

together with the fact the pullback of perfect complexes is always perfect, tells us that
Coh−(Y0) → Coh−(X0) restricts to a functor Coh−(Y0)Perf(Y ) → Coh−(X0)Perf(X).
The construction (X, f) 7→ Cohb(X0)Perf(X) can easily be written as part of an ∞-
functor.

Corollary 2.20. — The assignment (X, f) 7→ Cohb(X0)Perf(X) has descent with re-
spect to h-Čech covers for the h-topology of Voevodsky (see [HLP14]). That is, for any
morphism (Y, g)→ (X, f) such that Y → X is an h-covering, the pullback

Cohb(X0)Perf(X) −→ Tot(Cohb(Y0)•)Perf(Y•))

is an equivalence in dgcatidem
A . Here Y• denotes the Čech nerve of u : Y → X and

(Y0)• denotes the Čech nerve of u0 : Y0 → X0 (both formed in the setting of derived
schemes).

Proof. — This follows from [HLP14, Th. 4.12] as both almost perfect complexes and
perfect complexes satisfy h-descent for derived Čech. covers. Alternatively, notice that
Y0 → X0 is an h-cover with X0 eventually coconnective, then use [Lur18, 5.6.6.1] �

Remark 2.21. — Let us remark that the Ind-completion Ind(Cohb(X0)Perf(X)) em-
beds fully faithfully inside the presentable ∞-category IndCoh(X0)Qcoh(X) obtained
via the pullback of presentable A-linear dg-categories

(2.3.8)

IndCoh(X0)
i∗ // IndCoh(X)

IndCoh(X0)Qcoh(X)
//

?�
θ

OO

Qcoh(X)
?�
φ

OO

and the inclusion Ind(Cohb(X0)Perf(X)) ⊆ IndCoh(X0)Qcoh(X) is closed under filtered
colimits. Let us remark first that the inclusion Perf(X) ⊆ Cohb(X) is fully-faithful,
so is the inclusion φ after Ind-completion Qcoh(X) ⊆ IndCoh(X) and therefore, so
is the map θ by definition of pullbacks in PrL [Lur09, 5.5.3.13] and the definition of
mapping spaces in a pullback. Moreover, by the description of colimits in a pullback
[Lur09, 5.4.5.5], θ preserves filtered colimits because the same is true for φ.

The natural inclusions of bounded coherent inside Ind-coherent and perfect inside
all quasi-coherent, give us a canonical fully faithful embedding

(2.3.9) Cohb(X0)Perf(X) ⊆ IndCoh(X0)Qcoh(X).

(9)The diagram is cartesian by definition of morphism of LG-pairs.

J.É.P. — M., 2018, tome 5



666 A. Blanc, M. Robalo, B. Toën & G. Vezzosi

One can easily check using the fact that Cohb(X0) are precisely the compact object
of IndCoh(X0), that the image of this embedding lives in the full subcategory of the
r.h.s spanned by compact objects.

We start with an absolute version of the definition of the derived category of sin-
gularities:

Definition 2.22. — Let Z be a derived scheme of finite type over S. The (absolute)
derived category of singularities of Z is the dg-quotient Sing(Z) := Cohb(Z)/Perf(Z)

taken in dgcatidem
A .

We will now consider the derived category of singularities of an LG-pair (X, f).
As the derived closed immersion i∗ : X0 → X is lci and in particular, of finite Tor-
dimension, Remark 2.15 guarantees well-defined operations

i∗ : Perf(X0) −→ Perf(X) and i∗ : Cohb(X0) −→ Cohb(X)

i∗ : Perf(X) −→ Perf(X0) and i∗ : Cohb(X) −→ Cohb(X0)

and therefore, well-defined induced operations

i∗ Sing(X0) −→ Sing(X) and i∗ : Sing(X) −→ Sing(X0),

with i∗ left adjoint to i∗. In this paper we will use the following definition:

Definition 2.23. — The dg-category of singularities of the pair (X, f) is the homotopy
fiber in dgcatidem

A

Sing(X, f) := Ker(i∗ : Sing(X0)→ Sing(X)).

Remark 2.24. — The canonical dg-functor Sing(X, f) → Sing(X0) is fully faith-
ful. Indeed, being Sing(X, f) a fiber computed in dgcatidem

A , and as the inclusion
dgcatidem

A ⊆ dgcatA commutes with limits (with left adjoint the idempotent comple-
tion), we conclude the statement from the formula of the mapping spaces in the fiber
product in dgcatA and the fact that the zero dg-category 0 is a terminal object.

Proposition 2.25. — For any (X, f) ∈ LGS the canonical functor

Cohb(X0)Perf(X)/Perf(X0) ' Sing(X, f)

is an equivalence. Here the dg-quotient on the l.h.s is taken in dgcatidem
A .

Proof. — We start with the observation that as X is assumed to be of finite type
over S, it is quasi-compact and quasi-separated and in particular, Perf(X) admits a
compact generator [BvdB03]. Therefore X is perfect (in the sense of [BZFN10]) and
it is then a consequence of [Rob15, Prop. 1.18] that the exact sequence of idempotent
complete dg-categories

(2.3.10)

Perf(X) �
�

//

��

Cohb(X)

��

∗ // Sing(X)
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is also a pullback in dgcatidem
A . This cartesian diagram together with the cartesian

diagram (2.3.3) fit together in a commutative cube

(2.3.11)

Sing(X0) // Sing(X)

Sing(X, f)

ii

// 0

gg

Cohb(X0)

OO

i∗ // Cohb(X)

OO

Cohb(X0)Perf(X)

6 V

hh

//

OO

Perf(X)

OO

3 S

ff

where the right, bottom and upper faces are cartesian. In particular, it follows that the
face on the left is cartesian and again by [Rob15, Prop. 1.18] applied to Perf(X0) →
Cohb(X0)→ Sing(X0),(10) combined with the fact the face on the left is now known
to be cartesian, gives us two cartesian squares

(2.3.12)

Perf(X0) �
�

//

��

Cohb(X0)Perf(X)
� � //

��

Cohb(X0)

��

∗ // Sing(X, f) // Sing(X0)

where the vertical middle arrow is essentially surjective (being the pullback of
Cohb(X0)→ Sing(X0) which is essentially surjective). This shows that the canonical
map induced by the universal property of the quotient

(2.3.13) Cohb(X0)Perf(X)/Perf(X0) −→ Sing(X, f)

is essentially surjective. It remains to check it is fully faithful. For that purpose we
use the commutativity of the diagram

(2.3.14)

Cohb(X0)Perf(X)/Perf(X0) //

(2.3.13)
��

Sing(X0)

Sing(X, f)

55

and explain that both maps to Sing(X0) are fully faithful, thus deducing the
fully faithfulness of (2.3.13). The fact that the diagonal arrow is fully faithful
has been explained in Remark 2.24. It remains to show that the quotient map
Cohb(X0)Perf(X)/Perf(X0)→ Sing(X0) = Cohb(X0)/Perf(X0) is fully-faithful. This
is true as the inclusion Cohb(X0)Perf(X) → Cohb(X0) is fully faithful and the map
induced in the quotient corresponds to a quotient by a common subcategory Perf(X0)

with a compact generator.(11) �

(10)Notice again that X0 is also a quasi-compact and quasi-separated derived scheme so Perf(X0)

has a compact generator - see [Toë12a]
(11)For the reader’s convenience we explain the argument: as both categories are stable and the

functors are exact it is enough to explain fully faithfulness at the level of the classical homotopy
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The description of Sing(X, f) given in Proposition 2.25 will be recurrent in this
paper.

Remark 2.26. — Following [EP15], one could also define the relative derived cate-
gory of singularities with respect to X0 → X, Sing(X0/X), as the dg-quotient of
Sing(X0) by the image of i∗ taken in dgcatidem

A . This differs from our Definition 2.23
(as explained in [BW12, Rem. 6.9]). Nevertheless, one can understand both choices
of definition as variations of the situation when X is regular, where both agree with
Sing(X0). Our choice has the advantage of being always equivalent to matrix factor-
izations of projective modules (as it is proven by [EP15, Proof of Th. 2.7, p. 47] and
we shall revisit it in Section 2.4), contrary to the one of [EP15] where one needs to
use coherent matrix factorizations.

2.3.2. — Throughout this section by default we work under Context 2.1. For some
results we can actually drop the hypothesis that A is local. This hypothesis will only
be necessary in the construction of a strict model for Cohb

Perf . Our goal is now to
exhibit the construction of the derived category of singularities of an LG-model as
lax symmetric monoidal ∞-functor

(2.3.15) Sing⊗ : LGop,�
S −→ dgcat⊗A.

In what follows we will first construct Sing as an ∞-functor defined on affine LG-
pairs. Our strategy will be to build a strict model for Cohb(X0)Perf(X) (see below)
and construct the functorialities in this strict setting, transferring them later to the
homotopical setting via the localization functor of Section 2.1.

Remark 2.27. — The reader should be aware that the construction of Sing as an ∞-
functor can be done using only∞-categorical methods, without any rectification step,
as suggested in Remark 2.19. Note however that the comparison with the construction
of matrix factorizations requires some steps with strict dg-categories, as our initial
definition of MF (Construction 2.7) was indeed given in this setting.

Construction 2.28 (Strict model for the derived intersection X0)
Let (X = SpecB, f) ∈ LGaff

S , corresponding to f ∈ B for B a flat and finitely pre-
sented A-algebra. We consider K(B, f), the Koszul algebra associated to the element
f ∈ B. It is the commutative B-dg-algebra whose underlying complex is B f−→ B,
with the standard multiplicative structure where the elements of degree −1 square
to zero. We have maps B → K(B, f) → B/(f). When f is not a zero divisor, these
maps make K(B, f) into a cofibrant model for B/(f) as a commutative B-dg-algebra
(i.e., the diagram above is a factorization of B → B/(f) as a cofibration followed
by a trivial fibration). More generally, even if f is a zero divisor, K(B, f) is always

categories. This can be done using the description of Hom-sets in terms of zig-zags in the classical
Gabriel-Zisman localization. The reader can check [Kra08, Lem. 4.7.1] using the fact that the class
of morphisms being inverted consists exactly those maps E → F whose cofiber is perfect.
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a cofibrant commutative B-dg-algebra which is an algebraic model for the derived
scheme X0 of zeros of f .

Example 2.29. — Let B = A and f = 0. Then S0 := S ×h
A1
S
S is the derived self-

intersection of zero inside A1
S . This is explicitly given by the commutative differential

graded algebra K(A, 0) = A[ε] with ε a generator in cohomological degree −1 with
ε2 = 0, with underlying complex

(2.3.16) 0 −→ A · ε 0−−→ A −→ 0.

Remark 2.30. — This explicit model for the derived intersection gives us explicit
models for Perf, Cohb, and Qcoh. For instance, there is a canonical equivalence
of A-dg-categories between the dg-category Qcoh(X0) of quasi-coherent complexes
on X0, and the A-dg-category of cofibrant K(B, f)-dg-modules, which we will denote
as K̂(B, f). The full subcategory Cohb(X0) ⊂ Qcoh(X0) (resp. Perf(X0)) identifies
with the full dg-subcategory of K̂(B, f) spanned by those complexes which are of
bounded cohomological amplitude and with coherent cohomology (resp. the full sub
dg-category of K̂(B, f) spanned by cofibrant dg-modules which are homotopically
finitely presented). A priori, the functor i∗ can be described as

K̂(B, f)
i∗ := QB ◦ Forget−−−−−−−−−−−−−−−→ B̂,

whereQB is a cofibrant replacement functor in B-dg-modules and Forget is the restric-
tion of scalars along B → K(B, f). But as K(B, f) is already cofibrant over B, any
cofibrant K(B, f)-dg-module will also be cofibrant over B. Thus QB is not necessary.

We now discuss a strict model for Cohb(X0)Perf(X), for X = SpecB.

Construction 2.31. — We consider the full sub dg-category Cohs(B, f) of the strict
dg-category of (all) K(B, f)-dg-modules, spanned by those whose image along the
restriction of scalars along the structure map B → K(B, f)

K(B, f)-dgModA −→ B- dgMod

are strictly perfect as complexes of B-modules (i.e., strictly bounded and degreewise
projective B-modules of finite type). Notice that as X = Spec(B) is an affine scheme,
the sub dg-category Perf(X) ⊆ B̂ is equivalent to its full sub-dg-category spanned
by strict perfect complexes (see [TT90, 2.4.1]). Note also that we do not make the
assumption that objects in Cohs(B, f) are cofibrant asK(B, f)-dg-modules, so there is
no fully faithful embedding from Cohs(B, f) to the dg-category K(B, f)-dgModcof

A =

Qcoh(X0) of cofibrant K(B, f)-dg-modules.

Remark 2.32. — More explicitly, an object in Cohs(B, f) is the data of a strictly
bounded complex E of projective B-modules of finite type, together with a mor-
phism of graded modules h : E → E[1] of degree 1, with h2 = 0 satisfying
[d, h] = dh+ hd = f . In fact, given a B-dg-module E, the datum of a K(B, f)-
dg-module structure on E, restricting to the given B-dg-module structure via
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the canonical map B → K(B, f), amounts to a pair (m0,m1) of morphisms
mα : E → E[−α] of graded B-modules, where m0 is forced to be the identity by
the fact that the B-dg-module structure is assigned, and h := m1 is subject to the
condition dh+hd = f . Note also that, as a strict A-dg-category, Cohs(B, f) is locally
flat. This follows because by assumption B is flat over A and A is a regular local ring
as required by Context 2.1.

The dg-category Cohs(B, f) is a strict model for the dg-category Cohb(X0)Perf(X),
as stated by the following lemma.

Lemma 2.33. — Let Cohs,acy(B, f) ⊂ Cohs(B, f) be the full sub-dg-category consist-
ing of K(B, f)-dg-modules which are acyclic as complexes of B-modules. Then, the
cofibrant replacement dg-functor induces an equivalence of dg-categories

(2.3.17) Cohs(B, f)[q.iso−1]dg ' Cohs(B, f)/Cohs,acy(B, f) ' Cohb(X0)Perf(X)

In particular, we have a natural equivalence of dg-categories

Cohs(B, f)/Perfs(B, f) ' Cohb(X0)Perf(X)/Perf(X0) = Sing(X, f),

where Perfs(B, f) is by definition the full sub-dg-category of Cohs(B, f) consisting of
objects which are perfect as K(B, f)-dg-modules.

Proof. — The category of K(B, f)-dg-modules admits a combinatorial model struc-
ture inherited by the one from complexes of B-modules. Therefore, it admits a func-
torial cofibrant replacement

Q : K(B, f)- dgModA −→ K(B, f)- dgModcof
A

which is not a priori a dg-functor. In our case we are interested in applying this
to the inclusion Cohs(B, f) ⊆ K(B, f)-dgModA and it happens that for objects
E ∈ Cohs(B, f) we can model Q by a dg-functor as follows: as E is strictly perfect
over B, in particular E is cofibrant over B. Therefore, by definition E ⊗B K(B, f) is
a cofibrant K(B, f)-dg-module. So are the powers E ⊗B Bn ⊗B K(B, f). This gives
us a resolution of E ' E ⊗K(B,f) K(B, f) by a simplicial diagram. Extracting its
totalization we obtain a cofibrant resolution of E in a functorial way. This way we
get a strict cofibrant-replacement dg-functor

(2.3.18) Q : Cohs(B, f) −→ K̂(B, f)

which by definition, sends weak-equivalences to equivalences. By the universal prop-
erty of the dg-localization we have a factorization in dgcatA

(2.3.19) Q : Cohs(B, f)[q.iso−1]dg −→ K̂(B, f).

Notice also that by the universal property of the quotient, this dg-localization is
equivalent in dgcatA to Cohs(B, f)/Cohs,acy(B, f) and the map (2.3.19) is the one
induced by the fact that Q sends the full subcategory Cohs,acy(B, f) to zero.

We show that the dg-functor (2.3.18) is fully faithful with essential image given by
Cohb(K(B, f))Perf(B). More precisely, we show that:
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(1) The functor (2.3.19) factors through the full-subcategory Cohb(K(B, f))Perf(B),
where it is essentially surjective;

(2) (2.3.19) is fully-faithful.
Let us start with (1). Of course, as an object E ∈ Cohs(B, f) is strictly bounded,

any cofibrant replacement will remain cohomologically bounded. The cohomology
groups of E carry a natural structure of π0(K(B, f)) = B/f -module. Moreover, be-
ing E levelwise made of projective B-modules of finite type, these same cohomology
groups are coherent when seen as B-modules via composition with the surjective map
B → B/f and therefore are coherent as π0(K(B, f)) = B/f -modules. Therefore, its
cofibrant replacement Q(E) is in Cohb(K(B, f)).(12) In fact, Q(E) lives in the full sub-
dg-category Cohb(K(B, f))Perf(B). Indeed, notice that by definition of Cohs(B, f) the
image of E under composition with B → K(B, f), which we will denote as Forget(E),
is a strict perfect complex and therefore, is perfect. As the forgetful functor along
B → K(B, f) preserves all weak-equivalences of dg-modules, Forget(Q(E)) is weak-
equivalent to Forget(E). Finally, by definition of i∗ := QB ◦ Forget (see Remark 2.30
for notations) we find that i∗(E) is quasi-isomorphic to Forget(E) and therefore is
perfect.

To show that (2.3.19) is essentially surjective on Cohb(K(B, f))Perf(B) we notice
first that asX is affine, the inclusion of strictly perfect complexes over B, Perfs(B), in-
side Perf(B) is an equivalence. In this case so is the inclusion Cohb(K(B, f))Perfs(B) ⊆
Cohb(K(B, f))Perf(B). Suppose M ∈ Cohb(K(B, f))Perfs(B) is in cohomological de-
gree 0, a B/f -module of finite type. In this case, take any simplicial resolution of M
by free K(B, f)-dg-modules E → M . This might be unbounded because M itself is
not strictly perfect over K(B, f). The restriction of scalars of E to B is cofibrant and
is degreewise projective over B as K(B, f) itself is strictly perfect over B and M is
by hypothesis strictly perfect over B. One can now truncate the resolution τ6b+1E

for b the tor-amplitude of M over B. This new resolution is now strictly bounded as
K(B, f)-dg-module and remains quasi-isomorphic to M .

Let us now show (2). As Cohs(B, f) has a canonical triangulated structure (coming
from the strict dg-enrichment) to show that the map (2.3.19) is fully faithful it is
enough to show that it is fully faithful on the homotopy categories because of the
triangulated nature of the dg-localization. In this case it is enough so show that for any
E ∈ Cohs(B, f) and for any quasi-isomorphism P → E with P a K(B, f)-dg-module,
it is possible to find an object P ′ ∈ Cohs(B, f) and a second quasi-isomorphism
P ′ → P → E. But this follows using free resolutions like in (1) above. �

Construction 2.34. — The construction (B, f) 7→ Cohs(B, f) is functorial in the pair
(B, f): if B → B′ is a morphism sending f ∈ B to f ′ ∈ B′, the base change along
K(B, f) → K(B′, f ′) is induced by the base change B′ ⊗B − given by an A-linear

(12)As A is Noetherian and B is of finite type over A, it is of finite presentation as an A-algebra.
Then it is also Noetherian and therefore coherent modules are the same as finitely generated modules.
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dg-functor
B′ ⊗B − : K(B, f)-dgModA −→ K(B′, f ′)-dgModA .

This restricts to an A-dg-functor

(2.3.20) B′ ⊗B − : Cohs(B, f) −→ Cohs(B′, f ′).

Indeed, the base change of a strictly bounded complex remains strictly bounded and
if E is a K(B, f)-dg-module whose levels Ei are projective B-modules of finite type,
then the base change Ei ⊗B B′ are B′-modules of finite type and again projective.
As explained in Remark 2.32 (working under Context 2.1) we get this way a pseudo-
functor

(2.3.21) Cohs : LGaff,op
S −→ dgCatstrict,loc−flat

A

which sends (SpecB, f) to Cohs(B, f).
One can now use (2.3.21) combined with Lemma 2.33 to exhibit the assignment

(X, f) 7→ Cohb(X0)Perf(X) as an ∞-functor

(2.3.22) Cohb(−)Perf(−) : LGaff,op
S −→ dgcatidem

A .

For this purpose we remark that the base change maps (2.3.20) preserve quasi-
isomorphisms. Indeed, if E → F is a quasi-isomorphism between objects in Cohs(B, f)

then E → F is a quasi-isomorphism between the underlying strictly perfect B-dg-
modules. As strictly perfect B-complexes are cofibrant as B-dg-modules, and ev-
ery B-dg-module is fibrant, E → F is an homotopy equivalence so that the base
change E⊗B B′ → F ⊗B B′ remains an homotopy equivalence and therefore a quasi-
isomorphism (alternatively, use Brown’s Lemma [Hov99, 1.1.12]). In this case the
functoriality (2.3.21) can be refined

(2.3.23) Cohs : LGaff,op
S −→ PairsdgCatstrict,loc-flat

A ,

where PairsdgCatstrict
A is the 1-category whose objects are pairs (T,W ) with T a strict

small A-dg-category and W a class of morphisms in T . This encodes the fact that
weak-equivalences are stable under base change and sends a pair (B, f) to the pair
(Cohs(B, f),Wq.iso) with Wq.iso the class of quasi-isomorphisms. In the 1-category
PairsdgCatstrict,loc-flat

A we have a natural notion of weak-equivalence, namely, those
maps of pairs (T,W ) → (T ′,W ′) whose underlying strict dg-functor T → T ′ is
a Dwyer-Kan equivalence of dg-categories. This produces a map between the ∞-
categorical localizations

(2.3.24) locdg : N(PairsdgCatstrict,loc-flat
A )[W−1

DK ]

−→ dgcatA ' N(dgCatstrict,loc-flat
A )[W−1

DK ]

sending a pair (T,W ) to its dg-localization T [W−1]dg in dgcatA. To give a concrete
description of this ∞-functor, we remark the existence of another 1-functor

dgCatstrict,loc-flat
A −→ PairsdgCatstrict,loc-flat

A
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sending a strict small A-dg-category T to the pair (T,WT ) where WT is the class of
equivalences in T . By definition, this functor sends weak-equivalences of dg-categories
to weak-equivalences of pairs therefore induces a functor between their∞-localizations

dgcat⊗A ' N(dgCatstrict,loc-flat
A )[W−1

DK ]⊗ −→ N(PairsdgCatstrict,loc-flat
A )[W−1

DK ]⊗.

We now claim that this functor admits a left adjoint, which will be our model of
(2.3.24). By a dual version of [Lur09, Lem. 5.2.4.9] it suffices to check that for every
pair (T, S), the left fibration

dgcatA ×N(PairsdgCatstrict,loc-flat
A )[W−1

DK ] N(PairsdgCatstrict,loc-flat
A )[W−1

DK ](T,S)/.

−→ dgcatA

is co-representable. But this follows because of the existence of dg-localizations—see
[Toë07, Cor. 8.7].(13)

Construction 2.35. — First we construct a lax symmetric monoidal structure on
Cohs (2.3.21). Given two LG-pairs (X := Spec(B), f) and (Y := Spec(C), g) one
must specify a functor

(2.3.25) Cohs(B, f)⊗A Cohs(C, g) −→ Cohs(B ⊗A C, f ⊗ 1 + 1⊗ g)

satisfying the conditions of lax symmetric structure. To construct (2.3.25) let us start
by introducing some notation. For an LG-pair (X, f) we denote by Zh(f) the derived
zero locus of f so that in the affine case, with X = Spec(B), we have Zh(f) =

Spec(K(B, f)). By construction, given two affine LG-pairs as above, one obtains a
commutative diagram

(2.3.26)

Zh(f)×S Zh(g)

��

(1)
// Zh(f � g := + ◦ (f, g))

��

(2)
// X ×S Y

(f, g)
��

S
0 // A1

S

(Id,− Id)
//

��

A1
S ×S A1

S

+
��

S
0 // A1

S

where each face is cartesian and all the horizontal maps are lci closed immersions
(as a consequence of the same property for the zero section S ↪→ A1

S). Moreover, we
remark that the arrows (1) and (2) in the diagram can be given strict models

(2.3.27)

B ⊗A C
(1) ◦ (2)

((

(2)

uu

K(B ⊗A C, f ⊗ 1 + 1⊗ g)
(1)

// K(B, f)⊗A K(C, g)

(13)see also the higher categorical comments in [Rob14, §6.1].
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where (1) is completely determined by an element α of degree −1 in

K(B, f)⊗A K(C, g)

satisfying
d(α) = f ⊗ 1 + 1⊗ g, α2 = 0.

We set

(2.3.28) α := h⊗ 1 + 1⊗ k

where h and k are the canonical element in K(B, f) and K(C, g) respectively, of
degree −1 with

(2.3.29) d(h) = f, d(k) = g, h2 = k2 = 0.

To define the lax symmetric structure (2.3.25) one is reduced to explain that the
composition

(2.3.30) Cohs(B, f)⊗A Cohs(C, g)
�−−−→ Cohs(K(B, f)⊗A K(C, g))

(1)∗−−−−→ Cohs(B ⊗A C, f ⊗ 1 + 1⊗ g)

is well-defined. (1)∗ is given by the forgetful functor and as such it is well-defined the
level of the categories Cohs: indeed, if E is strictly bounded K(B, f)⊗A K(C, g)-dg-
module whose image under the forgetful functor (1)◦(2) is strictly perfect over B⊗AC,
then by commutativity of the diagram (2.3.27), (1)∗(E) is in Cohs(B ⊗A C, f � g).

It remains to provide an argument for the box product �: is defined by sending
a pair (E,F ) to π∗f (E) ⊗ π∗g(F ) with πf and πg the projections of Zh(f) ×S Zh(g)

in each coordinate. Using the projection formulas and base change for affines,(14) the
underlying A-module of E � F is just the A-tensor product E ⊗A F . One must show
that if E (resp. F ) is strictly perfect over B (resp. C) then E � F is strictly perfect
over B ⊗A C. The fact that E � F is strictly bounded follows immediately from
the definition of the strict tensor product of complexes and the fact both E and F

are strictly bounded. The fact that level of the complex E � F is projective over
B ⊗A C follows because each level Ei (resp. F k) is by assumption projective over B
(resp. over C) so that each graded piece of the tensor product Ei⊗A F k is projective
over B ⊗A C: Ei (resp. F k) being projective over B (resp. C) gives us a retract via a
map of B-modules (resp. C-modules) of an inclusion of B-modules (resp. C-modules)
Ei ⊆ B⊕l for some l (resp. F k ⊆ C⊕s). Via base change we obtain the graded piece
Ei ⊗A F k as a retract of (B ⊗A C)⊕l+s via a map of B ⊗A C-modules, for some l, s.
This proves the claim. To conclude, we define the lax unit via the map

(2.3.31) A −→ Cohs(K(A, 0)),

(14)Notice that by definition of LG-pairs, both B and C are flat over A. In particular, the derived
tensor product is the usual one.
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sending the unique point to A itself (with its trivial structure of K(A, 0)-dg-module).
The construction (2.3.25) is clearly symmetric and associative and this concludes the
construction of a lax symmetric monoidal enhancement of (2.3.21)

(2.3.32) Cohs,� : LGaff,op,�
S −→ dgCatstrict,loc−flat,⊗

A .

Remark 2.36. — In particular, we obtain a symmetric monoidal structure on
Cohs(A, 0).

Construction 2.37. — One now proceeds as in the Construction 2.34 to obtain a
lax symmetric monoidal structure on (2.3.22): one remarks that the category of pairs
PairsdgCatstrict

A introduced in the Construction 2.34 comes naturally equipped with
a tensor structure: if (T,W ) and (T ′,W ′) are two pairs, the pair (T,W )⊗ (T ′,W ′) is
defined by (T ⊗ T ′,W ⊗W ′). The lax structure of (2.3.32) can be lifted to pairs

(2.3.33) Cohs,� : LGaff,op,�
S −→ PairsdgCatstrict,loc-flat,⊗

A .

Indeed, one checks that the composition (2.3.30) sends the product of quasi-
isomorphisms to a quasi-isomorphism. For (1)∗ this is by definition. For � this
follows because it is explicitly computed as a tensor product over A and strictly
perfect complexes are, as we have seen before, flat over A. To conclude, it fol-
lows from the definition of locally-flat dg-categories that the tensor structure in
PairsdgCatstrict,loc-flat

A is compatible with weak-equivalences in each variable so
that the localization functor along Dwyer-Kan equivalences of pairs is a monoidal
∞-functor

(2.3.34) N(PairsdgCatstrict,loc-flat,⊗
A ) −→ N(PairsdgCatstrict,loc-flat

A )[W−1
DK ]⊗.

It remains to check that (2.3.24) is strongly monoidal. This follows from [Lur17,
7.3.2.12] as the required hypothesis follow from the definition of the tensor structure
on pairs, together with the fact that for any two pairs (T, S), (T ′, S′) the canonical
morphism

(T ⊗ T ′)[S ⊗ S′−1]dg −→ T [S−1]dg ⊗ T ′[S′−1]dg

is an equivalence in dgcatA (this is an immediate consequence of the universal prop-
erty of dg-localizations combined with the existence of internal-homs in dgcat⊗A).

Finally, the composition of the lax monoidal∞-functors (2.3.33), (2.3.34), (2.3.24)
and idempotent completion, combined with the result of Lemma 2.33, achieve the
construction of the lax monoidal structure on (2.3.22).

Remark 2.38. — The lax symmetric monoidal structure Remark 2.36 and the Con-
struction 2.37 produces a symmetric monoidal structure on Cohb(K(S, 0)), which we
shall denote as Cohb(K(S, 0))�. Its monoidal unit is the K(A, 0)-dg-module A in de-
gree 0 with zero ε-action. Via the identification of K(S, 0) as a strict model for the
derived tensor product S×A1

S
S, this symmetric monoidal structure corresponds to the

convolution product induced by the additive group structure on A1
S . This symmetric

monoidal structure has a geometric origin: in fact S ×A1
S
S is a derived group scheme

with operation induced by the additive group structure on the affine line. By unfolding
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the definition, given E,F ∈ Cohb(K(S, 0)), E � F is given by the underlying tensor
E⊗AF equipped with an action of K(S, 0) via the map K(S, 0)→ K(S, 0)⊗AK(S, 0)

of (1) in (2.3.27). In the case when A is a field of characteristic zero this recovers the
monoidal structure described in [Pre11, Construction 3.1.2].

Moreover, given an LG-pair(X,f), the action of Cohb(K(S,0))� on Cohb(X0)Perf(X)

also has a geometric interpretation: indeed, the derived fiber product X0 carries a
canonical action of the derived group scheme S ×A1

S
S. This is obtained via the

cartesian cube

(2.3.35)

X0 ×S (S ×A1
S
S)

pr

vv
pr(S,0)

��

v = action // X0

izz

��

X0

��

i // X

f

��

S ×A1
S
S

vv

// S

{{

S // A1
S

Let us describe this action more precisely. In the affine case this is given by the
formula (2.3.30). In geometric terms this is explained by the derived fiber product in
the diagram (2.3.35) whose top face is the self-intersection square

(2.3.36)

X0 ×S (S ×A1
S
S)

pr
��

v // X0

i
��

X0
i // X

and the action of F ∈ Cohb(K(A, 0)) on M ∈ Cohb(X0)Perf(X) is given by F �M :=

v∗(pr∗(M)⊗ pr∗(S,0)(F )). In particular, by derived base change, we have

(2.3.37) K(A, 0)�M ' i∗i∗(M).

Moreover, the action of A (as a K(A, 0)-module in degree 0 with a trivial action of ε)
is given by

(2.3.38) A�M := v∗(pr∗(M)⊗ pr∗(S,0)(A)) 'M.

To show this last formula we remark that A as a trivial K(A, 0)-module is given by
t∗(A) where t : S = Spec(A) → Spec(K(A, 0) = S ×A1

S
S is the inclusion of the

classical truncation. Using the pullback diagram

(2.3.39)

X0 ' X0 ×S (S)

��

Id×t
// X0 ×S (S ×A1

S
S)

pr
��

S
t // S ×A1

S
S
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and derived base-change, we get that

A�M ' v∗(pr∗(M)⊗ pr∗(S,0) t∗A)) ' v∗(pr∗(M)⊗ (IdX0
×t)∗OX0

)

which by the projection formula, is equivalent to

(2.3.40) v∗ ◦ (IdX0
×t)∗((IdX0

×t)∗ pr∗(M)) 'M.

We conclude that A, as a trivial K(A, 0)-module, acts via the identity map on
Cohb(X0)Perf(X).

We now provide an explicit description of Cohb(S×h
A1
S
S)Perf(A) with the symmetric

monoidal structure of the previous remark. This is essentially the observation that
for the computation performed in the proof of [Pre11, Prop. 3.1.4] to work we don’t
need A to be a field of characteristic zero. In fact, it works whenever A is regular:

Lemma 2.39. — Let A be a regular commutative ring. Then we have an equivalence
in CAlg(dgcatidem

A )

(2.3.41) Cohb(S ×h
A1
S
S)�Perf(S) ' Perf(A[u])⊗A[u] ,

where on the r.h.s we have the standard tensor product over A[u] (where u has
degree 2) induced by the fact A[u] is naturally a commutative algebra-object in
ModZ(Sp)⊗.

Proof. — Let us first explain the equivalence between the underlying categories.
Since A is regular, we have Cohb(S ×h

A1
S
S)Perf(S) ' Cohb(S ×h

A1
S
S), where S ×h

A1
S
S

is the derived zero locus of the zero-section 0 : S → A1
S . Now, this derived zero-locus

is the spectrum of the simplicial commutative ring Syms
A(A[1]), whose normaliza-

tion is the commutative differential graded ring K(A, 0) of Example 2.29. There-
fore Cohb(S ×h

A1
S
S) is equivalent to Cohb(K(A, 0)), i.e., to dg-modules over K(A, 0)

which are coherent on the truncation H0(K(A, 0)) = A. It is easy to verify that
Cohb(K(A, 0)) is generated by the A-dg-module A, via the homotopy cofiber-sequence

(2.3.42)
A

0 //

��

A

��

0 // K(A, 0)

so that Ind(Cohb(K(A, 0))) is equivalent to dg-modules over RHomK(A,0)(A,A) and
Cohb(K(A, 0)) to perfect dg-modules over RHomK(A,0)(A,A). Now, we remark the
existence of an infinite resolution

(2.3.43) (· · · id−−−→ A
−3

0−−→ A
−2

id−−−→ A
−1

0−−→ A
0

)
id−−−−→ A

0

of A as a K(A, 0)-dg-module. This can be obtained as an homotopy colimit in
Qcoh(K(A, 0)) induced by the multiplication by ε as follows: let K(A, 0){1} denote
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the cofiber of ε : K(A, 0)[1]→ K(A, 0) and by induction, we construct K(A, 0){n+1}
by the cofiber

(2.3.44)

K(A, 0)[2n− 1]

��

// K(A, 0){n}

��

0 // K(A, 0){n+ 1}

and obtain the infinite resolution (2.3.43) as the homotopy colimit in Qcoh(K(A, 0))

(2.3.45) colim(K(A, 0) −→ K(A, 0){1} −→ K(A, 0){2} −→ · · · ) ' A.

Using this resolution we can directly compute

(2.3.46) RHomK(A,0)(A,A) ' A[u]

with deg(u) = 2. Let us briefly describe this computation. It is clear that as A-
modules, we get an isomorphism of complexes

(2.3.47) RHomA(· · · id−−−→ A
−3

0−−→ A
−2

id−−−→ A
−1

0−−→ A
0

, A
0

)

∼−−−→ (A
0

0−−→ A
1

id−−−→ A
2

0−−→ A
3

id−−−→ · · ·

where each degree A
i

on the r.h.s is a disguise of HomA(A
−i
, A). The extra demand for a

K(A, 0)-linear compatibility forces every map f to satisfy the relation f(ε · (−)) = εf

with ε corresponding to the unity of A in degree −1 in K(A, 0). As the action of ε
is zero on the trivial K(A, 0)-module A concentrated in degree 0, the K(A, 0)-linear
structure gives f(ε·(−)) = 0 imposing that for odd i only the zero map in HomA(A

−i
, A)

is allowed. This shows (2.3.46) as a map of dg-modules, under which u corresponds
to 1 ∈ A ' Ext2

K(A,0)(A,A).
To explain why (2.3.46) is an equivalence of dg-algebras we argue as follows: Since

Cohb(S ×h
A1
S
S)�Perf(S) is symmetric monoidal with tensor unit A, RHomK(A,0)(A,A)

is actually a commutative algebra object (endomorphisms of the unit). The element u
then defines (2.3.46) as map of commutative algebra objects, where A[u] is endowed
with its usual algebra structure. This concludes the proof of the equivalence of un-
derlying dg-categories

(2.3.48) Cohb(S ×h
A1
S
S)Perf(A) ' Perf(A[u]).

We now discuss the symmetric monoidal equivalence. As a preliminary step we
describe the computation of RHomK(A,0)(A,E) for E ∈ Cohb(K(A, 0)). One shows
that level n of RHomK(A,0)(A,E) is the level n of the complex E⊗AA[u]. However, the
differential on RHomK(A,0)(A,E) is not the naive tensor product differential. Indeed,
using the same infinite resolution of A as a K(A, 0)-module and from the relation
f(ε · (−)) = εf one obtains that the elements of odd degree are determined by the
antecedent element even degree under multiplication by ε. Therefore, the level n of
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RHomK(A,0)(A,E) is the direct sum
⊕

i>0En−2i and the differential
⊕

i>0En−2i →⊕
i>0En+1−2i is given by d + ε · (−) where d is the native differential of E. It is

clear now that the resulting level n of RHomK(A,0)(A,E) identifies with the resulting
level n of the naive tensor product E ⊗A A[u] but the differential is twisted by the
action of ε. To encode the result of this computation we will write

(2.3.49) RHomK(A,0)(A, (E, d)) ' (E ⊗A A[u], d+ ε).

This formula is the starting point to show that the equivalence (2.3.48) is monoidal.
We show that the arguments given in [Pre11, Prop. 3.1.4] work for a general regular
ring A using our infinite resolution (2.3.43) instead of the Koszul-Tate resolution used
in loc. cit. We start by showing that the strict dg-functor

(2.3.50) E : K(A, 0)- dgModstrict
A −→ A[u]-dgModstrict

A

sending

(2.3.51) (E, dE) 7−→ E (E, dE) := (E ⊗A A[u], dE + ε)

is symmetric monoidal with respect to the convolution � of Remark 2.35 on the l.h.s
and the usual tensor product over A[u] on the r.h.s. This follows essential from the
definition of �: given two pairs (E, dE) and (F, dF ) in K(A, 0)-dgModA, their box
product is given by the pair that consists of the usual tensor product E⊗A F over A,
equipped with the action of K(A, 0) given by the formula (2.3.29), which in this
case is explicitly given by ε ⊗ Id + Id⊗ε. In this case the natural lax structure is an
equivalence as

E ((E, dE)� (F, dF )) = E (E ⊗A F, dE ⊗ Id + Id⊗dF )

' ((E ⊗A F )⊗A A[u]), (dE ⊗ Id + Id⊗dF ) + (ε⊗ Id + Id⊗ε))
' ((E ⊗A F )⊗A A[u]), (dE + ε)⊗ Id + Id⊗(dF + ε)

' (E ⊗A A[u], dE + ε)⊗A[u] (F ⊗A A[u], dF + ε)

' E (E, dE)⊗A[u] E (F, dF ).

As explained in Remark 2.35 this restricts to a symmetric monoidal functor

(2.3.52) Cohs(K(A, 0))� ⊆ K(A, 0)- dgModstrict,�
A −→ A[u]-dgModstrict,⊗

A .

As a second step we notice that E preserves quasi-isomorphisms: Indeed, it is clear
that if E → F is a quasi-isomorphism of strictly perfect complexes over K(A, 0), then
E ⊗A A[u] → F ⊗A A[u] with the standard differentials on both source and target,
is a quasi-isomorphism (again, this is because E, resp. F , being strictly perfect over
K(A, 0), it is, in particular, degreewise projective over A, therefore flat). We have to
argue why the induces map

(E ⊗A A[u], dE + ε) −→ (F ⊗A A[u], dF + ε)

is also a quasi-isomorphism for the differentials perturbed by ε. To see this we remark
that (E ⊗A A[u], dE + ε) is obtained as the totalization of the a complex with given
by differentials dE and ε. This is obtained from the canonical filtration by degree
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on A[u]. The associated graded pieces are all given by E. Therefore, the convergence
of the associated spectral sequences then tells us that the cohomology of these graded
pieces converges to the cohomology of the total complex. In particular if E → F is
a quasi-isomorphisms, the associated graded pieces of the two spectral sequences are
quasi-isomorphic and therefore, so are the total complexes. Finally, we use the com-
patibility of E with quasi-isomorphisms to pass to the monoidal localizations. As seen
in the Construction 2.37, the strict lax structure on Cohs(−), Cohs(K(A, 0)) is stable
under the � tensor product on K(A, 0)-dgModstrict

A . Therefore, the dg-localization
along quasi-isomorphisms is monoidal. Moreover, as A[u]-dgModstrict

A is a symmet-
ric monoidal model category, it follows from [NS17, Th.A.7] that the localization of
A[u]-dgModstrict

A along quasi-isomorphisms is also a lax symmetric monoidal functor.
By the universal properties of localizations, combined with the equivalence (2.3.17)
we obtain a lax symmetric monoidal dg-functor in dgcatbigA

(2.3.53) E : Cohb(K(A, 0))� −→ Qcoh(A[u])⊗A[u]

which one can easily check to be strongly monoidal. Moreover, as seen above in the
proof of the equivalence (2.3.48), every E ∈ Cohb(K(A, 0)) can be obtained from the
K(A, 0)-dg-module A under finite shifts and cones so that E (E) will be a perfect
A[u]-module (as E (A) is free as A[u]-module because the action of ε on A is trivial.)
Therefore (2.3.53) factors through Perf(A[u])⊗A[u] and this factorization in dgcatidem

A

recovers the equivalence (2.3.48). �

Remark 2.40. — Notice that the equivalence (2.3.45) is valid only in Qcoh(K(A, 0))

and not in IndCoh(K(A, 0)).

Remark 2.41. — As seen in the proof, it is a consequence of the symmetric monoidal
equivalence (2.3.41) that the equivalence (2.3.46) identifies the algebra-structure of
composition of endomorphisms with the standard multiplication on A[u].

Remark 2.42. — As in Remark 2.12, using the equivalence (2.3.41) we recover the
lax symmetric monoidal structure on the ∞-functor (2.3.22)

(2.3.54) LGaff,op,�
Cohb(−)Perf(−)−−−−−−−−−−−−−→ ModPerf(A[u])(dgcat

idem
A )⊗

restricted to affine LG-pair (X, f) and the induced action of the small stable idempo-
tent complete symmetric monoidal (∞, 1)-category Perf(A[u])⊗A[u] on the∞-category
Cohb(X0)Perf(X).

Proposition 2.43. — Assume A is a regular ring. Under the symmetric monoidal
equivalence (2.3.41):

(1) the full subcategory Perf(S ×h
A1
S
S) ⊆ Cohb(S ×h

A1
S
S) is identified with the full

subcategory Perf(A[u])u-Torsion of u-torsion modules, i.e., those perfect dg-modules M
over A[u] such that there exists an N > 0 such that the multiplication by uN ,
M [−2n]→M is null-homotopic.

J.É.P. — M., 2018, tome 5



Motivic realizations of singularity categories and vanishing cycles 681

(2) the quotient map

(2.3.55) Cohb(S, 0) −→ Sing(S, 0)

identifies with the symmetric monoidal base change map

(2.3.56) −⊗L
A[u]A[u, u−1] : Perf(A[u]) −→ Perf(A[u, u−1]).

yielding

(2.3.57) Sing(S, 0) ' Perf(A[u, u−1]).

Proof. — Let us start with the first claim. The argument is similar to the one of
[Pre11, Lem. 3.1.9 ]. Using the formula (2.3.49) one obtains

(2.3.58) RHomK(A,0)(A,K(A, 0))

∼−−−→ (A
−1

0−−→ A
0

ε · = id−−−−−−−→ A
1

0−−→ A
2

ε · = id−−−−−−−→ · · · )

and observe that the r.h.s is quasi-isomorphic to A[1]. In this case, the equivalence
(2.3.48) maps the full subcategory Perf(S ×h

A1
S
S) ⊆ Cohb(S ×h

A1
S
S), by definition,

generated by K(A, 0) under finite colimits and retracts, to the full subcategory of
Perf(A[u]) generated by the object A[1]. This is equivalent to the (stable and idem-
potent complete) subcategory generated by A as a trivial A[u]-module. We remark
that as an A[u]-dg-module, A fits in a cofiber-fiber sequence

(2.3.59)
A[u][−2]

��

u · // A[u]

��

0 // A

which can be obtained using the explicit model for the cone of the multiplication by u
(given by the identity on each level).

We use this to conclude that the thick subcategory generated by A in Perf(A[u])

is exactly the full subcategory spanned by the u-torsion dg-modules. Indeed, A is by
construction u-torsion, as u acts null-homotopically. Moreover, the full subcategory of
u-torsion modules is by its nature a thick stable and idempotent complete subcategory
of Perf(A[u]). It remains to show that every M ∈ Perf(A[u])u-Torsion can be obtained
as a retract of a homotopy finite cellular object built from A under shifts and cones. For
this purpose we use the cofiber/fiber-sequence (2.3.59): givenM ∈ Perf(A[u])u-Torsion,
using the relative tensor product over A[u] (which as explained in Remark 2.41 carries
its standard structure of E∞-algebra) we obtain a cofiber-fiber sequence

(2.3.60)

M [−2n] 'M ⊗A[u] A[u][−2n]

��

un ∼ 0 · // M 'M ⊗A[u] A[u]

��

0 //
M [−2n+ 1]⊕M

'
M ⊗A[u] (

⊕
06i6n−1A[−2i])

J.É.P. — M., 2018, tome 5



682 A. Blanc, M. Robalo, B. Toën & G. Vezzosi

The assumption that M is perfect over A[u] means by definition that it is obtained
under finite shits and cones of A[u]. In particular,M⊗A[u] (

⊕
06i6n−1A[−2i]) is then

obtained as a finite cell-object from A and has M as a direct factor.
Let us now address the second claim. First notice that since A is regular, we have

Sing(S, 0) ' Sing(S ×h
A1
S
S). Thanks to the half of the proposition already proved,

to establish this identification one is reduced to present the base change − ⊗L
A[u]

A[u, u−1] as a Verdier quotient with respect to the thick subcategory of u-torsion dg-
modules. For this purpose we remark that at the level of the presentable∞-categories
of modules, the base-change in PrL

−⊗L
A[u] A[u, u−1] : ModA[u](Sp) −→ ModA[u,u−1](Sp)

admits the restriction of scalars along the map A[u] → A[u, u−1] as a fully faithful
right adjoint, whose image is the full subcategory of ModA[u](Sp) spanned by those
dg-modules where the multiplication by u is invertible. In other words, such objects
become the local objects for the presentation of ModA[u,u−1](Sp) as a Bousfield lo-
calization of ModA[u](Sp). As a consequence of this fact, − ⊗L

A[u] A[u, u−1] has an
alternative description in terms of a colimit in (the big category of) A[u]-modules in
spectra given by multiplication by u:

M ⊗L
A[u] A[u, u−1] ' colimn(· · · −→M −→M [2] −→M [4] −→ · · · ).

This follows from the combination of the universal properties of base change, of col-
imits in A[u]-modules and fully faithfulness along restriction of scalars. The formula
remains valid for perfect complexes because base-change preserves perfect complexes
(the colimit being always taken in spectra). In this case, if an A[u]-module M is
u-torsion the colimit by multiplication by u is by cofinality equivalent to the colimit
of the zero diagram so thatM⊗A[u]A[u, u−1] ' 0. Conversely, ifM⊗A[u]A[u, u−1] ' 0

and M ∈ Perf(A[u]), then M is compact and we have

∗ ' MapA[u](M, colimnM [2n]

'0

)) ' colimn MapA[u](M,M [2n]))

in ModA[u](Sp), so that there is an n such that the power un is the zero map. �

Remark 2.44. — Given T ∈ Perf(A[u]) andM ∈ Cohb(X0)Perf(X) let us introduce the
notation T⊗A[u]M for the action of T onM via the monoidal equivalence (2.3.41). By
definition of (2.3.41), we get thatM ' A[u]⊗A[u]M ' A�M and that A[1]⊗A[u]M '
K(A, 0) �M ' i∗i∗M . In particular, as the action by construction commutes with
colimits in each variable, the cofiber sequence (2.3.59) produces a cofiber sequence

(2.3.61)

M [−2] ' A[u][−2]⊗A[u] M
u //

��

M ' A[u]⊗A[u] M

��

0 // A⊗A[u] M ' i∗i∗(M)[−1]
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The following proposition achieves the main goal of this section of exhibiting a lax
symmetric structure on the∞-functor Sing (2.3.15). In particular this extends [Pre11,
Prop. 3.4.3] to a base ring which we only require to be regular local, instead of a field
of characteristic zero.

Proposition 2.45. — Assume Context 2.1. There is a natural equivalence between the
composition

(2.3.62) LGaff,op
Cohb(−)Perf(−)−−−−−−−−−−−−−→ ModPerf(A[u])(dgcat

idem
A )

−⊗A[u] A[u, u−1]
−−−−−−−−−−−−−−−→ ModPerf(A[u,u−1])(dgcat

idem
A )

Forget−−−−−−→ dgcatidem
A

and the ∞-functor Sing. By transfer under this equivalence, the functor Sing acquires
a lax symmetric monoidal enhancement. In particular, Sing(S, 0) acquires a symmetric
monoidal structure equivalent to the natural one on 2-periodic complexes.

Proof. — The proof is similar to [Pre11, 3.4.1]. As Cohb(K(A, 0)� ' Perf(A[u])⊗A[u]

is a rigid symmetric monoidal idempotent-complete dg-category and

Perf(A[u])u-Torsion ⊆ Perf(A[u]) −→ Perf(A[u, u−1])

is an exact sequence of Perf(A[u])-linear dg-categories, one can use exactly the same
arguments as in [Pre11, Lem. 3.4.2] to deduce that for any LG-pair (X, f) the base-
change sequence

Cohb(X0)Perf(X) ⊗Perf(A[u]) Perf(A[u])u-Torsion ⊆ Cohb(X0)Perf(X)

−→ Cohb(X0)Perf(X) ⊗Perf(A[u]) Perf(A[u, u−1])

remains a cofiber-fiber sequence in ModPerf(A[u])(dgcat
idem
A ). It follows from the def-

inition of the tensor product in dgcatidem
A that the localization functor

Cohb(X0)Perf(X) −→ Cohb(X0)Perf(X) ⊗Perf(A[u]) Perf(A[u, u−1])

can be described as in the proof of Proposition 2.45 by the ∞-functor sending M ∈
Cohb(X0)Perf(X) to the colimit in Ind(Cohb(X0)Perf(X))(15) of the sequence given by
the action of u:

M 7−→ colimn(· · · −→M −→M [2] −→M [4] −→ · · · ).

Moreover, by definition, Cohb(X0)Perf(X)⊗Perf(A[u]) Perf(A[u])u-Torsion identifies with
the full subcategory of Cohb(X0)Perf(X) spanned by those objects M such that there
existsN > 0 such that uN : M →M [2n] is null-homotopic. In this case we are reduced
to show that M is in Perf(X0) if and only there exists N > 0 such that uN ∼ 0. For
this we follow the steps of [Pre11, 3.4.1 (i)⇔ (ii)]. We use the description of the action
of Cohb(K(A, 0)) on Cohb(X0)Perf(X) given in the remark 2.38, namely the formulas
(2.3.37), (2.3.38).

(15)Notice also that this filtered colimit can also be taken in IndCoh(X0)Qcoh(X), thanks to
Remark 2.21.
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Combining these formulas with our resolution (2.3.45) for A as a K(A, 0)-module,
we get a diagram of natural transformations

· · · i∗i∗[n] −→ i∗i∗[n− 1] −→ · · · −→ i∗i∗[1] −→ i∗i∗

induced by the multiplication by ε. As the resolution works only in Qcoh(K(A, 0))

(Remark 2.40), the formula (2.3.45) yields a canonical equivalence of ∞-functors

(2.3.63) colimn (i∗i∗ −→ i∗i∗{1} −→ i∗i∗{2} −→ · · · ) ' IdQcoh(X0),

where the colimit is taken in Qcoh(X0) (by definition of Cohb
Perf , i∗i∗ has values

in the quasi-coherent category). We now remark that M is in Perf(X0) if and only
if there exists an N > 0 such that M is an homotopy retract of some i∗i∗{N}(M).
Indeed, suppose that M is perfect. Then it is a compact object in Qcoh(X0) and
the identity map M → M ' colimn i

∗i∗{n}(M) factors through some finite stage
i∗i∗{n}(M). Conversely, suppose that M ∈ Cohb(X0)Perf(X) is an homotopy retract
of some i∗i∗{n}(M). Then because of the definition of Cohb(X0)Perf(X), for any M ,
i∗i∗(M)[n] is always a perfect complex so that the finite colimit i∗i∗{n}(M) is also
perfect. Being a retract, M will also be perfect.

It remains to identity modules obtained as homotopy retracts of some i∗i∗{N}(M)

exactly with those modules where the action of u is torsion.
The cofiber-sequence 2.3.61, tells us that

cofibu ' i∗i∗(M)[−1].

Using it one can easily construct a cofiber-fiber sequence

i∗i∗M [1]

��

// 0

��

i∗i∗M // cofib(u2)[3]

By induction, one shows that

cofibu[−1]

��

// 0

��

cofibun[−2] // cofibun+1

are cofiber-diagrams and more generally, using the diagrams (2.3.44) we get

cofib(uN )[2N − 1] ' i∗i∗{N − 1}(M).

In particular, if the action is torsion, we have uN ∼ 0 for some N > 0, and cofib(uN ) '
M [−2N + 1] ⊕ M and cofib(uN )[2N − 1] ' M ⊕ M [2N − 1]. In this case we get
M ⊕ M [2N − 1] ' i∗i∗{N − 1}(M) so that M is a retract of the finite colimit.
Conversely, if M is a retract of the cofiber of uN then this uN is null-homotopic as
the retract gives a splitting of the cofiber sequence M [−2N ]→M → cofibuN . �
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Remark 2.46. — Notice that in the previous proof it is never used that (X, f) is an
affine LG-pair. In fact, the proof of the previous proposition can be used to conclude
that the functor (X, f) 7→ Sing(X, f) is lax monoidal on non-affine LG-pairs, inde-
pendently of the strict model for bounded coherent on X0 perfect on X of 2.33 in
the affine case. Indeed, the lax monoidal structure on (X, f) 7→ Sing(X, f) can be
obtained using the fact that Qcoh is a lax monoidal ∞-functor (obtained from the
lax monoidal structure on the construction A 7→ ModA(Sp)—see [Lur17]), combined
with the cartesian property of the diagram (2.3.3), Proposition 2.43, Lemma 2.39, the
lax monoidality of inverting u and the proof of the proposition 2.45.

Remark 2.47. — The fact that Sing(S, 0) is monoidal equivalent to 2-periodic com-
plexes has been proved in the case where A is a field of characteristic zero, see for
instance [Pre11, Prop. 3.1.9] and [AG15, §5.1]. This is an instance of Koszul duality
for modules.

Remark 2.48. — One should also remark that as for MF, under some hypothesis,
the functor Sing on non-affine LG-pairs matches the result of the Kan extension of
its restriction to affine LG-pairs. This follows from a combination of Čech descent
for CohbPerf of Corollary 2.20, together with the fact that for Noetherian schemes of
finite Krull dimension the Zariski topos is hypercomplete [Lur18, 3.7.7.3]. Knowing
Zariski descent for CohbPerf it suffices, after Proposition 2.45 and Remark 2.46, to
remark that the base-change − ⊗Perf(A[u]) Perf(A[u, u−1]) in idempotent complete
A-dg-categories, preserves finite limits because both Perf(A[u]) and Perf(A[u, u−1])

have single compact generators, and the localization A[u, u−1] can be obtained as a
filtered colimit under multiplication by u in Sp, and filtered colimits preserve finite
limits.

2.4. Comparison. — Consider Context 2.1. In this section we prove the following

Theorem 2.49. — There is a lax symmetric natural transformation of ∞-functors

Orl−1,⊗ : Sing −→ MF : LGop
S −→ dgcatidem

A

with the following properties:
(1) Orl−1,⊗ identifies the symmetric monoidal structure of Sing(S, 0) given in

Proposition 2.45 with the one of MF(S, 0) as in Remark 2.12.
(2) Orl−1,⊗ is an equivalence when restricted to the sub-category of LG-models

(X, f) where f is a non-zero divisor on X (i.e., the induced morphism OX → OX is
a monomorphism), X/S is separated, and X has the resolution property (i.e., every
coherent OX-Module is a quotient of a vector bundle, e.g. X regular).

(3) In particular, from (1) and (2), MF(X, f) and Sing(X, f) are then equivalent
as A[u, u−1]-linear idempotent complete dg-categories.

Theorem 2.49 provides a∞-functorial, dg-categorical lax symmetric monoidal ver-
sion of the so-called Orlov’s comparison theorem, comparing matrix factorizations
and categories of singularities (see [EP15, Th. 2.7] and [Orl12, Th. 3.5]).
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Remark 2.50 (Derived vs classical zero locus). — Note however, that our natural
transformation Orl−1 is defined also for non-flat LG-models (X, f), and this was made
possible by considering the derived zero locus of f instead of the classical scheme-
theoretic zero locus in the definition of the functor Sing (while MF is defined using
only non-derived ingredients). Note that for flat LG-models (X, f), f is indeed a non-
zero divisor onX. If we restrict the functor Sing to LG-models (X, f) where f is a non-
zero divisor on X, i.e., f|U is a non-zero divisor for all Zariski open affine subschemes
U ⊆ X (this case is of particular interest for us, see Remark 4.2), then the derived
fiber X0 coincides with the classical scheme-theoretic fiber Xcl

0 (i.e., the truncation
of X0), and one does not need to use derived algebraic geometry at all in the definition
of Sing (Definition 2.23). Note, however, that if these conditions are not met, there
is no way to avoid taking the derived fiber X0. In fact, the push-forward along the
closed immersion Xcl

0 → X does not necessarily preserve perfect complexes, so that a
purely classical analogue Singcl of our definition of Sing is simply impossible. And this,
regardless, the fact that X may or may not enjoy the resolution property. Moreover,
even when the pushforward along Xcl

0 → X does preserve perfect complexes, so that
both our definition of Sing and its purely classical analogue Singcl make sense, then
they might differ. As an important example, one could take (X, f) := (S, 0): here
Xcl

0 = X, so that Singcl(S, 0) is defined and is trivial, while Sing(S, 0) is equivalent
to the dg-category of 2-periodic complexes Perf(A[u, u−1]) (Proposition 2.45), and is
therefore equivalent to MF(S, 0), as an object in CAlg(dgcatidem

A ). In particular there
is no hope for MF to be equivalent to Singcl, when f is allowed to be a zero-divisor.

Remark 2.51. — The considerations of the previous remarks lead us to believe that
the ∞-functor Orl−1 of Theorem 2.49 is an equivalence even without restricting to
flat or non-zero divisors LG-pairs: we think this generalization of Theorem 2.49 is im-
portant, and will be discussed elsewhere. Granting this fact, we can make a few more
observations. First, note that flat LG-pairs (X, f) where X/S is separated and X

is regular belong to the subcategory for which Orl−1 is an equivalence. But unfor-
tunately, the property of being regular is not preserved under base-change, so that
these regular flat LG-pairs do not form a monoidal subcategory of the category of flat
LG-pairs (recall from Section 2 that (X, f)�(Y, g) := (X×S Y, f�g)). However, if we
denote by LGfl-qproj

S the subcategory of flat LG-pairs (X, f) over S whereX/S is quasi-
projective (hence separated), then LGfl-qproj

S is a symmetric monoidal subcategory of
LGfl

S , and Orl−1 will remain an equivalence when restricted to LGfl-qproj
S (granting the

validity of Theorem 2.49 without the flatness hypothesis) since any quasi-projective
scheme over an affine scheme has the resolution property, see e.g. [TT90, 2.1]).

We now address the proof of Theorem 2.49. By Kan extension and descent, it is
enough to perform the construction of Orl : Sing → MF for affine LG-models. For
(SpecB, f) an affine LG-model, we first define a strict A-linear dg-functor

ψ : Cohs(B, f) −→ MF(B, f)

as follows.
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Construction 2.52. — Recall the description of objects of Cohs(B, f) from Remark
2.32: they are pairs (E, h) consisting of a strictly bounded complex E of projective
B-modules of finite type, together with a morphism of graded modules h : E → E of
degree −1, satisfying the equation [d, h] ≡ dh+ hd = f . Given such a pair (E, h), we
define ψ(E) to be the Z/2-graded B-module associated to E, that is

(2.4.1) ψ(E)0 = ⊕nE2n ψ(E)1 = ⊕nE2n+1.

We endow ψ(E) with the odd endomorphism

(2.4.2) δ := h+ d : ψ(E) −→ ψ(E).

As h2 = 0, we have δ2 = f , so this defines an object (ψ(E), δ) in MF(B, f). Indeed,
as E is strictly bounded and each Ei is a projective B-module, each sum above is
finite and remains projective over B. This defines an A-linear dg-functor

ψ(B,f) : Cohs(B, f) −→ MF(B, f).

The ψ(B,f) are part of a natural transformation between the pseudo-functors

ψ : (2.3.32) −→ (2.2.8).

This is clear from the pseudo-functorial structure on (2.3.33) described in the begin-
ning of the Construction 2.34 and the pseudo-functorial behavior of (2.2.10) described
in the Construction 2.8. Moreover, ψ has a lax symmetric monoidal enhancement ψ⊗
with respect to the lax monoidal enhancements (2.3.32) and (2.2.10). Indeed, given
affine LG-pairs (B, f) and (C, g) the commutativity of the diagram in dgCatstrict,loc-flat

A

(2.4.3)
Cohs(B, f)⊗A Cohs(C, g)

(2.3.25)
��

ψ(B,f) ⊗ ψ(C,g)
// MF(B, f)⊗A MF(C, g)

(2.2.5)
��

Cohs(B ⊗A C, f ⊗ 1 + 1⊗ g)
ψ(B⊗AC,f⊗1+1⊗g)

// MF(B ⊗A C, f ⊗ 1 + 1⊗ g)

comes from the explicit descriptions of each composition: if E ∈ Cohs(B, f) and
F ∈ Cohs(C, g), the composition ψ(B⊗AC,f⊗1+1⊗g) ◦ (2.3.25)(E,F ) gives a 2-periodic
complex

(2.4.4)
⊕

(α,β)
α+β even

Eα ⊗A Fβ −→←−
⊕

(α,β)
α+β odd

Eα ⊗A Fβ .

If h (resp. k) denotes the element of degree −1 in K(B, f) (resp. K(C, g)) explained
in Remark 2.32, then the formula (2.3.28) and the formula for the differential of the
tensor product of complexes combined, describe the differential δ of (2.4.4) (defined
by (2.4.2)) as

(2.4.5) δE ⊗ IdF + IdF ⊗δF .

By re-indexing (2.4.4)( ⊕
α even
β even

Eα ⊗A Fβ
)
⊕
( ⊕
α odd
β odd

Eα ⊗A Fβ
)
−→←−

( ⊕
α even
β odd

Eα ⊗A Fβ
)
⊕
( ⊕
α odd
β even

Eα ⊗A Fβ
)
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we recover the composition (2.2.5) ◦ ψ(B,f) ⊗ ψ(C,g)(E,F ), as the definition of the
product differential (2.2.6) also gives (2.4.5). To conclude we have to check that ψ is
compatible with the lax units, meaning, that it makes the diagram

A
(2.3.31)

//

(2.2.7)
''

Cohs(A, 0)

ψ(A,0)
��

MF(A, 0)

commute. This is immediate from the definitions.

Lemma 2.53. — The dg-functor defined above

ψ(B,f) : Cohs(B, f) −→ MF(B, f)

sends quasi-isomorphisms to equivalences.

Proof. — We will prove the equivalent statement that ψ sends the full sub-dg-category
Cohs,acy(B, f) of acyclic complexes, to zero. Again, recall from Remark 2.32 the
description of objects in Cohs(K(B, f)) as pairs (E, h). Such a pair (E, h) sits in
Cohs,acy(K(B, f)) if and only if there exists a degree −1 endomorphism k of E, with
kd+ dk = id. The endomorphism k defines an odd degree endomorphism of ψ(E) as
a Z/2-graded B-module, so an element ψ(k) of degree −1 in the complex of endomor-
phism EndMF(B,f)(ψ(E)) (i.e., ψ(k) ∈ EndMF(B,f)(ψ(E))−1). By construction this
element is a homotopy between 0 and id + hk + kh. The endomorphism u = hk + hk

is of degree −2 and thus, because E is bounded, we have un = 0 for some integer n.
We see in particular that the identity of ψ(E) becomes a nilpotent endomorphism
in the homotopy category [MF(B, f)]. This implies that ψ(E) ' 0 in [MF(B, f)] as
stated. �

A consequence of Lemma 2.53 is that ψ⊗ has an enhancement as a lax symmetric
monoidal natural transformation between

(2.4.6) LGaff,op,�
S

(2.3.33)
..

MF⊗
00�� PairsdgCatstrict,loc-flat,⊗

A ,

where MF is seen as an object in PairsdgCatstrict,loc-flat
A taking the equivalences as the

distinguish class of morphisms. Finally, composing with the (symmetric monoidal)
functors (2.3.34) and (2.3.24) we obtain a lax symmetric monoidal transformation

(2.4.7) LGaff,op,�
S

Coh(−)�Perf(−) --

MF�

11�� dgcatidem,⊗
A .

Remark 2.54. — As part of the lax symmetric monoidal enhancement (2.4.7), we
obtain a symmetric monoidal ∞-functor

(2.4.8) ψ⊗(A,0) : Cohb(K(A, 0))� −→ MF(A, 0)�.
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It is now immediate to check, by just unraveling the definitions, that under the sym-
metric monoidal equivalences (2.3.41) and (2.2.12), ψ⊗(A,0) identifies with the symmet-
ric monoidal base change functor (2.3.56).

It is a consequence of Remark 2.54 that the lax natural transformation (2.4.7) has
in fact values in ModPerf(A[u])(dgcat

idem
A )⊗. Moreover, as the lax symmetric monoidal

∞-functor MF� has values in ModPerf(A[u,u−1])(dgcat
idem
A )⊗ (because of the equiv-

alence (2.2.12), by base-change, (2.4.7) is in fact equivalent to the data of a lax
symmetric monoidal transformation

(2.4.9) Coh(−)�Perf(−) ⊗A[u] A[u, u−1] −→ MF� .

Finally, composing with the equivalence of Proposition 2.45 we obtain a lax symmetric
monoidal transformation

(2.4.10) ψ⊗ : Sing⊗ −→ MF� .

Proof of Theorem 2.49. — We set Orl−1,⊗ := ψ⊗ : Sing⊗ → MF�. The property (1)
is now a consequence of Remark 2.54. Let us prove (2). The explicit description of
ψ given in the Construction 2.52 is all we need to conclude. Indeed, as observed in
[EP15, p. 47], for each fixed (B, f), the induced triangulated functor

[Orl−1] : [Sing(B, f)] −→ [MF(B, f)]

(denoted as ∆ in loc. cit.) is an inverse to the functor Σ described in [EP15, Th. 2.7]
(which is an analogue of Orlov’s “Cok” functor in [Orl12, Th. 3.5]), and thus is an
equivalence (by [EP15, Th. 2.7]) on those LG-pairs (X, f) where f is flat (so that
the derived fiber X0 coincides with the scheme theoretic fiber considered in [EP15,
Th. 2.7]), X/S is separated (hence X is), and X has the resolution property, so that
the standing hypotheses of [EP15]) are met. See also [BW12, Th. 6.8.].

As all the categories involved are stable, this implies the equivalence of the dg-
enrichments.

(3) is a consequence of (1) and (2). �

3. Motivic realizations of dg-categories

In this section we explain how to associate to every dg-category T a motivic BU-
module, where BU is the motivic ring-object representing algebraic K-theory. At first
we describe some general features of this motivic incarnation of T and then we will
study several of its realizations. If R is any realization of motives (e.g. `-adic, étale,
Hodge, de Rham, etc), the realization R(T ) will carry a structure of R(BU)-module.

3.1. Motives, BU-modules and noncommutative motives

Context 3.1. — Throughout this section S := SpecA is any affine scheme

By [Rob15] we have a symmetric monoidal ∞-category SH⊗S , which is an
∞-categorical version of Morel-Voevodsky’s stable homotopy category of schemes
over S [MV99]. We let SmS be the category of smooth schemes over S. It is a
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symmetric monoidal category for the cartesian product. By definition, SHS is a pre-
sentable stable symmetric monoidal ∞-category together with a symmetric monoidal
∞-functor

Σ∞+ : Sm×S −→ SH⊗S
universal with respect to the following properties (see [Rob15, Cor. 1.2]):

(1) The image of an elementary Nisnevich square in SmS is a pushout square in
SHS .(16).

(2) (Homotopy invariance) The natural projection A1
S → S is sent to an equiva-

lence.
(3) (Stability) Let S → P1

S be the point at infinity and consider its image in SHS .
The cofiber of this map in SHS , denoted as (P1

S ,∞), is ⊗-invertible.

Notation 3.2. — In the following, we will denote by 1S ∈ SHS the unit of the tensor
structure in SH⊗S . As an object in SHS , this is equivalent to the tensor product of
the topological circle S1 and the algebraic circle Gm,S . We will also be using the
standard notation 1S(1) := (P1

S ,∞)[−2] = ΩGm,S , and (−)(d) := (−) ⊗ 1S(1)⊗d for
the motivic Tate d-twist, d ∈ Z, where, as usual, we denote by [1] the shift given by
smashing with the topological circle S1.

3.1.1. BUS and non-commutative motives. — There exists an object BUS ∈ SHS rep-
resenting homotopy invariant algebraic K-theory of Weibel [Wei89, Cis13], in the sense
that for any smooth scheme Y over S, the hom-spectrum

MapSHS (Σ∞+ Y,BUS) ' KH(Y )

is the (non-connective) spectrum of homotopy invariant algebraic K-theory of Y .(17)
The relation between the motive BUS and the theory of non-commutative motives
was studied in [Rob15]. Let us briefly recall it. First of all, to every Y ∈ SmS we can
assign a dg-category over S, Perf(Y ), of perfect complexes on Y . This dg-category is of
finite type in the sense of [TV07]. This assignment can be organized into a symmetric
monoidal ∞-functor

Perf : Sm×S −→ dgcatidem,ft,op,⊗
S ,

where dgcatidem,ft,op,⊗
S denotes the monoidal full ∞-subcategory of dgcatidem,op,⊗

S

consisting of S-dg-categories of finite type. One can mimic the construction of motives
starting from the theory of dg-categories. More precisely, one constructs a presentable
stable symmetric monoidal ∞-category SHnc⊗S together with a symmetric monoidal
functor

ι : dgcatidem,ft,op,⊗
S −→ SHnc⊗S

satisfying a universal property analogous to (1),(2), (3) above for SH, namely:

(16)One could also start with smooth and affine schemes over S instead of SmS . The Nisnevich
topology defined only for affine schemes agrees with the usual Nisnevich topology. See [AHW18,
2.3.2], [BH17, A.2]

(17)This motive is usually denoted as KGLS but we will denote it here as BUS , inspired by the
topological analogy.
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(1′) every Nisnevich square of dg-categories (see [Rob15, §33.1]) is sent to a pushout
diagram;

(2′) the pullback along the canonical projection Perf(S)→ Perf(A1
S) is sent to an

equivalence;
(3′) the image of the cofiber Perf((P1

S ,∞)) is ⊗-invertible.
More concretely, the objects of SHncS can be identified with functors

dgcatidem,ft,⊗
S −→ Sp

satisfying the conditions (1′), (2′), (3′). Moreover, from the universal property of SH⊗S ,
one then obtains a symmetric monoidal ∞-functor

RPerf : SH⊗S −→ SHnc⊗S

informally defined by sending a motive Y to the motive of its dg-category Perf(Y ). For
formal reasons, this admits a lax monoidal right adjoint M⊗

S . By [Rob15, Th. 1.8] this
adjoint sends the image of the tensor unit in SHnc⊗S to the object BUS , thus endowing
it with a structure of commutative algebra in the∞-category SHS .(18) Formal reasons
then imply that M⊗

S factors as a lax monoidal functor via the theory of BU-modules

SHnc⊗S −→ ModBUS (SHS)⊗

which we will again denote as M⊗
S .

3.1.2. Algebraic Bott periodicity. — The object BUS reflects the projective bundle
theorem in algebraic K-theory in the form of a periodicity given by the Bott isomor-
phism

(3.1.1) BUS
∼−−−→ RHomSHS ((P1

S ,∞),BUS) ' BUS(−1)[−2].

One can find this as a consequence of the fact that the non-commutative motive of
(P1
S ,∞) is a tensor unit (see [Rob15, Lem. 3.25]):

BUS 'MS(RHomSHncS (1nc
S , 1

nc
S )) 'MS(RHomSHncS (RPerf(P1

S ,∞), 1nc
S ))

∼−−−→ RHomSHS ((P1
S ,∞),MS(1nc

S )) ' BUS(−1)[−2].

Notice that as all the functors used here are lax monoidal and the tensor unit in non-
commutative motives has a unique structure of commutative algebra object, the map
in the equivalence (3.1.1) is in fact BUS-linear. Therefore, it is completely determined
by a map in SHS

(3.1.2) ν : 1S(1)[2] −→ BUS
which, unwinding the argument in the proof of [Rob15, Lem. 3.25] one sees, corre-
sponds to the element ν =: [O(1)]− [O] in K̃0(P1

S). Moreover, as (P1
S ,∞) ' 1S(1)[2]

is ⊗-invertible, we can tensor (3.1.1) on both sides by 1S(1)[2] and obtain

(3.1.3) BUS(1)[2]
∼−−−→ BUS .

(18)See also [GS09, §5.2]), [BH17], [NSØ15] for the discussion on E∞-algebra structures on BUS .
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The map (3.1.3) corresponds to the composition

BUS(1)[2]
Id⊗ν−−−−−→ BUS ⊗ BUS −→ BUS ,

where the last map is the multiplication map of the commutative algebra structure
on BUS . The element ν is invertible with inverse corresponding to a map

(3.1.4) ν−1 = β : 1S(−1)[−2] −→ BUS .

To conclude, let us remark that the Bott periodicity of 3.1.1 can now be extended to
any BUS-modules M; indeed, we have equivalences of BUS-modules

RHomSHS ((P1
S ,∞),M) ' RHomBUS ((P1

S ,∞)⊗ BUS ,M)

' RHomBUS (BUS ,M) ' M
(3.1.5)

or, by duality

(3.1.6) M ' M(1)[2].

Remark 3.3. — Recall (for instance, from [Rob14, Prop. 5.3.3]) that SHS is compactly
generated by the family of objects (P1

S ,∞)−n ⊗ Σ∞+ (Y ) with Y smooth over S and
n ∈ N. Furthermore, ModBUS (SHS) is compactly generated by the objects of the form
(P1
S ,∞)−n ⊗ Σ∞+ (Y )⊗ BUS which by (3.1.3) are equivalent to Σ∞+ (Y )⊗ BUS .

3.2. The realization of dg-categories as BU-modules. — Throughout this section
we work under Context 3.1. The construction M⊗

S gives us a way to assign a mo-
tive to a dg-category of finite type via the composition with the universal map
dgcatidem,ft,op,⊗

S → SHnc⊗S . We will use it to produce a more interesting assignment.
By construction, SHnc⊗S is a stable presentable symmetric monoidal ∞-category. As
such, it admits internal-hom objects RHomSHnc and in particular, there exists an
∞-functor

RHomSHnc(−, 1nc
S ) : SHncop −→ SHnc,

where 1nc
S is the tensor unit. Of most importance to us is the fact that this functor

can be endowed with a lax monoidal structure [Lur17, 5.2.2.25, 5.2.5.10, 5.2.5.27 ]

RHomSHnc(−, 1nc
S ) : SHncop,⊗

S −→ SHnc⊗S .

The composition

dgcatidem,ft,⊗
S

ι−−→ SHncop,⊗
S

RHomSHnc(−, 1nc
S )

−−−−−−−−−−−−−−−−→ SHnc⊗S

is lax monoidal. We now recall that dg-categories of finite type generate all the Morita
theory of dg-categories under filtered colimits i.e.,

Ind(dgcatidem,ft
S )⊗ ' dgcatidem,⊗

S .(19)

(19)See [TV07] and the ∞-categorical narrative in [Rob14, 6.1.27]
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As SHncS is presentable, we obtain via the universal property of the convolution
product in Ind-objects [Lur17, 4.8.1.10], an induced lax symmetric monoidal functor

(3.2.1) dgcatidem,ft,⊗
S

//
� _

��

SHnc⊗S

dgcatidem,⊗
S

µ⊗S

88

Informally, if T is an S-dg-category of finite type, and we write again T for its
image in SHncS , the object µ⊗S (T ) = RHomSHnc(T, 1nc

S ) can be described(20) as the
∞-functor sending a dg-category of finite type T ′ over S to the mapping spectrum

MapSHncS (T ′,RHomSHnc(T, 1nc
S )) ' MapSHncS (T ′ ⊗S T, 1nc

S )

which following [Rob15, Th. 1.8 (ii) and Cor. 4.8] is the spectrum of homotopy invari-
ant K-theory

KH(T ′ ⊗S T ).

More generally, for T ∈ dgcatidem
S we can write T as a filtered colimit of dg-categories

of finite type and as KH commutes with filtered colimits (this is well known but see
[Bla13, Prop. 2.8]), and the same holds for tensor product of dg-categories, we conclude
that T is sent to the object in SHncS , defined by the ∞-functor KH(−⊗S T ).

We will denote by M∨
S the composition of the lax monoidal functors

(3.2.2) dgcatidem,⊗
S

µ⊗S−−−→ SHnc⊗S
M⊗

S−−−−−→ ModBUS (SHS)⊗.

Remark 3.4. — Notice that as MS commutes with filtered colimits, this composition
is also the functor obtained by the monoidal universal property of the Ind-completion.
To see that MS commutes with filtered colimits it is enough to test on compact
generators [Rob14, Prop. 5.3.3 and 6.4.24] and use the fact RPerf preserve compact
generators.

By the definition of MS as a right adjoint to RPerf and following the previous
discussion, the motive M∨

S (T ) in SHS represents the ∞-functor sending a smooth
scheme X over S to the spectrum KH(Perf(X)⊗S T ).

Corollary 3.5. — M∨
S sends exact sequences of dg-categories to cofiber-fiber se-

quences in the stable ∞-category of BUS-modules.

Proof. — Indeed, this follows because cofiber sequences of dg-categories are stable
under tensor products and because homotopy K-theory sends exact sequences of dg-
categories (see the discussion in [Rob15, §1.5.4]) to cofiber-fiber sequences in spectra
(see the details in [Rob15, Prop. 417&Prop. 3.19]). �

(20)It is helpful to remind the reader that SHncS can be constructed as a localization of the of
presheaves on (dgcatidem,ft

A )op with values in the ∞-category of spectra Sp, by forcing Nisnevich
descent and Perf(A1

S)-invariance—see [Rob15, §33]
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Remark 3.6. — In [CT11, Tab08, CT12] Cisinski and Tabuada introduced an alterna-
tive category of non-commutative motives M Loc,⊗

Tab which is dual to the one used here.
Indeed, there is a duality blocking a direct comparison between M Loc,⊗

Tab and SH⊗.
The category SHnc⊗ was designed to avoid this obstruction (see [Rob15, App.A] for
the comparison between the two approaches). It is exactly this duality that we encode
in our construction of motivic realizations of dg-categories via the functor µ⊗. As in
[Rob15, App.A], let M Nis,⊗

Tab be the Nisnevich version of the construction of Tabuada-
Cisinski. Then, by definition of M Nis,⊗

Tab , the functor µ⊗ of the diagram (3.2.1) factors
in a unique way as a lax monoidal functor

(3.2.3)
dgcatidem,ft,⊗

S

µ⊗S //

��

SHnc⊗S

M Nis,⊗
Tab

88

This exhibits M Nis,⊗
Tab as a universal motivic realization of dg-categories (see next

section for more on realizations).

3.3. The six operations in BU-modules and realizations

Context 3.7. — Throughout this section S := SpecA is an Henselian trait and Sch/S
denotes the category of Noetherian S-schemes of finite Krull dimension. See [CD12,
2.0] and [CD12, 2.0, ftn. 35].

Before continuing towards our main goals we will need to discuss some functorial
aspects. In the last two section we worked with motives over a fixed base S. It is
possible to work in a relative setting. For every X ∈ Sch/S we can construct a stable
presentable symmetric monoidal ∞-category SH⊗X encoding the motivic homotopy
theory of Morel-Voevodsky over X. Moreover, we can make the assignment X 7→ SH⊗X
functorial in X, given by an ∞-functor

SH⊗ : Schop
/S −→ CAlg(PrL

Stb),

where PrL
Stb denotes the ∞.category of stable presentable ∞-categories with colimit

preserving functors, and CAlg(PrL
Stb) is the ∞-category of [Lur17, 4.8] symmetric

monoidal stable presentable ∞-categories such that the tensor product preserves col-
imits in each argument. This is done in [Rob14, §9.1]. The ∞-functor SH⊗X comes
together with a more complex system of functorialities encoding the six operations of
Grothendieck (see Appendix).

We will be interested in several motivic realizations. For us, a motivic realization
consists of an ∞-functor

D⊗ : Schop
/S −→ CAlg(PrL

Stb)
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enriched with a system of six operations, plus the data of a monoidal natural trans-
formation

SH⊗ −→ D⊗

and a system of compatibilities between the systems of six operations on SH⊗X and D⊗

(see Proposition A.4). Of major importance to us are the étale and the `-adic real-
izations which we will explore later in this section.

Construction 3.8 (Operations f∗, f∗ on SHnc). — In [Rob14, Chap. 9] it is shown
that the theory of non-commutative motives admits relative versions encoded by an
∞-functor

SHnc⊗ : Schop
/S −→ CAlg(PrL

Stb).

In the affine case, given a map f : Spec(R) → Spec(R′), f∗ is induced by the map
f∗(T ) := T ⊗R Perf(R′) from R to R′-dg-categories. In the general non-affine case,
it is obtained by Kan extension from SHnc⊗ defined for (underived) affine schemes,
namely by the formula

SHnc⊗(X) := lim
Spec(A)→X

SHnc⊗(A).

This way, for any map of schemes f : X → Y we get functorialities (f∗, f∗), where f∗
is obtained by by Kan extension, and f∗ by the Adjoint functor theorem. Moreover,
(SHnc⊗, (−)∗) is known to be a Zariski sheaf [Rob14, Chap. 9]. Also by Kan extension,
we get a natural transformation

RPerf : SH⊗ −→ SHnc⊗

compatible with pullbacks. See also [BH17].(21)

Another important example is that of BU-modules. For eachX ∈ Sch/S there exists
a commutative algebra object BUX ∈ CAlg(SHX) representing a relative version of
homotopy invariant algebraic K-theory. This commutative algebra structure can also
be obtained from a relative version of the results in [Rob15] which the reader can
consult in [Rob14, Chap. 9]. For this, it is crucial that these relative versions BU− are
compatible under pullbacks (see [Cis13, 3.8]). This allows us to construct an∞-functor

ModBU(SH)⊗ : Schop
/S −→ CAlg(PrL

Stb) : (X/S) 7−→ ModBUX (SHX)

together with a natural transformation

−⊗ BU : SH⊗ −→ ModBU(SH)⊗

which for each X ∈ Sch/S admits a conservative right adjoint ModBUX (SHX)→ SHX

that forgets the module structure. As explained in [CD12, 13.3.3] (see also the dis-
cussion in [Rob14, p. 260, 9.4.38, 9.4.39]), the conservativity of the forgetful functor
and the fact it commutes with the functorialities (−)∗, (−)∗ and (−)], and satisfies

(21)Notice however that it is not known if the necessary localization and proper base change
properties hold for SHnc⊗ and therefore it is not known if it admits the six operations. In any case
this won’t be necessary in this paper.
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the projections formulas, are enough to deduce the conditions endowing ModBU(SH)⊗

with a system of six operations (see Proposition A.2), to make the natural transfor-
mation −⊗BU compatible with the operations in the sense of Proposition A.4, and to
make the forgetful functor ModBU → SH compatible with all the operations (mean-
ing that the natural transformations at the end of A.4 are natural isomorphisms; see
[CD12, §7.2]).

Remark 3.9. — Notice that the algebraic Bott isomorphism of 3.1.2 forces the func-
torialities (−)] and (−)! to be the same for smooth maps (see equation (A.0.5) in the
appendix).

To conclude this preliminary section, we must also remark that if R⊗ : SH⊗ → D⊗

is a motivic realization, being monoidal, it preserves algebra-objects and thus sends
BU to an algebra object R(BU). Therefore, it produces a new realization

R⊗Mod : ModBU(SH)⊗ −→ ModR(BU)(D)⊗.

Throughout the next sections we will analyse several realizations of dg-categories, all
obtained by pre-composition with M∨,⊗

S

dgcatidem,⊗
S

M∨,⊗
S−−−−−−→ ModBUS (SHS)⊗

R⊗Mod,S−−−−−−−→ ModR(BUS)(DS)⊗.

Remark 3.10. — By Corollary 3.5, every realization of dg-categories sends exact se-
quences to exact sequences.

Example 3.11. — When the base ring is C, we have a Betti realization SH⊗C → Sp⊗.
In [Bla15, §4.6] it is shown that the realization of BUC is the spectrum representing
topological K-theory BUtop. The composite realization

dgcatidem
S −→ ModBUS (SHS) −→ ModBUtop(Sp)

recovers what in [Bla15] is called the topological K-theory of dg-categories.

3.4. The BU-motives of Perf, Cohb and Sing.

3.4.1. Motive of Perf

Context 3.12. — Throughout this section S := SpecA is an affine scheme and

(3.4.1)
X
p
��

S

is a quasi-compact quasi-separated S-scheme.

The dg-category Perf(X) is an object in dgcat⊗S and via the construction explained
in Section 3.2 it produces a BUS-module M∨

S (Perf(X)). At the same time, BUX is
an object in SHX and, as in the previous section, we can consider its direct image
p∗(BUX) ∈ ModBUS (SHS).
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Proposition 3.13. — Assume p : X → S as in Context 3.12. Then the two objects
M∨

S (Perf(X)) and p∗(BUX) are canonically equivalent as BUS-modules.

Proof. — The first ingredient is the fact that by [Rob15, Th. 1.8] and its extension to
general basis in [Rob14, Cor. 9.3.4], we have canonical equivalences

p∗(BUX) ' p∗(MX(1nc
X )).

By formal adjunction reasons, M and (−)∗ are compatible, so that p∗(MX(1nc
X ))

is canonically equivalent to MS(p∗(1
nc
X )), where now p∗ denotes the direct image

functoriality in SHnc. By definition of M∨
S (3.2.2), we are reduced to show that

p∗(1
nc
X ) is equivalent to the object in SHncS given by µS(Perf(X)) (where µS is

defined in diagram (3.2.1)). Unwinding the adjunctions, the first corresponds to the∞-
functor sending an S-dg-category of finite type T to the homotopy K-theory spectrum
KHX(p∗(T )) where p∗(T ) is the pullback of T seen as object of SHncS . The second
corresponds to the ∞-functor sending a dg-category of finite type T to the spectrum
KHS(T ⊗S Perf(X)).

The case where X = SpecB is an affine scheme over S = SpecA, the equivalence
between the two follows from the argument in the proof of [Rob14, Prop. 10.1.4](22)
which exhibit a natural equivalence between the underlying Waldhausen’s S-construc-
tions via the projection formula

KHS(T ⊗S Perf(X)) ' KHX(p∗(T )).

We now deduce the general case from the affine case using the Zariski descent
property for X 7→ SHncX of [Rob14, 9.21] and Zariski descent for homotopy K-theory.
Indeed, the constructions

X = Spec(B) 7−→ p∗(1
nc
B ) and X = Spec(B) 7−→ µS(Perf(B))

are Zariski sheaves on the category of affine schemes over S with values in SHncS and
by the argument above we just constructed a natural isomorphism between them.
Now any Zariski sheaf on Sch/S is the right Kan extension of its restriction to affines
affSch/S. Therefore, for non-affine X’s the result follows by Kan extension using
the Zariski descent property for SHnc and for homotopy K-theory of dg-categories,
implying that

X 7−→ p∗(1
nc
X ) and X 7−→ µS(Perf(X))

are Zariski sheaves. �

Remark 3.14. — As a consequence of the six operations for BU-modules, if p is
a smooth map, then p∗BUX is also equivalent to BUXS := RHomSHS (p]1X ,BUS)

(by the projection formula).

(22)Notice that the arguments in [Rob14, Prop. 10.1.4] are written for p a closed immersion but
in fact work in the general map between affines.

J.É.P. — M., 2018, tome 5



698 A. Blanc, M. Robalo, B. Toën & G. Vezzosi

Remark 3.15. — For X as in Proposition 3.13, Perf(X) carries a symmetric monoidal
structure given by the tensor product of perfect complexes. This can be understood as
a commutative algebra object Perf(X)⊗ ∈ CAlg(dgcatidem

S ). As M∨
S is lax monoidal,

M∨
S (Perf(X)) is an object in CAlg(ModBUS (SHS)).

3.4.2. Motive of Cohb and K-theory with support

Context 3.16. — We now extend Context 3.12 by considering

(3.4.2)
U := X − Z �

� j
// X
p
��

Z? _
ioo

S

with X a regular scheme, quasi-compact quasi-separated, i a closed immersion and j
its open complementary. S is again any affine scheme.

It follows also from Proposition 3.13 that (p◦j)∗BUU is equivalent to M∨
S (Perf(U))

where Perf(U) is seen as an S-dg-category via the composition p ◦ j. In the same way
we have that (p◦i)∗BUZ 'M∨

S (Perf(Z)). Moreover, pullback along j produces a map
of BUS-modules M∨

S (j∗) : M∨
S (Perf(X))→M∨

S (Perf(U)) which via the equivalence
of Proposition 3.13 is identified with the map induced by the unit of the adjunction

(3.4.3) p∗(BUX) −→ p∗j∗j
∗BUX .

This morphism fits into an exact sequence in ModBUS SHS

(3.4.4) p∗i∗i
!BUX −→ p∗BUX −→ p∗j∗j

∗BUX
consequence of the localization property of [MV99] (see Propositions A.2 and A.3
in the appendix for references of this localization property and the six operations
for SH).

As X is assumed to be regular, and U is open, U is also regular and we have

Perf(X) = Cohb(X) and Perf(U) = Cohb(U)

and by Proposition 3.13,

p∗BUX 'M∨
S (Perf(X)) 'M∨

S (Cohb(X)),

p∗j∗j
∗BUX 'M∨

S (Perf(U)) 'M∨
S (Cohb(U)).

In this case one can write (3.4.4) as

(3.4.5)

p∗i∗i
!BUX // p∗BUX // p∗j∗j

∗BUX

M∨
S (Cohb(X))

o
OO

M∨
S (j∗)
//M∨

S (Cohb(U))

o
OO

Finally, regarding the dg-category Cohb(Z) of bounded coherent complexes on Z as
a S-dg-category via the composition p ◦ i, the composition of dg-functors

Cohb(Z)
i∗ // Cohb(X)

j∗
// Cohb(U)
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is the zero functor. In this case we find a canonical factorization in BUS-modules

(3.4.6)

p∗i∗i
!BUX // p∗BUX // p∗j∗j

∗BUX

M∨
S (Cohb(Z))

OO

//M∨
S (Cohb(X))

o
OO

//M∨
S (Cohb(U))

o
OO

Proposition 3.17. — Assume the conditions and notations as in Context 3.16. Then
the canonical map of BUS-modules

(3.4.7) M∨
S (Cohb(Z)) // p∗i∗i

!BUX
is an equivalence

Proof. — Following Remark 3.3, the collection of objects of the form Σ∞+ (Y )⊗ BUS
with Y smooth over S, forms a family of compact generators for ModBUS (SHS).
Therefore, to show that (3.4.7) is an equivalence in BUS-modules, it is enough to
show that the composition map

MapBUS (Σ∞+ (Y )⊗ BUS ,M∨
S (Cohb(Z))) −→ MapBUS (Σ∞+ (Y )⊗ BUS , p∗i∗i!BUX)

is an equivalence for every Y smooth over S. By definition of M∨
S (Cohb(X)) and

M∨
S (Cohb(U)), we have an identification of mapping spectra

MapBUS (Σ∞+ (Y )⊗ BUS ,M∨
S (Cohb(X))) ' KH(Perf(Y )⊗S Cohb(X)),(3.4.8)

MapBUS (Σ∞+ (Y )⊗ BUS ,M∨
S (Cohb(U))) ' KH(Perf(Y )⊗S Cohb(U)).(3.4.9)

Let now X be an S-scheme of finite type and let Y be smooth over S. We have an
equivalence of S-dg-categories

(3.4.10) Cohb(X)⊗S Perf(Y ) ' Cohb(X ×S Y ).

This is [Pre11, Prop. B.4.1] together with the fact that as Y is smooth over S and S is
assumed to be regular, Y is regular and therefore Perf(Y ) = Cohb(Y ). The equivalence
(3.4.10) holds for X and also for both U and Z.(23) Using (3.4.10), (3.4.8) is equivalent
to KH(Cohb(X ×S Y )) which is equivalent to the G-theory spectrum of X ×S Y by
A1-invariance of G-theory. Mutatis mutandis for U and (3.4.9). Therefore, the map
3.4.3 can be identified with the G-theory pullback along j

G(X ×S −) −→ G(U ×S −)

whose fiber is well-known from Quillen’s localization theorem for G-theory [Qui73,
§7 Prop. 3.2] to be the homotopy invariant K-theory of the dg-category of bounded
coherent sheaves in Z, Cohb(Z ×S Y ) which again by the lemma is equivalent to
Perf(Y )⊗S Cohb(Z) from which the propositions follows. �

Remark 3.18. — Combining the result of Proposition 3.17 with the discussion in
[CD12, §13.4.1] one finds that M∨

S (Cohb(Z)) can also be described as K-theory with
support in Z.

(23)Notice that this works without any hypothesis on the regularity of Z.
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Corollary 3.19. — Assume Context 3.16. Then we have a cofiber-fiber sequence of
BUS-modules

(3.4.11) p∗i∗BUZ −→ p∗i∗i
!BUX −→M∨

S (Sing(Z)).

Proof. — Following 3.5, the exact sequence of S-dg-categories

Perf(Z) −→ Cohb(Z) −→ Sing(Z)

creates a cofiber-fiber sequence of BUS-modules

M∨
S (Perf(Z)) −→M∨

S (Cohb(Z)) −→M∨
S (Sing(Z))

which, thanks to Proposition 3.13 and Proposition 3.17 (applied to p ◦ i), can now be
identified with the cofiber-fiber sequence (3.4.11). �

Remark 3.20. — Following Remark 3.15,

Perf(Z) ∈ CAlg(dgcatidem
S )

and therefore
M∨

S (Perf(Z)) ∈ CAlg(ModBUS (SHS)).

Now, since the tensor product of coherent by perfect is coherent, the inclusion
Perf(Z) ⊆ Cohb(Z) makes Cohb(Z) an object in ModPerf(Z)⊗(dgcatidem,⊗

S ). In this
case M∨

S (Cohb(Z)) defines an object in ModM∨
S (Perf(Z))(ModBUS (SHS)). Moreover,

as the inclusion Perf(Z) ⊆ Cohb(Z) is a map of Perf(Z)-modules, the induced map

(3.4.12) u : p∗i∗BUZ 'M∨
S (Perf(Z)) −→M∨

S (Cohb(Z)) ' p∗i∗i!BUX
is defined in ModM∨

S (Perf(Z))(ModBUS (SHS)). By adjunction, this is the same as a
map 1S → M∨

S (Cohb(Z)) in SHS . Whenever X is regular, under the equivalence of
Proposition 3.17, this map corresponds to an element u in the Grothendieck group of
K-theory with support KZ(X) corresponding to i∗(OZ). In particular, when Z itself
is regular, this element identifies with λ−1 of the conormal bundle of Z in X. See
[CD12, 13.4.1, 13.5.4, 13.5.5]. We will again discuss this element u in Remark 3.28.

Remark 3.21. — In particular, when Z is itself regular we recover the purity isomor-
phism in algebraic K-theory of [CD12, 13.6.3] or [Ayo14, 7.14]:

(3.4.13) p∗i∗BUZ
u
∼ // p∗i∗i

!BUX .

More generally, the motive M∨
S (Sing(Z)) measures the obstruction to purity.

Combining (3.4.4) and (3.4.11) we get two cofiber-fiber sequences

(3.4.14) p∗i∗BUZ
u // p∗i∗i

!BUX

��

//M∨
S (Sing(Z))

p∗BUX

��

p∗j∗j
∗BUX
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3.4.3. Motive of Sing

Context 3.22. — We now consider X as in Context 3.16, together with a function
f : X → A1

S . In this case we get derived fiber products over S

(3.4.15) U

y

� � j
//

��

X

f
��

X0
ioo

��

x

Gm,S �
�

// A1
S S? _

i0oo

where i0 is the zero section, map i is an lci closed immersion and j is its open
complementary. The classical truncation of this diagram brings us to the setting of
diagram (3.4.2) with Z := t(X0) the classical underived zero locus of f . We denote
by i the composition

Z
t−−→ X0

i−−→ X

with t the classical truncation.

Corollary 3.23. — Consider the notation of Context 3.22. Suppose that the right
square in diagram (3.4.15) is Tor-independent (i.e., t(X0) ' X0). Then there is a
fiber sequence of BUS-modules

p∗i∗i
∗BUX

u−−→ p∗i∗i
!BUX −→M∨

S (Sing(X0)).

Proof. — Apply Corollary 3.19. �

The next result explains why the hypothesis of tor-independence is not necessary:
the BU-motive M∨

S (Cohb(−)) is in fact invariant under derived thickenings.

Proposition 3.24. — Let Z̃ be a derived scheme over S with classical underlying
scheme Z and canonical closed immersion Z ↪→ Z̃. Then the push forward along the
inclusion

M∨
S (Cohb(Z)) −→M∨

S (Cohb(Z̃))

is an equivalence of BUS-modules.

Proof. — Analyzing the definitions, and using Remark 3.3 as in the proof of Propo-
sition 3.17, we are reduced to show that for any smooth scheme Y → S, the induced
map of K-theory spectra

KH(Perf(Y )⊗S Cohb(Z)) −→ KH(Perf(Y )⊗S Cohb(Z̃))

is an equivalence. But again, thanks to [Pre11, Prop. B.4.1] we have the formula
(3.4.10) so that it is enough to show that the map

KH(Cohb(Y ×S Z)) −→ KH(Cohb(Y ×S Z̃))

is an equivalence. Here we mean the derived fiber product, which as Y is flat over S,
equals the usual fiber product. But now this equivalence follows from the theorem of
the heart: for a any derived scheme V with truncation t(V ), Cohb(t(V )) and Cohb(V )
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both carry t-structures with the same heart [Lur11a, 2.3.20], so that by [Bar15], their
K-theory spectra are equivalent via pushforward. �

We will now use the invariance under derived thickenings to give a formula for the
motive of Sing. In the setting of the diagram (3.4.15), for the derived scheme X0, the
exact sequence of S-dg-categories

Perf(X0) −→ Cohb(X0) −→ Sing(X0)

creates, by Corollary 3.5, a cofiber-fiber sequence of BUS-modules

(3.4.16) M∨
S (Perf(X0)) −→M∨

S (Cohb(X0)) −→M∨
S (Sing(X0)),

where, thanks to Proposition 3.24 and Proposition 3.17, the middle term is canonically
identified with p∗i∗i!BUX via the commutative diagram

(3.4.17)

p∗i∗i
!BUX //

o3.17
��

p∗BUX

o 3.13
��

M∨
S (Cohb(t(X0)))

t∗,∼
3.24

//M∨
S (Cohb(X0))

M∨
S (i∗)
//M∨

S (Cohb(X))

where i∗ is the pushforward of bounded coherent sheaves, along the derived closed
immersion i : X0 → X and the lower horizontal composition does identify with
pushforward along i : Z → X.(24)

Using the fact that the closed immersion i : X0 → X is lci, we know that
the push-forward i∗ preserves perfect complexes [Toë12b], and thus provides a map
M∨

S (Perf(X0)) → M∨
S (Perf(X)) ' p∗BUX that we will still denote as M∨

S (i∗). By
projection formula this is a map of p∗BUX -modules, and moreover using the identifi-
cations in (3.4.17), it fits into a commutative 2-simplex

(3.4.18)

M∨
S (Perf(X0))

M∨
S (i∗) ((

u // p∗i∗i
!BUX

��

p∗BUX

Combining the exact sequence (3.4.16), the localization sequence for the j∗-pullback
(3.4.4) and the localization sequence for the i∗-pullback

(3.4.19) p∗j]BUU −→ p∗BUX −→ p∗i∗BUZ

one obtains

(24)To prove this one could also use the six operations and nil-invariance theorem for motives over
derived schemes as developed in [Kha16a]. However, this is not strictly necessary for our discussion.
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Lemma 3.25. — Set Z = t(X0). The considerations above lead to a commutative
diagram of BUS-modules

(3.4.20)

M∨
S (Perf(X0))

M∨
S (i∗)

))

u // p∗i∗i
!BUX

(3.4.17)
��

//M∨
S (Sing(X0))

p∗j]BUU

h =: ))

// p∗BUX

j∗-pullback
��

i∗-pullback
// p∗i∗BUZ

p∗j∗j
∗BUX

In the next lemma, we will denote by

M∨
S (i∗) : p∗BUX 'M∨

S (Perf(X)) −→M∨
S (Perf(X0))

the morphism of BUS-modules M∨
S (i∗ : Perf(X)→ Perf(X0)).

Lemma 3.26. — The composition M∨
S (i∗i∗) : M∨

S (Perf(X0)) → M∨
S (Perf(X0)) is

null-homotopic in BUS-modules. In particular, we have a commutative triangle

(3.4.21)

M∨
S (Perf(X0))

M∨
S (t∗i∗i∗) ∼ 0

((

u // p∗i∗i
!BUX

��

p∗i∗BUZ

Proof. — Recall that in the context of the diagram (3.4.15) we have the cartesian
cube (2.3.35), and that, by Remark 2.38, we have

i∗i∗ ' v∗(pr)∗ ' K(A, 0)�−

and
IdX0

' A�−.

Finally, using the cofiber-sequence (2.3.42) we get a cofiber sequence of dg-functors

(3.4.22)
IdX0

0 //

��

IdX0

��

0 // i∗i∗

which shows that i∗i∗ induces the zero map in the K-theory of X0. Finally, to conclude
that the induced map M∨

S (i∗i∗) in BUS-modules is zero, we argue that the map
in non-commutative motives µS(Perf(X0)) → µS(Perf(X0)) is zero, before applying
MS . Indeed, this follows by applying the same argument to the homotopy K-theory
of T ⊗ Perf(X) for any dg-category T over S. �
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Proposition 3.27. — The commutative diagram (3.4.21) produces a cofiber-fiber se-
quence of BUS-modules

(3.4.23) M∨
S (Sing(X0))→M∨

S (Perf(X0))[1]⊕ p∗i∗BUZ
−→ cofib(h : p∗j]BUU → p∗j∗BUU ).

Proof. — Apply the octahedral property ([Lur17, Th. 1.1.2.15 (TR4)]) to (3.4.21). �

Remark 3.28. — Assume that Z = t0(X0) = X0.(25) Then Lemma 3.26 guarantees
the existence of a 2-cell providing a factorization as a map of p∗i∗BUZ-modules

(3.4.24)

cofib(p∗j]BUU → p∗j∗BUU )[−1]

∂
��

p∗i∗BUZ

M∨
S (t∗i∗i∗) ∼ 0

**

θ
(X,Z)
K

44

u // p∗i∗i
!BUX

��

p∗i∗BUZ
where ∂ is the boundary map of the vertical cofiber sequence. Using Bott periodicity
(Section 3.1.2), the map θ(X,Z)

K can also be interpreted as a map of p∗BUX -modules

(3.4.25) p∗i∗BUZ(−1)[−2] ' p∗i∗BUZ
θ

(X,Z)
K−−−−−−→ cofib(p∗j]BUU → p∗j∗BUU )[−1].

This is the same as a map of p∗BUX -modules

(3.4.26) p∗i∗BUZ
θ

(X,Z)
K−−−−−−→ cofib(p∗j]BUU → p∗j∗BUU )(1)[1].

In particular, following Remark 3.20, when (X,Z) is a regular pair, the commutativity
of the diagram (3.4.24) says that ∂ ◦ θ(X,Z)

K is λ−1 of the conormal bundle of Z in X.
We will see in section 4.3 that θ(X,Z)

K is a K-theoretic version of the cycle class defined
in [Del77, Cycle §2.1] associated to the closed pair (Z,X).

3.5. The BU-motives of 2-periodic complexes

Context 3.29. — In this section S = SpecA with A a regular ring.

As a first application of the cofiber-fiber sequence (3.4.23) we compute the motivic
BU-module of the dg-category of 2-periodic complexes.

The symmetric monoidal functor (2.3.55) yields a map of commutative algebra
objects in BUS-modules

(3.5.1) M∨
S (Cohb(A[ε])�) −→M∨

S (Sing(S, 0)⊗)

for the convolution structure on the l.h.s induced by the group structure on S×A1
S
S '

SpecA[ε]. The unit of of this group is given by the truncation map t : S → S ×A1
S
S.

In particular, the unit of the commutative algebra M∨
S (Cohb(A[ε])�) is given by the

(25)as will be the case considered later in section 4.5.
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pushfoward map t∗ : BUS 'M∨
S (Cohb(S))→M∨

S (Cohb(A[ε])�). Being the unit, t∗
is a map of algebras, and by Proposition 3.24, is an equivalence. This tells us that
the convolution product becomes the standard product on BUS . Combining these
observations we deduce that (3.5.1) can be written as a map of algebras

(3.5.2) BUS −→M∨
S (Sing(S, 0)⊗).

The next proposition describes the underlying object of the commutative BUS-
algebra M∨

S (Sing(S, 0)⊗):

Proposition 3.30. — There is a canonical equivalence of BUS-modules

(3.5.3) M∨
S (Sing(S, 0)) ' BUS ⊕ BUS [1].

As explained in Proposition 2.45, Sing(S, 0) is equivalent to Perf(A[u, u−1]) and
obtained as the cofiber sequence in dgcatidem

A

(3.5.4) Perf(A[ε]) ⊆ Cohb(A[ε]) −→ Sing(S, 0).

In this case, as U is empty and S is regular (so that Sing(S, 0) ' Sing(S0), where S0

is the derived pullback of 0S : S → A1
S along itself), the cofiber-fiber sequence of

(3.4.23) gives an equivalence

(3.5.5) M∨
S (Sing(S, 0)) 'M∨

S (Sing(S0)) 'M∨
S (Perf(A[ε]))[1]⊕ BUS

and we are left to show that M∨
S (Perf(A[ε])) is equivalent to BUS . But this follows

from Proposition 3.13, and the following remark applied to the graded algebra A[ε].

Remark 3.31. — Let R =
⊕

i60Ri be a graded algebra over A concentrated in non-
positive degrees. Then the canonical inclusion and projection

(3.5.6) q : R0 −→ R, pr : R −→ R0

seen as maps of A-dg-categories with single objects, are A1
A-homotopy inverse. Indeed,

the composition R0 → R→ R0 is the identity. For the other composition notice that
by definition the grading in R is the data of a map of A-modules

R −→ R⊗A A[t]

sending an element r ∈ R of degree i 6 0 to r ⊗ t−i. This map provides the required
A1
A-homotopy between the composition q ◦ pr and the identity via the respective

evaluations at 0 and 1.

3.6. Rational Coefficients and Tate-2-periodicity. — Throughout this subsection
we work under Context 3.7. SH⊗ carries a canonical action of the ∞-category of
spectra Sp⊗ seen as a constant system of monoidal categories indexed by Sch/S. More
precisely, since for any X, SH⊗X is a symmetric monoidal ∞-category and SHX is
stable and presentable, there exists a unique (up to a contractible space of choices)
natural transformation

(3.6.1) a : Sp⊗ −→ SH⊗
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of ∞-functors Schop
/S → CAlg(PrL

Stb): this follows from the universal property of the
smash product symmetric monoidal structure on spectra [Lur17, Cor. 4.8.2.19]. This
provides for each Λ ∈ CAlg(Sp), a family of commutative algebra objects ΛX ∈
CAlg(SHX) indexed by X ∈ Sch/S and stable under pullbacks. A perhaps more
concrete, though less structured way of understanding the natural transformation
a : Sp⊗ → SH⊗ is as follows. If Λ ∈ CAlg(Sp) and X ∈ Sch/S, then we can identify
a(Λ) with the constant object ΛsX in the stable homotopy category SHs

X of schemes
where only the simplicial suspension S1

s has been inverted (this is because we already
have bonding maps S1

s ∧ Λn → Λn+1, as Λ ∈ Sp). Now, SHX can be constructed by
further inverting the Tate suspension in SHs

X , and we define ΛX := a(X)(Λ) as the
image of ΛsX via the canonical functor SHs

X → SHX .
Note that, in particular, via the natural transformation a, SH is tensored over Sp

(see [Lur17, Rem. 4.8.2.20]), and by the same discussion as for BU-modules above, we
thus have a system of categories ModΛ(SH)⊗ together with a realization map

(3.6.2) −⊗Λ : SH⊗ −→ ModΛ(SH)⊗.

Remark 3.32. — For each X ∈ Sch/S, the category ModΛX (SHX) can be identified
with the tensor product in PrL

Stb

SHX ⊗Sp ModΛ(Sp).

This is follows from [Lur17, Th. 4.8.4.6& §4.5.1].

Remark 3.33. — The natural transformation of (3.6.2) is the universal Λ-linear real-
ization. Indeed, recall that, by definition, Λ-linear stable ∞-categories are objects in
ModModΛ(Sp)⊗(PrL

Stb). In particular, if R : SH⊗ → D⊗ is a realization where D⊗ takes
values in Λ-linear categories, the universal property of base change [Lur17, 4.5.3.1]
tells us that R factors in a unique way by a Λ-linear realization

R : SH⊗ ⊗Sp ModΛ(Sp)⊗ −→ D⊗.

Let Λ = HQ be the Eilenberg-Maclane spectrum representing rational singular
cohomology.(26) It has the structure of algebra-object in CAlg(Sp) given by the cup
product in cohomology. This is an idempotent ring-object, in the sense that the mul-
tiplication map HQ ⊗ HQ ' HQ is an equivalence (i.e., the localization at HQ is
smashing). Therefore the universal Q-linear realization

(3.6.3) −⊗Q := −⊗HQ : SH⊗ −→ ModHQ(SH)⊗

identifies ModHQ(SH) with the full subcategory SHQ of SH spanned by non torsion
objects.

Proposition 3.34. — Assume Context 3.7 (in particular S is of finite Krull dimen-
sion). Then rationalization (3.6.3) is strongly compatible with all the six operations
in the sense that the natural transformations (A.0.9) are natural isomorphisms.

Proof. — Follows from the arguments in the proof of [Ayo14, A.14]. �

(26)This is equivalent to the rational sphere spectrum.
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Following the discussion in Section 3.3, rationalization carries over to BU-modules

(3.6.4) −⊗Q : ModBU(SH)⊗ −→ ModBUQ(SHQ)⊗ ' ModBUQ(SH)⊗

where BUQ := BUS ⊗HQ and the last equivalence follows from [Lur17, 3.4.1.9].
Thanks to the strong compatibility with the six operations, all the constructions

performed in the previous sections at the level of BUS-modules can now be repeated
after rationalization, without changing the results. This follows because the realization
at the level of modules is determined by the underlying realization via the forgetful
functors.

The main reason why we are interested in passing to rational coefficients is the
following result:

Proposition 3.35. — Let X be any scheme of finite Krull-dimension. Then the mor-
phism u : 1X(1)[2] → BUX ⊗ Q of (3.1.2) induces an equivalence of commutative
algebra objects

(3.6.5) MBX(β) := Free(MBX(1)[2])[ν−1]
∼−−−→ BUX,Q := BUX ⊗Q,

where MBX is the commutative algebra-object representing Beilinson’s motivic co-
homology of [CD12, Def. 14.1.2].(27) In particular, if X is a geometrically unibranch
excellent scheme, then we can replace Beilinson’s motivic cohomology by the spectrum
MQX representing rational motivic cohomology, via the equivalence of commutative
algebra objects

(3.6.6) MB −→ MQX
induced by the Chern character.

Proof. — This is already proven in [CD12, 14.2.17, 16.1.7] using the results of Riou
in [Rio10] on the γ-filtration. The only remaining issue is to construct this as an
equivalence of E∞-algebras in motives. But this follows just by describing the image
of ν and showing it is invertible. But again this is satisfied at the classical level.

The fact that the map (3.6.6) corresponds to the Chern character is explained in
[Rio10, Def. 6.2.3.9&Rem. 6.2.3.10]. �

Remark 3.36. — In practice the hypothesis that the schemes are excellent and geo-
metrically unibranch will be satisfied in the cases that interests us, namely, when S
is a complete Henselian trait and X is a regular scheme of finite type over S. This
follows because complete local rings are excellent [Gro65, Sch. 7.8.3 p. 214] and S be-
ing a discrete valuation ring it is regular, so it is normal (in fact in dimension 1 the
two are equivalent) and therefore by a direct checking of the definitions, geometrically

(27)The structure of commutative algebra object of MB in the symmetric monoidal ∞-category
SH follows from the equivalences [CD12, (5.3.35.2)], the definition [CD12, 15.2.1] and [CD12, 14.2.9].
The combination of these results characterizes MB-modules as a monoidal reflexive localization of
SHQ, so that as explained in [CD12, 14.2.2], MB is the image of the monoidal unit in SHQ under
a monoidal localization functor and a lax monoidal inclusion, so, it acquires a natural structure of
commutative algebra object.
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unibranch. See [CD12, Th. 8.3.30]. Moreover, following [Gro65, Prop. 7.8.6 p. 217] if
X → S is a scheme of finite type over S with S excellent then X is excellent. Again
if X is regular, it is normal [Ser65, Cor. 3, IV-39] and therefore it is geometrically
unibranch.

Following from [CD12, 14.1.6] one obtains for any X a canonical isomorphism

BUX,Q ⊗MBX ' BUX,Q

and the realization (3.6.4) is equivalent to

(3.6.7) ModBU(SH) −→ ModBUQ(ModMB(SH))

which is therefore strongly compatible with all the six operations.

3.7. `-adic realization. — In this section we discuss the `-adic realization of BU-
modules and dg-categories.

Context 3.37. — Throughout this section we assume that S is an excellent scheme
of dimension less or equal than one and we denote by Sch/S the category of schemes
of finite type over S. Notice that by [Gro65, Prop. 7.8.6, p. 217] such schemes are also
excellent. We fix ` a prime invertible in S.

We describe below, working over schemes under the context 3.37, the construction
of a monoidal realization functor

(3.7.1) R` : ModMB(SH)⊗ −→ ShQ`(−)⊗,

where for each X ∈ Sch/S, ShQ`(X)⊗ denotes the symmetric monoidal ∞-category of
Ind-constructible Q`-adic sheaves on X. Let us first explain what is the definition of
ShQ`(X) and the reason for the context 3.37. We will need to consider for each n > 0,
Sh(Xét,Z/`n) the ∞-category of étale sheaves with Z/`n-coefficients. We will denote
by Shc(Xét,Z/`n) the full subcategory of étale sheaves with Z/`n-coefficients spanned
by constructible sheaves as in [LG14, 4.2.5] or in [CD16, p. 598]. We have the following
crucial result:

Proposition 3.38. — Let S be a base scheme in the context of 3.37. Then for any
scheme X of finite type over S, the étale topos of X is of finite cohomological dimen-
sion and the étale cohomological dimension of its points are uniformly bounded. In
this case Shc(Xét,Z/`n) is compactly generated and its compact objects are exactly
the constructible sheaves.

Proof. — The first statement follows as in [CD16, Prop. 1.1.5, Rem. 1.1.6]. The sec-
ond statement now follows exactly as in [LG14, 4.2.2] replacing the use of [LG14,
Lem. 4.1.13] by the first statement. �

In this case we consider the limit of ∞-categories

(3.7.2) Shc`(X) := limn>0 Shc(Xét,Z/`n)
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and it follows that because of Proposition 3.38 and the same arguments as in [LG14,
4.3.17] that Shc`(X) is an ∞-categorical enhancement of the derived category of con-
structible `-adic sheaves on X, in the sense that its homotopy category is equiva-
lent (as a triangulated category) to the so-called constructible derived `-adic category
Dc(X,Z`) of [Eke90] and [BBD82].

As a second step, we define the ∞-category of `-adic sheaves on X as the Ind-
completion of Shc`(X) ([LG14, 4.3.26])

(3.7.3) Sh`(X) := Ind(Shc`(X)).

Therefore one should think of Sh`(X) as the derived ∞-category of Ind-constructible
`-adic sheaves on X. Finally, we define ShQ`(X) := Sh`(X) ⊗Z` Q`. Note that
ShQ`(X) can also be identified as the full subcategory of Sh`(X) spanned by those
objects F such that the natural morphism F → F [`−1] is an equivalence. Also note
that the limit (3.7.3) can be taken inside the theory of symmetric monoidal small
idempotent-complete stable and Z(`)-linear ∞-categories. Therefore, by working
inside CAlg(ModModZ(`)

(PrL)), and taking first Ind-completion, and then apply-
ing − ⊗Z` Q` (or, equivalently, inverting `)), we get a symmetric monoidal small
idempotent-complete stable and Q`-linear structure on ShQ`(X). We will denote this
monoidal structure by ShQ`(X)⊗ and its tensor unit by Q`,X .

Remark 3.39. — The discussion in [LG14, §4] is written for quasi-projective schemes
over a field as it requires the étale topos of X to be of finite cohomological dimen-
sion [LG14, Lem. 4.1.13]. In our case this follows from the assumptions in 3.37 and
Proposition 3.38.

Remark 3.40. — The construction of an ∞-functor X 7→ ShQ`(X)⊗ can be obtained
using the arguments of [Rob14, Chap. 9].

The monoidal realization (3.7.1) could be obtained using the universal property of
SH proved in [Rob15]. However, we will need to show that it is strongly compatible
with all the six operations and with the classical notion of Tate twists. For this
purpose, we describe an alternative construction of (3.7.1) using results of [CD16].
Once (3.7.1) is available and strongly compatible with all operations, we can then
pass to BUQ-modules and deduce that the composition
(3.7.4)

ModBU(SH)
(3.6.7)
−−−−−→ ModBUQ(ModMB(SH))

(3.7.1)
−−−−−→ ModR`(BUQ)(ShQ`(−))

is again compatible with all the six operations and twists.
Let us now review the construction of (3.7.1). This can be done as in [CD16]

using the theory of h-motives. Recall from [Voe96, Def. 3.1.2] that the h-topology
on Noetherian schemes is the topology whose covers are the universal topological
epimorphisms. It is the minimal topology generated by open coverings and proper
surjective maps (see for the case of excellent schemes [Voe96, Def. 3.1.2]). In [CD16]
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the authors constructed for any Noetherian scheme X and any ring R a theory of h-
motives, DMh(X,R). See [CD16, §5.1]. The constructions in loc. cit. can be formulated
in the language of higher categories, using the arguments and steps of [Rob15] and
an ∞-functor

DMh(−, R)⊗ : Schop
/S −→ CAlg(PrL)

can be provided as in [Rob14, Chap. 9]. Following [CD16, 5.6.2] and Proposition A.2
this∞-functor satisfies all the formalism of the six operations over Noetherian schemes
of finite Krull dimension.

We now recall how to relate h-motives both to the r.h.s and l.h.s of (3.7.1). Let R
be the localization of Z at the prime `.

To understand the r.h.s of (3.7.1) we use a form of rigidity theorem given by [CD16,
Th. 5.5.3 and Th. 4.5.2]: for any Noetherien scheme X, ` invertible in OX and for each
n > 0, we have a monoidal equivalence

(3.7.5) DMh(X,R/`n) ' Sh(Xét, R/`
n)

with the last being the standard ∞-category of `n-torsion étale sheaves on X. This
equivalence is compatible with all the six operations over Noetherian schemes of finite
Krull dimension. Following [CD16, Th. 6.3.11] for all Noetherian schemes of finite
dimension, (3.7.5) restricts to an equivalence

(3.7.6) DMh,lc(X,R/`n) ' Shc((X)ét, R/`
n),

where on the l.h.s we have the full subcategory of locally constructible objects
of [CD16, Def. 6.3.1]. Thanks to the uniformization results of Gabber (see [CD16,
6.3.15] for the l.h.s and [ILO14, Exp. 0 Th. 1] for the r.h.s) the constructions
X 7→ DMh,lc(X,R/`n) are stable under the six operations when restricted to
quasi-excellent Noetherian schemes of finite dimension.

Remark 3.41. — Via (3.7.5) motivic Tate twists are sent to the usual `-adic twists
given by the roots of unity. This is a consequence of the Kummer exact sequence as
explained in [CD16, §3.2].

As a result, the equivalences (3.7.6) assemble to an equivalence of ∞-functors,
strongly compatible with all the six operations and twists

(3.7.7) DMh,lc(−, R/`n) ' Shc((−)ét, R/`
n)

whenever ` is invertible in S.

Remark 3.42. — Under the assumptions in 3.37 and because of Proposition 3.38 and
[CD16, Prop. 6.3.10], the notion of locally constructible objects in h-motives coincides
with the notion of constructible of [CD16, 5.1.3] which also coincides with the notion
of compact object [CD16, Th. 5.2.4].

As a conclusion to this discussion, (3.7.7) provides an equivalence

(3.7.8) limn>0 DMh,lc(−, R/`n) ' limn>0 Shc((−)ét, R/`
n).
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Now, the l.h.s of (3.7.1) is related to the theory of h-motives via the combination
of [CD16, Th. 5.2.2] and [CD12, 14.2.9]: when R = Q we have an equivalence of
∞-functors defined on Noetherian schemes of finite Krull dimension

(3.7.9) DMh(−,Q) ' ModMB(SH)

strongly compatible with the six operations. We recall that for each scheme X the
∞-category SHX is compactly generated and so is ModMBX (SHX). See [Rob14, §4.4.
and Prop.3.8.3]. Thanks to [CD16, Prop. 6.3.3 and Th. 5.2.4], the equivalence (3.7.9)
identifies the compact objects of ModMBX (SHX) with the subcategory of locally con-
structible objects DMh,lc(−,Q) as defined in [CD16, 5.1.3]. By [CD16, 6.2.14] it is
stable under all the six operations.

Having these characterizations of both the r.h.s and l.h.s of (3.7.1), in order to
achieve the construction of the natural transformation (3.7.1), we need to exhibit a
natural transformation of∞-functors with values in small stable idempotent complete
R[`−1] ' Q-linear ∞-categories

DMh,c(−,Q) ' DMh,c(−, R)⊗R R[`−1] −→ (limn>0 DMh,lc(−, R/`n))⊗R R[`−1].

For that purpose we use the results of [CD16] that explain the `-adic realization
functor (3.7.1) as an `-adic completion of h-motives. The system of base changes
along the maps of rings R → R/`n produces natural transformations DMh(−, R) →
DMh(−, R/`n) and by the standard procedure one can construct the data of a cone
over the diagram indexed by n > 0 and obtain a natural transformation between the
∞-functors with values in presentable stable R-linear ∞-categories

(3.7.10) DMh(−, R) −→ limn>0 DMh(−, R/`n).

It follows from the same arguments as in [LG14, 4.3.9] that this homotopy limit
identifies with the construction DMh(−, R̂`) of [CD16, Def. 7.2.1] and from [CD16,
Th. 7.2.11] that it commutes with all the six operations over Noetherian schemes of
finite Krull dimension. Moreover, by [CD16, 7.2.16], it restricts to a natural transfor-
mation between locally constructible objects

(3.7.11) DMh,lc(−, R) −→ limn>0 DMh,lc(−, R/`n)

again compatible with all operations. Following the discussion in [CD16, §7.2.18,
Prop. 7.2.19, Th. 7.2.21], using Proposition 3.38, one can mimic the arguments of
[LG14, 4.3.17] to deduce that the homotopy category of the r.h.s recovers the classical
derived category of constructible `-adic sheaves of [BBD82] and [Eke90].

Finally, the realization R` of (3.7.1) is defined via the composition

(3.7.12)
ModMB(SH) ∼

(3.7.9)
// Ind(DMh,lc(−, R)⊗R Q)

(3.7.11)
��

Ind(limn>0 DMh,lc(−, R/`n)⊗R Q) ∼
(3.7.8)

// ShQ`(−)
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and by the preceding discussion it is strongly compatible with all the six operations
and Tate twists.

Remark 3.43. — As the `-adic monoidal realization functor

R` : ModMB(SH)⊗ −→ ShQ`(−)⊗

is monoidal, for any schemeX we have R`(MBX) ' Q`,X , the monoidal unit ofQ`-adic
sheaves over X. As it is a left adjoint and commutes with Tate twists, Proposition
3.35 implies that that

(3.7.13) R`(BUX,Q) ' Free(Q`,X(1)[2])[ν−1] '
⊕
n∈Z

Q`,X(n)[2n] =: Q`,X(β).

By Remark 3.41, Q`,X(i) are the usual `-adic Tate twists given by the roots of unity.
In particular, the extension (3.7.4) of R` to BU-modules takes values in Tate-twisted
2-periodic objects inside ShQ`(X), i.e., objects E together with an equivalence E '
E(1)[2].

Notation 3.44. — Throughout the rest of this paper we will write

(3.7.14) R` : ModBU(SH) −→ ModQ`(β)(ShQ`(−))

to denote the natural transformation obtained via the composition (3.7.4). As already
observed, it is strongly compatible with all six operations and Tate twists.

Remark 3.45. — Note that if p : X → S is a smooth finite type morphism of schemes,
and we denote by [X] := p](1X) ∈ SHS its motive over S, then

MapShQ` (S)(R
`([X]⊗ BUS),Q`,S) ' H•` (X,Q`)⊗Q`(β),

where H•` (X,Q`) ' MapShQ` (X)(Q`,X ,Q`,X) denotes the `-adic cohomology of X. In
other words, the Q`,S-dual of R`([X]⊗BUS) is a Tate 2-periodized version of the `-adic
cohomology of X. Note that, instead, if we denote by R

′` : ModMB(SH)⊗ → ShQ`(−)⊗

the realization functor (3.7.1), we have

MapShQ` (S)(R
′`([X]⊗MBS),Q`,S) ' H•` (X,Q`).

In the same situation, we have

R`(M∨
S (Perf(X))) ' p∗(Q`,X(β)).

This follows from Proposition 3.13, projection formula, and the fact that p∗ com-
mutes with `-adic realization. In other words, the `-adic realization of rationalized
M∨

S (Perf(X)) is equivalent to the Tate 2-periodized version of the `-adic cohomology
of X relative to S.
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4. Vanishing cycles and singularity categories

In this section we prove our main Theorem 4.39 establishing the link between the
results of the previous section and the theory of vanishing cycles. Namely, it says that
the motive of the dg-category of singularities is a model for the `-adic cohomology of
the 2-periodized sheaf of vanishing cycles. Before coming to the precise statement, we
will first recall the theory of nearby and vanishing cycles in the motivic setting.

4.1. Nearby and Vanishing Cycles. — In this section we recall the formalism of
nearby and vanishing cycles in the `-adic setting as presented in [SGA7 I]. More re-
cently, a motivic formulation was developed by Ayoub in [Ayo07b]. There are several
technical steps required to express the formalism of [Ayo07b] in a higher categorical
setting. We provide these details in Appendix A of this paper.

Context 4.1. — Throughout this section we fix a diagram of schemes

(4.1.1) η
jη−−−→ S

iσ←−−− σ

with S an excellent Henselian trait, namely, the spectrum of an excellent Henselian
discrete valuation ring A, with uniformizer π, generic point η = Spec(K) and closed
point σ = Spec(A/m) with m = (π) the maximal ideal and k := A/m is a perfect
field of characteristic p > 0. The pair (η, σ) forms a closed-open complement pair
(and the maps are, respectively, an open and a closed immersion). In practice we will
take S to be the spectrum of a complete discrete valuation ring. Roughly speaking,
the scheme S plays the role of a formal disk, σ of the center of the disk and η of the
punctured disk (this is quite precise in the equicharacteristic zero case). We will say
that a Henselian trait is strictly local if k is algebraically closed.

Remark 4.2. — The choice of a uniformizer π ∈ A defines a map π : S → A1
S . In this

case we have two cartesian diagrams

(4.1.2)
η

y
��

jη
// S

π
��

σ
iσoo

��
x

Gm,S �
�

j0
// A1
S S?

_

i0
oo

which allow us to reduce ourselves to working over an affine line, even in mixed
characteristic. Notice that both diagrams are in fact derived fiber products. Indeed, for
the left diagram this is immediate because the inclusion of Gm,S is an open immersion,
while for the diagram on the right we find that the derived tensor product is given
by the spectrum of the commutative differential graded algebra

(4.1.3) 0 −→ A
−1

π·−−−→ A
0

−→ 0

which is, in fact, quasi-isomorphic to A/π, since π is a non-zero divisor.
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Notation 4.3. — In what follows, we fix:
– a separable closure k of k (inside a fixed algebraic closure), and denote by

S := S(σ) the strict localization of S at the corresponding geometric point σ = Spec(k)
(which is localized at σ): in other words S the spectrum of the strict henselization
of A along k ↪→ k. Note that S is now a strictly Henselian trait, with closed point σ
and fraction field Kunr a maximal unramified extension of K (see [Ser62, Chap. II, §2
Prop. 3&Ex. 4]). We set ηunr = Spec(Kunr) and denote as jηunr : ηunr → S the
corresponding open immersion.

– a separable closure K of Kunr (inside a fixed algebraic closure), and put η :=

SpecK and jη : η → S.
– ηt = Spec(Kt) a maximal tamely ramified extension of K inside K.
All this information fits in a commutative diagram

(4.1.4)

η

��

uη

��

jη

��

ηt

�� ##
ηunr

��

� �

jηunr

// S

u
��

σ?
_iσoo

uσ
��

η �
�

jη
// S σ? _

iσ
oo

which the reader should keep in mind throughout this section.

Remark 4.4. — We also recall the existence of an exact sequences of groups (see
[Ser62, Chap. III §5 Th. 2, Th. 3, Cor. I])
(4.1.5) 1 −→ I := Gal(η/ηunr) −→ Gal(η/η) −→ Gal(σ/σ) −→ 1,

where I is the inertia group, which fits in an exact sequence (see [Ser62])
(4.1.6) 1 −→ Gal(η/ηt) −→ I −→ It := Gal(ηt/ηunr) −→ 1,

where It is the tame inertia group, isomorphic to lim(n,p)=1 µn where µn is the group
of nth-roots of unit in Kunr.

Consider a map p : X → S. We recall the definition of the nearby and vanishing
cycles in the `-adic setting. Consider the commutative diagram:

(4.1.7)

Xη

pη

��

vη

~~

j
// X

p

��

v��

Xσ

pσ

��

ioo

vσ~~

Xη

pη

��

j
// X

p

��

Xσ
i

oo

pσ

��

η
uη

~~

jη
// S

u��

σ
iσoo

uσ}}
η

jη
// S σ

iσ
oo
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where the right base square, the two front-faces, the two back-faces, and the central
transverse square are all cartesian (the maps vσ and vη are then uniquely induced).

Definition 4.5. — The object of nearby cycles associated to p and E ∈ ShQ`(X) is
given by

Ψp(E) := i
∗
j∗Eη ∈ ShQ`(Xσ)Gal(η/η),

where Eη := v∗ηj
∗E ' j

∗
v∗E and ShQ`(Xσ)Gal(η/η) is the ∞-category of objects

in ShQ`(Xσ) equipped with an equivariant structure with respect to the continuous
action of Gal(η/η) on Xσ via the canonical map Gal(η/η)→ Gal(σ/σ).

When the map p is uniquely determined by our context, we will often write Ψ(E)

for Ψp(E).

Remark 4.6. — We will not give here the details for a precise definition of the continu-
ous Galois-equivariant∞-category ShQ`(Xσ)Gal(η/η) of the previous paragraph. A pre-
cise construction can be obtained using the ∞-categorical analogue of the Deligne
topos described in [SGA7 II, Exp.XIII]. Indeed the étale topos of S can be described
as a lax limit (in the sense of∞-categories) of the diagram given by the specialization
map between the étale topos of the generic point and the étale topos of the closed
point. See [Lur17, A.8].

Remark 4.7. — Notice that by definition, the inertia group I acts trivially on Xσ. In
this case, every object of ShQ`(Xσ)Gal(η/η) can be seen as equipped with a continuous
action of I together a compatible Gal(σ/σ)-equivariant structure. More precisely, the
equivalence of stacks

Xσ/Gal(η/η) ' (Xσ/I)/Gal(σ/σ)

establishes an equivalence

ShQ`(Xσ)Gal(η/η) ' Repcont(I, ShQ`(Xσ))Gal(σ/σ).

Moreover, one can check that taking I-invariants renders the commutativity of the
diagram

ShQ`(Xσ)Gal(η/η)

q∗ ))

∼ // Repcont(I,ShQ`(Xσ))Gal(σ/σ)

(−)hI
tt

ShQ`(Xσ)Gal(σ/σ)

with q∗ being the pushforward along q : Xσ/Gal(η/η)→ Xσ/Gal(σ/σ).

Set Eσ := v∗σi
∗E. There is a canonical adjunction morphism

(4.1.8) sp : Eσ −→ Ψp(E)

that is compatible with the action of Gal(η/η). On the source, this action comes via
(4.1.5). In other words, (4.1.8) is a morphism in the ∞-category ShQ`(Xσ)Gal(η/η) of
`-adic sheaves on Xσ endowed with a Gal(η/η)-equivariant structure.
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Definition 4.8. — Given E ∈ ShQ`(X), the object of vanishing cycles Vp(E) is de-
fined as the cofiber

Eσ −→ Ψp(E) −→ Vp(E)

in the ∞-category ShQ`(Xσ)Gal(η/η). To shorten notations, we will write Vp :=

Vp(Q`,X).

Again, when the map p is uniquely determined by our context, we will often write
V (E) for Vp(E).(28)

4.2. `-adic Realization of Singularities Categories

Context 4.9. — Throughout this section we fix an excellent Henselian trait S =

SpecA with uniformizer π. We also fix p : X → S a proper flat scheme over S with X
regular. We consider the LG-pair (X, f) where f is defined as the composite

(4.2.1) f := (X
p−−→ S

π−−→ A1
S),

π being our fixed uniformizer. We will simply denote denote this LG-pair by (X,π).
Also, consider the following commutative diagram with pullback squares

(4.2.2)

Xη

y

� � j //

pη
��

X

p
��

Xσ = X0
ioo

pσ
��

x

η

y
��

� � jη
// S

π
��

σ
iσoo

��

x

Gm,S �
� j0

//

q
##

A1
S

��

S?
_i0oo

S

which by Remark 4.2 and under the hypothesis that p is flat, are also derived fiber
products. In particular, the canonical inclusion t(X0)→ X0 is an equivalence.

Corollary 3.23 and Lemma 3.26 provide cofiber-fiber sequences of BUS-modules
M∨

S (Sing(X,π)) −→M∨
S (Perf(X0))[1]⊕ p∗i∗i∗BUX

−→ cofib(p∗j]BUXη → p∗j∗BUXη )
(4.2.3)

p∗i∗i
∗BUX

u−−→ p∗i∗i
!BUX −→M∨

S (Sing(X0)),(4.2.4)

where we have M∨
S (Perf(X0))) ' p∗i∗BUX0 .

Proposition 4.10. — In the notations of diagram (4.2.2), the canonical map

M∨
S (Sing(X,π)) −→ (iσ)∗(iσ)∗(M∨

S (Sing(X,π)))

is an equivalence of BUS-modules. Furthermore, there is a cofiber-fiber sequence of
BUσ-modules

(4.2.5) (iσ)∗(M∨
S (Sing(X,π))) −→ (pσ)∗(BUX0 [1]⊕ BUX0) −→ (pσ)∗i

∗j∗BUXη .

(28)A more standard notation for Vp(E) is Φp(E).
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Proof. — The localization property for SH (see Proposition A.3 and Proposition A.2)
gives us a cofiber-fiber sequence of BUS-modules

(4.2.6) (jη)] ◦ (jη)∗(M∨
S (Sing(X,π))) −→M∨

S (Sing(X,π))

−→ (iσ)∗ ◦ (iσ)∗(M∨
S (Sing(X,π))).

We show that the first term in the cofiber-sequence (4.2.6) is a zero object. In this case
the last map in (4.2.6) is an equivalence of BUS-modules and the motivic BUS-module
of M∨

S (Sing(X,π)) is completely determined by its restriction to the residue field.
More precisely, it is determined by a cofiber-fiber sequence of BUk-modules (4.2.5).
To show that the first term is zero, as j] is fully faithful,(29) it is enough to apply j∗
to the first row of the diagram (3.4.20) and check it is sent to zero. Indeed, under the
hypothesis that p is proper, proper base change (see Proposition A.3 and A.2) gives
us a natural equivalence (jη)∗p∗ ' (pη)∗j

∗. But again, the localization property tells
us j∗ ◦ i∗ ' 0, so that the first two terms in the first row of (3.4.20) become zero. So
does the cofiber (jη)∗(M∨

S (Sing(X0))).
To describe (iσ)∗(M∨

S (Sing(X0))) we apply (iσ)∗ to the whole diagram (3.4.20).
Again because of proper base change, we have a natural equivalence (iσ)∗p∗ ' (pσ)∗i

∗.
Moreover, as the counit is an equivalence (iσ)∗ ◦ (iσ)∗ ' Id(30) and because

i∗σp∗j]BUXη ' (pσ)∗i
∗j]BUXη

with i∗j] being always zero, we recover

(4.2.7)

(pσ)∗BUX0

0 **

// (pσ)∗i
!BUX

��

// i∗(M∨
S (Sing(X0)))

��

(pσ)∗BUX0

�� ++

(iσ)∗(jη)∗(pη)∗BUXη (pσ)∗i
∗j∗BUXη (pσ)∗BUX0 [1]⊕ (pσ)∗BUX0

oo �

Remark 4.11. — It follows from the localization sequence and the same arguments
used in the proof of Proposition 4.10 that the adjunction map

[cofib(p∗j]BUXη → p∗j∗BUXη )] −→ (iσ)∗i
∗
σ[cofib(p∗j]BUXη → p∗j∗BUXη ]

' (iσ)∗i
∗
σp∗j∗BUXη

is an equivalence.

Finally, we study the image of M∨
S (Sing(X,π)) under the Q`-adic realization func-

tor R` of (3.7.14).

Corollary 4.12. — Consider the same notations as in Proposition 4.10. Then:
(1) The canonical map

R`(M∨
S (Sing(X,π))) −→ (iσ)∗ ◦ (iσ)∗(R`(M∨

S (Sing(X,π))))

is an equivalence of R`(BUS)-modules.

(29)Follows from smooth base change for j (see Proposition A.3 and A.2).
(30)See [Rob14, Rem. 9.4.19].
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(2) There is a cofiber-fiber sequence of R`(BUσ)-modules

(4.2.8) (iσ)∗R`(M∨
S (Sing(X,π))) −→ (pσ)∗(R

`(BUX0
)[1]⊕ R`(BUX0

))

−→ (pσ)∗i
∗j∗R

`(BUXη ).

Proof. — By construction R`(M∨
S (Sing(X,π))) carries the structure of a Tate-

twisted-2-periodic object in ShQ`(S). Moreover, given the fact that p is proper, the
combination of proper base change, of the strong compatibility between the six oper-
ations and of Proposition 4.10, implies that the Q`-adic sheaf R`

S(M∨
S (Sing(X,π)))

is again determined by its restriction to the residue field via a cofiber-fiber sequence
of R`

σ(BUσ)-modules. �

Remark 4.13. — The combination of Proposition 3.28 with proper base change for p
and the fact i∗j] = 0, tells us that the restriction of the 2-cell (3.4.24) to σ, provides
a commutative diagram of (pσ)∗BUZ-modules

(4.2.9)

i∗σ(jη)∗(pη)∗BUXη [−1]

��

(pσ)∗BUZ

i∗σθ
(X,Z)
K

66

// (pσ)∗i
!BUXη

Transferring this diagram along the `-adic realization, we obtain a factorization

(4.2.10)

i∗σ(jη)∗(pη)∗R
`(BUXη )[−1]

��

(pσ)∗R
`(BUZ)

i∗σR`(θ
(X,Z)
K )

55

// (pσ)∗i
!R`(BUXη )

as maps of (pσ)∗R
`BUZ-modules.

Remark 4.14. — Notice that, since R`
X0

(BUX0) ' Q`,X0(β), one has:

(pσ)∗(R
`(BUX0

)) ' (pσ)∗p
∗
σ(Q`,σ(β)) ' (pσ)∗(Q`,X0

)⊗Q`,σ(β) ' ((pσ)∗(Q`,X0
))(β),

where the second equivalence follows from the projection formula (as p is proper),
and the last equivalence follows from the definitions and from the fact that the tensor
product commutes with colimits separately in each variable.

4.3. The action of the punctured disk η. — Throughout this section assume Con-
text 4.9. In this section we introduce a key player—the algebra structure on the
cohomology of the punctured disk η. Our final goal is describe the `-adic realization
of the motive of Sing computed in the previous section in terms of an action of this
algebra.

Definition 4.15. — The object HQ`(η) := i∗σ(jη)∗Q`,η in ShQ`(σ) is called the coho-
mology of the punctured disk η.

The first observation is that HQ`(η) carries a canonical algebra structure and its
underlying object can be described in concrete terms using absolute purity for (S, σ):
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Lemma 4.16. — The object HQ`(η) carries a canonical structure of commutative al-
gebra object in ShQ`(σ). Furthermore, at the level of the underlying objects, we have
an equivalence

HQ`(η) ' Q`,σ
⊕

Q`,σ(−1)[−1].

Proof. — The algebra structure follows from the fact i∗σ(jη)∗ is lax monoidal. The
computation requires two steps. The first is motivic. The second uses purity for `-adic
sheaves.

(Step 1) We claim that, given the diagram

(4.3.1)
Gm,S

j0
//

q
##

A1
S

h
��

S
i0oo

Id
}}

S
we have
(4.3.2) (i0)∗(j0)∗1Gm,S ' q∗1Gm,S ' 1S

⊕
1S(−1)[−1].

Here these operations hold for SHS but also for any realization compatible with the
six operations (like the `-adic one with Q` coefficients). The second equivalence in
(4.3.2) follows the fact that
(4.3.3) q]1Gm,S = 1S

⊕
1S(1)[1].

Let us first show (4.3.3): by definition of the Tate motive we obtain 1S(1)[1] as the
cofiber of the map in motives over S of e : S → q]1Gm,S given by the unit of the
multiplicative group structure. The map e admits a retract induced by the projection
q : Gm,S → S. The formula (4.3.3) follows then from the fact we are working in a
stable setting.

We can use this to establish the second equivalence in (4.3.2): by adjunction and
the projection formula for q], we get that for any E ∈ SHS

MapSHS (E, q∗q
∗1S) ' MapSHS (q]q

∗E, 1S)

' MapSHS (q]1S ⊗ E, 1S) ' MapSHS (E ⊕ E(1)[1], 1S)

' MapSHS (E, 1S)×MapSHS (E(1)[1], 1S)

' MapSHS (E, 1S)×MapSHS (E, 1S(−1)[−1])

' MapSHS (E, 1S ⊕ 1S(−1)[−1]),

(4.3.4)

showing that q∗1Gm,S ' 1S
⊕

1S(−1)[−1]. In particular, the unit of the adjunction
1S −→ q∗1S ' 1S

⊕
1S(−1)[−1]

identifies with the inclusion of the first factor in the direct sum.
It remains to show the first equivalence in the formula (4.3.2). For that purpose it

will be enough to show that
(4.3.5) (i0)∗(j0)∗q

∗ ' q∗q∗.

For that, we notice that the projection p]p
∗ → Id admits a section given by the

1 : S → Gm,S . Now we recall that q = h ◦ j0 so that (4.3.5) is equivalent to

(4.3.6) (i0)∗(j0)∗j
∗
0h
∗ ' h∗(j0)∗j

∗
0h
∗.
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From the localization property we have an exact sequence
(4.3.7) h∗(i0)∗i

!
0h
∗ −→ h∗ Idh∗ −→ h∗(j0)∗j

∗
0h
∗.

Because of A1-invariance we have h∗ Idh∗ ' Id. Moreover, as h∗(i0)∗ = IdS , (4.3.7)
is equivalent to

(4.3.8)

h∗(i0)∗i
!
0h
∗

o
��

// h∗ Idh∗

o
��

// h∗(j0)∗j
∗
0h
∗

o
��

i!0h
∗ // IdS // h∗(j0)∗j

∗
0h
∗

Finally, because (i0)∗ is fully faithful and because i∗0h∗ = IdS we have a commutative
diagram

(4.3.9)

h∗(i0)∗i
!
0h
∗

o
��

// h∗ Idh∗

o
��

// h∗(j0)∗j
∗
0h
∗

o
��

i!0h
∗ //

o
��

IdS

o
��

// h∗(j0)∗j
∗
0h
∗

i∗0(i0)∗i
!
0h
∗ // i∗0h

∗

so that, from the localization sequence
(4.3.10) i∗0

[
(i0)∗i

!
0h
∗ → h∗ → (j0)∗j

∗
0h
∗]

we deduce (4.3.6). Combining (4.3.9) and (4.3.10) we obtain a cofiber-fiber sequence
(4.3.11) i!01A1

S
−→ 1S −→ q∗1S ' 1S ⊕ 1S(−1)[−2],

where the last map is the inclusion of the first factor. In particular, we find
(4.3.12) 1S(−1)[−2]

∼−−−→ i!01A1
S

(Step 2) Now we transfer this discussion along the Q`-realization: Absolute purity
for `-adic sheaves, namely, the result of [Ayo14, 7.4] using the fact that the hypothesis
[Ayo14, 7.3] holds (as proved in [ILO14, XVI 3.5.1]), says that the exchange map

Ex : t∗i!0 −→ i!σπ
∗

associated to the pullback diagram

(4.3.13)
σ

iσ //

t
��

S

π
��

S
i0 // A1

S

with π the uniformizer, is an equivalence. Therefore we obtain an equivalence of
sequences

(4.3.14)

i!σπ
∗Q`,A1

S

// i∗σπ
∗Q`,A1

S

// i∗σ(jη)∗Q`,η = HQ`(η)

t∗i!01A1
S

//

o Ex

OO

t∗i∗01A1
S

o
OO

// t∗(i0)∗(j0)∗Q`,Gm,S

OO
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so that the last terms on the right are also equivalent, namely, by (4.3.11) we find

(4.3.15) HQ`(η) ' Q`,σ ⊕Q`,σ(−1)[−1]

and the top sequence in (4.3.14) reads as

i!σQ`,S −→ Q`,σ −→ Q`,σ ⊕Q`,σ(−1)[−1],

where the last map has a splitting. The exchange map gives the purity isomorphism
for (σ, S, η)

�(4.3.16) Q`,σ(−1)[−2]
∼−−−→ i!σQ`,S .

Remark 4.17. — Using the description of R`(BUσ) as an infinite direct sum of Tate
twists (3.7.13) we can consider the map

(4.3.17) Q`,σ(−1)[−2]
inc−−−→ R`(BUσ)

u−−→ i!σR`(BUS)
proj0−−−−−→ i!σQ`,S ,

where:
– the first map is the canonical inclusion. Under the equivalence (3.7.13) this in-

clusion can also be described as the Bott element, β (3.1.4).
– the last map is the projection at level 0.
– the middle map is the purity morphism for algebraic K-theory (3.4.13).

See [CD12, 14.4.1]. We claim that the purity map (4.3.16) coincides with the compo-
sition (4.3.17). This follows because of the compatibility of the exchange map under
the six operations, before and after passing to R`(BU)-modules.

In particular, by the universal property of base-changing to R`(BUσ), (4.3.17)
provides a R`(BUσ)-linear commutative square

(4.3.18)

R`(BUσ)
u
∼ // i!σR`(BUS)

R`(BUσ)⊗Q`,σ(−1)[−2]

− ∗ β o
OO

Id⊗(4.3.16)
∼ // R`(BUσ)⊗ i!σQ`,S

can o
OO

which under (3.7.13) says that u is the multiplication by β−1.

Let us now extract some consequences of the lemma.

Remark 4.18. — In light of the lemma, HQ`(η) can be understood as the cohomol-
ogy of a circle but with a generator in Tate degree (−1,−1). Multiplication by this
generator, defined by the composition

(4.3.19) Q`,σ(−1)[−1]⊗HQ`(η)
incl⊗ Id−−−−−−−−→ HQ`(η)⊗HQ`(η) −→ HQ`(η)

provides a map of HQ`(η)-modules
(4.3.20) HQ`(η) −→ HQ`(η)(1)[1].

Rewinding base change along Q`,σ → HQ`(η), this map corresponds to a map of
Q`,σ-modules
(4.3.21) Q`,σ −→ HQ`(η)(1)[1]

recovering the element of Tate degree (−1,−1).
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Proposition 4.19 ([Del77, Cycle §2.1] or [ILO14, Exp.XVI Def. 2.3.1, Prop. 2.3.4] and
[Fuj02, §1, 1.1.2, 1.1.5])

There exists an `-adic class

(4.3.22) [θ
(S,σ)
` : Q`,η −→ Q`,η(1)[1]] ∈ H1(η,Q`(1))

such that:
(1) its image under i∗σ(jη)∗ is the map (4.3.20);
(2) its image under the boundary map of the open-closed pair with support (σ, S, η)

(4.3.23) H1(η,Q`(1)) −→ H2
σ(S,Q`(1))

is the first Chern class of the conormal bundle of σ in S.

Construction 4.20. — The algebra structure on the punctured disk can be trans-
ferred along pullbacks. Let p : X → S be as in Context 4.9 and set

(4.3.24) HQ`(Xη) := (pσ)∗i
∗j∗Q`,Xη ' i∗σ(jη)∗(pη)∗Q`,Xη .

The unit of the adjunction Q`,η → (pη)∗Q`,Xη , being a map of algebras, produces
under the lax-monoidal functor i∗σ(jη)∗, a map of commutative algebra objects

(4.3.25) mp : HQ`(η) −→ HQ`(Xη)

In particular, this guarantees the commutativity of the diagram “multiplication
by θ(S,σ)

` ”

(4.3.26)
HQ`(η)

− ∗ θ(S,σ)
` //

mp

��

HQ`(η)(1)[1]

mp

��

HQ`(Xη)
− ∗mp(θ

(S,σ)
` )

// HQ`(Xη)(1)[1]

and implies that the bottom map can also be obtained by pulling θ(S,σ)
` back to Xη:

− ∗mp(θ
(S,σ)
` ) = (pσ)∗i

∗j∗p
∗
η

[
Q`,Xη

θ
(S,σ)
`−−−−−→ Q`,Xη (1)[1]

]
.

Notice at the same time that HQ`(Xη) is also a (pσ)∗Q`,Xσ -algebra via a map

(4.3.27) (pσ)∗Q`,Xσ −→ HQ`(Xη)

obtained from the map of algebras Q`,X → j∗j
∗Q`,X . As coproducts of commuta-

tive algebras are given by tensor products [Lur17, 3.2.4.7], the combined actions of
(pσ)∗Q`,Xσ and HQ`(η) are encoded by a single map of commutative algebras

(4.3.28) HQ`(η)⊗Q`,σ (pσ)∗Q`,Xσ −→ HQ`(Xη).

Let us now transfer this discussion to R`(BU)-modules.

Definition 4.21. — The R`(BU)-valued cohomology of the punctured disk η is the
object HR`(BU)

Q` (η) := i∗σ(jη)∗R
`(BUη) in ModR`(BUσ) ShQ`(σ).
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Construction 4.22. — The standard lax monoidal argument tells us that HR`(BU)
Q` (η)

is a commutative algebra in ModR`(BUσ) ShQ`(σ). The map of algebras

Q`,Xη −→ R`(BUη)

induces a map of Q`,σ-algebras

(4.3.29) HQ`(η) −→ HR`(BU)
Q` (η).

Furthermore, the fact that HR`(BU)
Q` (η) is a R`(BUσ)-algebra, tells us that under base-

change (4.3.29) produces a map of R`(BUσ)-algebras

(4.3.30) HQ`(η)⊗Q`,σ R`(BUσ) −→ HR`(BU)
Q` (η)

which we can show to be an equivalence: indeed, it is enough to check that it is an
equivalence between the underlying objects and here we have

HQ`(η)⊗Q`,σ R`(BUσ) ' i∗σ(jη)∗(Q`,η)⊗Q`,σ
⊕
i∈Z

Q`(i)[2i] '
⊕
i∈Z

i∗σ(jη)∗(Q`,η)(i)[2i]

'
⊕
i∈Z

i∗σ(jη)∗(Q`,η(i)[2i]) ' i∗σ(jη)∗(
⊕
i∈Z

(Q`,η(i)[2i]) ' HR`(BU)
Q` (η),

where we used the fact that both ∗-pullbacks and ∗-pushforwards preserve arbitrary
colimits and Tate-twists.(31)

Finally, the map of algebras (4.3.29) renders the commutativity of the diagram
“multiplication by θ(S,σ)

` ”

(4.3.31)
HQ`(η)

− ∗ θ(S,σ)
` //

��

HQ`(η)(1)[1]

��

HR`(BU)
Q` (η)

− ∗ θ(S,σ)
` // HR`(BU)

Q` (η)(1)[1]

and implies that the bottom map can be obtained by tensoring with θ(S,σ)
`

i∗σ(jη)∗

[
R`(BUη)

Id⊗θ(S,σ)
`−−−−−−−−−→ R`(BUη)(1)[1]

]
.

Construction 4.23. — Under the same hypothesis as in 4.20, the algebra structure
on the R`(BU)-valued punctured disk can be transferred along maps p : X → S. Set

HR`(BU)
Q` (Xη) := (pσ)∗i

∗j∗R
`(BUη) ' i∗σ(jη)∗(pη)∗R

`(BUη).

Repeating the same arguments as above, we find a map of algebra objects

HR`(BU)
Q` (η) −→ HR`(BU)

Q` (Xη)

(31)This will be explained in the proof of Proposition 4.28 below.
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which, composed with HQ`(η) → HR`(BU)
Q` (η), renders the compatibility with “multi-

plication by θ(S,σ)
` ”

(4.3.32)
HQ`(η)

− ∗ θ(S,σ)
` //

mp
��

HQ`(η)(1)[1]

mp
��

HR`(BU)
Q` (Xη)

− ∗mp(θ
(S,σ)
` )

// HR`(BU)
Q` (Xη)

and implies that the bottom map can also be obtained as

i∗σ(jη)∗p
∗
η

[
R`(BUη)

Id⊗θ(S,σ)
`−−−−−−−−−→ R`(BUη)(1)[1]

]
.

At the same time, as in 4.20, HR`(BU)
Q` (Xη) is also a (pσ)∗R

`(BUσ)-algebra through a
map of BUσ-algebras

(4.3.33) (pσ)∗R
`(BUσ) −→ HR`(BU)

Q` (Xη).

Using [Lur17, 3.2.4.7], the combined actions can be assembled as a map of Q`,σ-
algebras

(4.3.34) HQ`(η)⊗Q`,σ (pσ)∗R
`(BUσ)

can−−−−→ HR`(BU)
Q` (Xη)

which can equivalently be written as a map of BUσ-algebras

(4.3.35)
[
BUσ ⊗Q`,σ HQ`(η)

]
⊗BUσ (pσ)∗R

`(BUσ) −→ HR`(BU)
Q` (Xη).

To conclude, let us remark one can re-write −∗mp(θ
(S,σ)
` ) as map of (pσ)∗R

`(BUXσ )-
modules

(4.3.36) (pσ)∗R
`(BUXσ ) −→ HQ`(Xη)(1)[1].

Remark 4.24. — In the case where p : X → S is smooth and proper, smooth base-
change for p gives j∗p∗η ' p∗(j0)∗ and tells us that the map can of (4.3.34) is an
equivalence of algebras.

Finally, we can achieve the main goal of this section and explain the link between
the action of the punctured disk encoded by the map of algebras (4.3.34) and the
`-adic realization of Sing.

Proposition 4.25. — Forgetting the commutative algebra structures to modules, the
fiber sequence

(4.3.37) fib(can) −→ HQ`(η)⊗Q`,σ (pσ)∗R
`(BUXσ )

can−−−−→ HR`(BU)
Q` (Xη)

is equivalent to the fiber sequence (4.2.8). In particular

(iσ)∗R`(M∨
S (Sing(X,π))) ' fib(can).
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Proof. — Proper base change for perfect complexes gives us a diagram of S-dg-
categories

Perf(Xσ)
i∗ // Perf(X)

i∗ // Perf(Xσ)

Perf(σ)

(pσ)∗
OO

(iσ)∗
// Perf(S)

p∗
OO

i∗σ // Perf(σ)

(pσ)∗
OO

where:
– from the projection formula for i, the maps in the top line are Perf(Xσ)⊗-linear;
– from the projection formula for iσ the maps in the bottom line are Perf(σ)⊗-

linear;
– (pσ)∗ is symmetric monoidal.

Transferring this diagram to motives we obtain a commutative diagram of BUσ-
motives

(4.3.38)

i∗σM
∨
S (Perf(Xσ))

i∗σM
∨
S (i∗i∗) ∼ 0

,,

u(X,Xσ)
// i∗σM

∨
S (Cohb(Xσ))

))

i∗σM
∨
S (Perf(Xσ))

i∗σM
∨
S (Perf(σ))

i∗σM
∨
S (i∗σ(iσ)∗) ∼ 0

,,

u(S,σ)

∼ //

i∗σM
∨
S (p∗σ)

OO

i∗σM
∨
S (Cohb(σ))

0

))

i∗σM
∨
S (p∗σ)

OO

i∗σM
∨
S (Perf(σ))

i∗σM
∨
S (p∗σ)

OO

which, under the identifications of Sections 3.4.1 and 3.4.2, is equivalent to the com-
mutative diagram

(4.3.39)

(pσ)∗BUXσ

i∗σM
∨
S (i∗i∗) ∼ 0

,,

u(X,Xσ)
// (pσ)∗i

!
σBUS

((

(pσ)∗BUσ

BUσ

i∗σM
∨
S (i∗σ(iσ)∗) ∼ 0

,,

u(S,σ)

∼ //

i∗σM
∨
S (p∗σ)

OO

i!σBUS
0

((

i∗σM
∨
S (p∗σ)

OO

BUσ

i∗σM
∨
S (p∗σ)

OO

where:
– the top face is the (pσ)∗BUXσ -linear commutative diagram (3.4.21).
– the bottom face is the BUσ-linear version of the diagram (3.4.21) for p = Id :

S → S.
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– the maps i∗σM∨
S (p∗σ) : BUσ → (pσ)∗BUXσ coincide with the natural unit of the

adjunction. On the extreme left and right of the diagram, the vertical maps are maps
of algebra-objects. The middle one is a map of modules.

In this case, by the universal property of base change along BUσ → (pσ)∗BUXσ
the diagram (4.3.39) is equivalent to (pσ)∗BUXσ -linear commutative diagram

(4.3.40)

(pσ)∗i
!BUX

��

(pσ)∗BUXσ

0 ∼ Id⊗i∗σM∨
S (i∗σ(iσ)∗) ∼ i∗σM∨

S (i∗(i)∗) 22

Id⊗u(S,σ)

∼ //

u(S,σ)

88

(pσ)∗BUXσ ⊗BUσ i
!
σBUS

Id⊗0
((

OO

(pσ)∗BUXσ

Finally, we transfer this diagram along the `-adic realization and explain how to
conclude the proof. First notice the information of the fiber sequence (4.2.8) is already
present in the diagram (4.3.40) by passing to cofibers. Indeed, passing to cofibers in
the top face, we get

(4.3.41) cofib
[
i∗σM

∨
S (i∗(i)∗)

] (4.2.8)
−−−−−−→ HR`(BU)

Q` (Xη)

Now, the commutativity of (4.3.40) together with the commutativity of

(4.3.42)

(pσ)∗R
`(BUXσ )⊗R`(BUσ) (R`(BUσ)⊗Q`,σ i

!
σQ`,S)

∼

$$

(pσ)∗R
`(BUXσ )⊗R`(BUσ) i

!
σR`(BUS)

Id⊗0

��

∼
88

(pσ)∗R
`(BUXσ )⊗Q`,σ i

!
σQ`,S

Id⊗0

��

R`(BUXσ )⊗R`(BUσ) R`(BUσ)

∼

&&

(pσ)∗R
`(BUXσ )⊗Q`,σ Q`,σ

(pσ)∗R
`(BUXσ )⊗R`(BUσ) (R`(BUσ)⊗Q`,σ Q`,σ)

∼
::
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combined with the commutativity of (4.3.18), tells us that after taking cofibers in
(4.3.40) we obtain commutative diagram establishing the identification of cofiber-
sequences

(4.3.43)

cofib
[
i∗σM

∨
S (i∗(i)∗)

]
(4.2.8)

**

o
��

(pσ)∗R
`(BUXσ )⊗Q`,σ cofib

[
i!σQ`,S → Q`,σ

]
o
��

// HR`(BU)
Q` (Xη)

(pσ)∗R
`(BUXσ )⊗Q`,σ HQ`(η)

44

Finally, we argue that the right-diagonal map in (4.3.43) is the map can appearing
in (4.3.37). Indeed, can is constructed as a coproduct of commutative-algebra maps
and therefore determined by its restriction to (pσ)∗R

`(BUXσ ) and to HQ`(η). Some
diagram chasing shows that the restrictions of right-diagonal map in (4.3.43) coincide
with the ones of can. �

Remark 4.26. — A consequence of Corollary 4.25 obtained through some diagram
chasing is that the classes − ∗ mp(θ

(S,σ)
` ) of (4.3.36) and i∗σR`(θ

(X,Z)
K ) of (4.2.10)

coincide.

We conclude this section relating the algebra HQ`(η)⊗Q`,σ R`(BUσ) to the algebra
i∗σR`(M∨

S (Sing(S, 0)) of (3.5.2).

Proposition 4.27. — There is a canonical equivalence of commutative R`(BUσ)-
algebra objects
(4.3.44) HQ`(η)⊗Q`,σ R`(BUσ) ' i∗σR`(M∨

S (Sing(S, 0)).

Proof. — As a R`(BUσ)-module, we know that the l.h.s is equivalent to

R`(BUσ)⊕ R`(BUσ)[1]

(Proposition 3.30) and the r.h.s is equivalent to

R`(BUσ)⊕ R`(BUσ)(−1)[−1]

(Proposition 4.16). Bott periodicity imposes R`(BUσ)(−1)[−1] ' R`(BUσ)[1] and
the inclusion of this factor on both the left and right terms, gives under the universal
property of the free symmetric R`(BUσ)-algebra, maps of commutative algebra objects

(4.3.45) HQ`(η)⊗Q`,σ R`(BUσ)←− SymR`(BUσ)(R
`(BUσ)[1])

−→ i∗σR`(M∨
S (Sing(S, 0)).

Finally, as we are working withQ`-coefficients and the cohomology of the symmetric
groups are zero in characteristic zero, we find that as R`(BUσ)-modules we have

SymR`(BUσ)(R
`(BUσ)[1]) ' R`(BUσ)⊕ R`(BUσ)[1]

showing that both maps in the diagram (4.3.45) are equivalences. �
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4.4. `-adic inertia-invariant vanishing cycles. — In this section we investigate more
closely the sequence defining vanishing cycles in Definition 4.8, with the final goal of
relating this sequence to the one characterizing the motive of the singularity category.

Consider Context 4.9. Let Vp(β) := Vp(E) where E := R`
X(BUX) ' Q`(β)X , and

recall (Definition 4.8) our convention Vp := Vp(Q`,X) As a first observation, we prove
the following

Proposition 4.28. — We have a canonical equivalence

Vp(β) ' Vp ⊗Q`(β).

Proof. — Given E a Q`-adic sheaf onX, we claim first to have a canonical equivalence
between Vp(E(1)) and Vp(E)⊗Q`(1). To check this we can look at the cofiber sequence
defining vanishing cycles

(4.4.1) v∗σi∗(E(1)) −→ i
∗
j∗j
∗
v∗(E(1)) −→ Vp(E(1))

and notice that pullbacks commute with Tate-twists (by definition) and that one has
canonical equivalences

(4.4.2) j∗j
∗
(F (1)) ' (j∗j

∗
F )(1)

for any F over X. This equivalence can be deduced by looking at the mapping spaces
from a third `-adic sheaf to both sides of (4.4.2) and using the adjunction (j∗, j∗)

together with the fact that j∗ is monoidal, and that the Tate twist is an invertible
object, stable under base change. The equivalence i∗(E(1)) ' i∗(E)(1) follows by the
same argument. In this case, the cofiber sequence (4.4.1) is equivalent to

(4.4.3) (v∗σi∗(E))(1) −→ (i
∗
j∗j
∗
v∗E)(1) −→ Vp(E)(1).

Finally to deduce the equivalence Vp(β) ' Vp⊗Q`(β) one uses the equivalenceQ`(β) '⊕
i∈Z Q`(i)[2i] together with the fact that both ∗-pullbacks and ∗-pushforwards pre-

serve arbitrary colimits (see the discussion in [Rob14, Ex. 9.4.6] for pushfowards, which
is the only non obvious verification to be made). �

Let us now proceed to investigate the sequence defining vanishing cycles for E :=

R`
X(BUX) ' Q`(β)X , associated to diagram (4.2.2). By definition it lives in the

equivariant derived ∞-category ShQ`(σ)Gal(η/η), and after shifting, it may be written
as

(4.4.4) (pσ)∗Vp(β)[−1] −→ (pσ)∗R
`
Xσ (BUXσ )

sp−−−→ (pσ)∗i
∗
j∗R

`(BUXη ).

In particular, by standard lax monoidal considerations, the map sp is in fact a map
of commutative algebra objects in the equivariant category.

Now, thanks to Remark 4.7, it makes sense to take homotopy fixed points under
the action of the inertia group I ⊆ Gal(η/η). Consider the adjunction (Triv, (−)hI),

(4.4.5) ShQ`(σ)I

(−)hI
// ShQ`(σ).

Trivoo

We have that
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Proposition 4.29. — The construction of homotopy fixed points (−)hI is lax monoidal.
In particular sphI is a map of commutative algebra objects.

Proof. — Indeed, (−)hI is right adjoint to the trivial representation functor, which is
monoidal. �

Passing to inertia invariants, we obtain a cofiber-fiber sequence in ShQ`(σ)Gal(σ/σ):

(4.4.6) ((pσ)∗Vp(β)[−1])hI −→ ((pσ)∗R
`
Xσ (BUXσ ))hI

(sp)hI

−−−−−−→ ((pσ)∗i
∗
j∗R

`
Xη (BUXη ))hI.

We will now give an explicit description of the middle and last term of the cofiber-
fiber sequence (4.4.6) (see Corollary 4.33 below) and, in the process, we establish in
Lemma 4.34 a relation between the cohomology of the punctured disk (Definition
4.15) and inertia invariants vanishing cycles.

Context 4.30. — From now on, for simplicity, we assume that S is strictly local, so
that σ = σ. In particular, I = Gal(η/η) in this Context.

We start with a description of the last term in (4.4.6) using Galois descent for the
sheaf of ∞-categories ShQ`(−):

Proposition 4.31. — The canonical map of commutative algebra-objects

(4.4.7) HR`(BU)
Q` (Xη) := (pσ)∗i

∗j∗R
`
Xη (BUXη ) −→ ((pσ)∗i

∗j∗R
`
Xη (BUXη ))hI

is an equivalence.

Proof. — The result follows by adjunction and Galois descent. Let vη : Xη → Xη

be the canonical map. Then by Galois theory we know that étale sheaves on Xη are
equivalent to étale sheaves on Xη equivariant with respect to the continuous action
of the Galois group Gal(η/η). This equivalence is given by

v∗η : ShQ`(Xη) −→ ShQ`(Xη)Gal(η/η)

with inverse given by taking fixed points of the global sections

(vη)∗(−)h Gal(η/η) : ShQ`(Xη)Gal(η/η) −→ ShQ`(Xη).

In particular, the unit of this equivalence induces

IdXη
∼−−−→ ((vη)∗v

∗
η(−))h Gal(η/η).

Using the commutativity of (4.1.7) together with the proper base change formula
and the commutativity of pushfowards with homotopy fixed points (taking homotopy
fixed points is a pushfoward), we find

i∗j∗ ' i∗j∗ IdXη ' i∗j∗((vη)∗v
∗
η(−))h Gal(η/η)

' i∗(j∗(vη)∗v
∗
η(−))h Gal(η/η) ' i∗(v∗j∗v∗η(−))h Gal(η/η)

' i∗v∗(j∗v∗η(−))h Gal(η/η) ' (vσ)∗i
∗
(j∗v

∗
η(−))h Gal(η/η).
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In particular, in the strictly local case we find Xσ = Xσ and vσ is the identity. Thus
the last term in the chain of equivalences becomes i∗(j∗v∗η(−))h Gal(η/η). To conclude,
it remains to explain the formula

i∗(j∗v
∗
η(−))h Gal(η/η) ' (i∗j∗v

∗
η(−))h Gal(η/η).

This follows because the continuity of the action of the profinite group Gal(η/η) tells
us that

(vη)∗v
∗
η(−)h Gal(η/η) ' colimi(vηi)∗v

∗
ηi(−)h Gal(ηi/η),

where the colimit runs through all finite Galois extensions. In the same way we can
also write

(j∗v
∗
η(−))h Gal(η/η) ' colimi(j∗v

∗
ηi(−))h Gal(ηi/η)

Finally, on each term of this colimit, the group Gal(ηi/η) is finite, so taking invari-
ants is a finite limit. We conclude using the fact that i∗ commutes with all colimits
and with finite limits.

To finish the proof of the proposition, apply this natural equivalence to

R`
Xη (BUXη ) ∈ ShQ`(Xη)

and composing it with (pσ)∗. See also [SGA7 II, Exp.XIII p. 7]. �

Let us now discuss the middle term of (4.4.6).

Proposition 4.32. — There is a canonical equivalence of commutative algebra objects

(4.4.8) ((pσ)∗R
`
Xσ (BUXσ ))hI ' (pσ)∗R

`
Xσ (BUXσ )⊗ (Q`,σ)hI.

In particular, at the level of underlying objects, we recover

(4.4.9) ((pσ)∗R
`
Xσ (BUXσ ))hI ' (pσ)∗R

`
Xσ (BUXσ )⊕ (pσ)∗R

`
Xσ (BUXσ )(−1)[−1].

Proof. — By construction of vanishing cycles, the action of I on (pσ)∗R
`
Xσ

(BUXσ ) is
the trivial action. The projection formula for the projection BI → σ (see [LZ12a])
gives us the equivalence (4.4.8). The formula (4.4.9) then follows from Lemma 4.16
and the key Lemma 4.34 below. �

Finally, as a consequence of Proposition 4.32 and 4.31, we have

Corollary 4.33. — Assume 4.30. The cofiber-fiber sequence (4.4.6) is equivalent to
a cofiber-fiber sequence

(4.4.10)

((pσ)∗Vp(β)[−1])hI

��

// (pσ)∗R
`
Xσ

(BUXσ )⊗ (Q`,σ)hI

(sp)hI

��

0 // HR`(BU)
Q` (Xη)

where sphI is a map of commutative algebra objects
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The next lemma is crucial not only in the proof of Proposition 4.32 above but
is also the key result behind our main Theorem 4.39 below. The lemma explains
how the algebra structure on the cohomology of the punctured disk is related to
inertia invariants. It is essentially an algebraic version of the fact that the cohomology
of the topological circle S1 = BZ with its cup product is quasi-isomorphic to the
commutative differential graded algebra (cdga) of homotopy fixed points of the trivial
Z-representation. See Remark 4.38 for more details on this analogy.

Lemma 4.34. — Assume Context 4.30. The object (Q`,σ)hI carries a canonical struc-
ture of commutative algebra object in ShQ`(σ). Furthermore, we have a canonical
equivalence of commutative algebra objects

(4.4.11) (Q`,σ)hI ' HQ`(η),

where on the r.h.s we have the algebra structure of Lemma 4.16. In particular, the
algebra structure on (Q`,σ)hI is obtained by transferring the canonical algebra structure
on Q`,η via the lax monoidal functor i∗σ(jη)∗ and at the level of the underlying objects
we have

(4.4.12) (Q`,σ)hI ' Q`,σ ⊕Q`,σ(−1)[−1].

Proof. — In Context 4.30, we have σ = σ. The fact that taking homotopy fixed points
is a lax monoidal functor (Proposition 4.29) guarantees that (Q`,σ)hI is an algebra
object. It remains to show the equivalence of algebras (4.4.11). As S is smooth over
itself via the identity map, the specialization map defining vanishing cycles relative
to S

(4.4.13) Q`,σ −→ i∗σ(jη)∗Q`,η
is an equivalence in ShQ`(σ)I. Note that in the l.h.s. of (4.4.12), the inertia I acts
trivially on Q`,σ. Note also that as we work under the assumption that S is strictly
local, we have I = Gal(η, η). For tame nearby cycles this follows by the explicit
computation of the r.h.s of [Ayo14, Formula (102)] for torsion coefficients. For the
total vanishing cycles functor this follows by passing to the colimit over all wild
extensions.(32)

The specialization map being equivariant, implies that after passing to I-invariants
we still get an equivalence

(4.4.14) QhI
`,σ

∼−−−→ (i∗σ(jη)∗Q`,η)hI.

Finally, by the same argument in the proof of Proposition 4.31 we find

�(4.4.15) (i∗σ(jη)∗Q`,η)hI ∼←−− i∗σ(jη)∗Q`,η =: HQ`(η).

(32)One can also give a simpler argument for the equivalence (4.4.13) in terms of étale cohomology
groups. Indeed, one can give an explicit description of the étale sheaves (jη)∗Z/nZ by noticing that
its cohomology groups are the étale sheafification of the presheaf of abelian groups sending an étale
map V → S to Hi(V ×S η,Z/nZ). As η is separably closed, V ×S η is a disjoint union of copies of η
so that its étale cohomology groups vanish for i > 1. For i = 0 we get Z/nZ as the set of (underived)
global sections of its associated constant sheaf.
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Remark 4.35. — As seen in Remark 4.18, multiplication by elements in Tate degree
(1, 1) can be presented as a map of (Q`,σ)hI-modules

(4.4.16) (Q`,σ)hI −→ (Q`,σ)hI(1)[1].

Moreover, being a map of (Q`,σ)hI-modules, (4.4.16) is determined, via base-change,
by a map of Q`,σ-modules

(4.4.17) Q`,σ −→ (Q`,σ)hI(1)[1]

which under (4.4.11), corresponds (4.3.21).

The following result describes how the class θ(S,σ)
` transfers along the equivalence

(4.4.11).

Proposition 4.36
(i) There exists an `-adic class

(4.4.18) [θ
(S,σ)
I : Q`,η −→ Q`,η(1)[1]] ∈ H1(η,Q`(1))

such that its image under i∗σ(jη)∗ is the map (4.4.16).
(ii) The classes θ(S,σ)

I and θ(S,σ)
` coincide.

Proof. — (i) is the description in [RZ82, 1.2], [Ill94, §3.6]. (ii) is the computation of
[ILO14, Exp.XVI Lem. 3.4.6, 3.4.7& 3.4.8]. �

Remark 4.37. — It follows from the lax-monoidality that for every object Ψ ∈
ShQ`(σ)I, the object ΨhI carries a canonical structure of (Q`,σ)hI-module

(Q`,σ)hI ⊗ΨhI −→ ΨhI

and by the arguments above, is acted by the class θ(S,σ)
`

ΨhI
− ∗ θ(S,σ)

`−−−−−−−−→ ΨhI(1)[1].

It is a key idea used in [RZ82, 1.4] that in the unipotent case, Ψ with its I-action
can be completely recovered from ΨhI together with the information of the action
of θ(S,σ)

` . See Remark 4.38 below for a topological analogy of this.

Remark 4.38. — The equivalence of algebras in Lemma 4.34 is an algebraic version of
a more familiar topological situation where the role of η is played by the topological
circle S1 and the choice of a closure η → η is replaced by the choice of a universal
cover of S1. Indeed, the description of the circle S1 ' BZ presents the choice of a
point ∗ → S1 as the choice of a universal cover and characterizes S1 as the homotopy
orbits for the trivial action of Z on the trivial space ∗

S1 ' BZ = ∗/Z ' colimBZ ∗.

As a consequence, after passing to singular cochains one finds

(4.4.19) C∗(S1,C) ' C∗(colimBZ ∗,C) ' limBZ C
∗(∗,C) ' C∗(∗,C)hZ ' ChZ
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as an equivalence in ModC Sp. By formality for the circle we have C∗(S1,C) '
H∗(S1,C). The resulting formula

(4.4.20) H∗(S1,C) ' ChZ

is analogous to (4.4.11). The class θ is analogous to the topological generator ε of
degree −1. Notice that we can recover the trivial representation C via the Koszul-
Tate resolution of C as a H∗(S1,C)-module, namely

C '
⊕
i∈Z

H∗(S1,C)[−i].

In the case of a Z-representationM with unipotent action, one can use the Eilenberg-
Moore spectral sequence [Lur11b, 1.1.10] combined with Koszul-Tate resolution to
reconstruct M from the pair MhZ equipped with its canonical H∗(S1,C)-action.

4.5. Comparison between Vanishing Cycles and the singularity category

We are now ready to state and prove our main theorem.

Theorem 4.39. — Let p : X → S with X regular, p a proper flat morphism over a
strictly local excellent Henselian trait S = SpecA. Set

(4.5.1) HR`(BU)
Q` (Xσ) := (pσ)∗R

`(BUXσ ).

Then, the equivalence of Q`,σ-algebras (4.4.11) induces an homotopy between the two
maps of commutative Q`,σ-algebra objects (4.3.34) and (4.29), namely:

(4.5.2) can, sphI : HQ`(η)⊗Q`,σ HR`(BU)
Q` (Xσ) −→ HR`(BU)

Q` (Xη).

In particular, the cofiber-fiber sequences (4.3.37) and (4.4.10) are equivalent, and we
deduce an equivalence

(4.5.3) (iσ)∗R`
S((M∨

S (Sing(X,π ◦ p))) ' ((pσ)∗Vp(β)[−1])hI

of Q`-adic sheaves over σ which is compatible with the action of i∗σM∨
S (Sing(S, 0)) on

the l.h.s and the action of (Q`,σ)hI on the r.h.s.

Before addressing the proof of this theorem, let us collect some remarks.

Remark 4.40. — Thanks to Proposition 4.10, the equivalence (4.5.3) can be formu-
lated as an equivalence of Q`-adic sheaves over S

(4.5.4) R`
S((M∨

S (Sing(X,π ◦ p))) ' (iσ)∗((pσ)∗Vp(β)[−1])hI.

Remark 4.41. — Note that if p : X → S is a proper morphism, and X regular, then
Sing(X,π◦p) ' Sing(X0), where X0 is the derived zero locus of π◦p. If, moreover, p is
flat, then X0 ' t(X0) (i.e., the derived zero locus coincides with the scheme theoretic
zero-locus). Therefore, the equivalences (4.5.3) and (4.5.4) can be equivalently re-
written as

(4.5.5) (iσ)∗R`
S((M∨

S (Sing(X0))) ' ((pσ)∗Vp(β)[−1])hI,
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respectively,

(4.5.6) R`
S((M∨

S (Sing(X0))) ' (iσ)∗((pσ)∗Vp(β)[−1])hI.

Remark 4.42. — Notice that, since the action of I on Xσ is trivial and taking ho-
motopy invariants can be represented as a limit, both (iσ)∗ and (pσ)∗ commute with
taking hI-invariants, being both right adjoints.(33) In particular, we have

((pσ)∗Vp(β)[−1])hI ' (pσ)∗((Vp(β)[−1])hI)

and

(iσ)∗((pσ)∗Vp(β)[−1])hI ' (iσ)∗(pσ)∗(Vp(β)[−1])hI).

Proof of Theorem 4.39. — We start with by comparing the two maps of commutative
algebras sphI and can. For this purpose one has to provide commutativity for the
following diagram of commutative algebra-objects:

HQ`(η)⊗ (pσ)∗R
`
Xσ

(BUXσ ) ∼
(4.4.15)⊗ Id

//

can

��

(i∗σ(jη)∗Q`,η)hI ⊗ (pσ)∗R
`
Xσ

(BUXσ )

(Q`,σ)hI ⊗ (pσ)∗R
`
Xσ

(BUXσ )

(4.4.14)o
OO

((pσ)∗R
`
Xσ

(BUXσ ))hI

(4.4.8)o
OO

(sp)hI

��

HR`(BU)
Q` (Xη)

∼
(4.4.7)

// ((pσ)∗i
∗j∗R

`
Xη

(BUXη ))hI

As coproducts of commutative algebra objects are given by tensor products [Lur17,
3.2.4.7], providing a 2-cell witnessing the commutativity of the diagram above, it is
equivalent to providing 2-cells witnessing the commutativity of the following two

(33)This can also be deduced from the monadic argument producing the equivalence ShQ` (σ)I '
ModQ`,σ [I](ShQ` (σ)) with Q`,σ [I] the internal group-ring of I.
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diagrams of commutative algebras

HQ`(η) ∼
(4.4.15)

//

Id⊗1
��

(i∗σ(jη)∗Q`,η)hI

Id⊗1
��

HQ`(η)⊗ (pσ)∗R
`
Xσ

(BUXσ )

can
��

(i∗σ(jη)∗Q`,η)hI ⊗ (pσ)∗R
`
Xσ

(BUXσ )

(sp)hI

��

HR`(BU)
Q` (Xη) ∼

(4.4.7)
// ((pσ)∗i

∗j∗R
`
Xη

(BUXη ))hI

(A)

(pσ)∗R
`
Xσ

(BUXσ )

1⊗ Id
��

(pσ)∗R
`
Xσ

(BUXσ )

1⊗ Id
��

HQ`(η)⊗ (pσ)∗R
`
Xσ

(BUXσ )

can
��

(i∗σ(jη)∗Q`,η)hI ⊗ (pσ)∗R
`
Xσ

(BUXσ )

(sp)hI

��

HR`(BU)
Q` (Xη) ∼

(4.4.7))
// ((pσ)∗i

∗j∗R
`
Xη

(BUXη ))hI

(B)

Concerning (A), the 2-cell is established by the naturally of the diagram in algebras

(i∗σ(jη)∗Q`,η)hI // ((pσ)∗i
∗j∗R

`
Xη

(BUXη ))hI

i∗σ(jη)∗Q`,η

o(4.4.15)
OO

// i∗σ(jη)∗(pη)∗R
`(BUη)

o (4.4.7)
OO

For (B), it comes from the adjunction (4.4.5), as in fact, by definition, the special-
ization map is of the form

Triv((pσ)∗R
`
Xσ

(BUXσ ))
sp
// (pσ)∗i

∗j∗R
`
Xη

(BUXη )

and the adjunction (Triv, (−)hI) guarantees a commutative cell in algebras

(pσ)∗R
`
Xσ

(BUXσ ) //

��

(Triv((pσ)∗R
`
Xσ

(BUXσ )))hI

sphI

��

i∗σ(jη)∗(pη)∗R
`(BUη) ∼

(4.4.7)
// [(pσ)∗i

∗j∗R
`
Xη

(BUXη )]hI

This concludes the construction of an homotopy between the two maps of commu-
tative algebras sphI and can. To prove the remaining statement in the theorem, we
need to explain the formula (4.5.3). Now that we have the identification of the two
maps, the formula follows by passing to the fibers of the underlying map of modules
and Proposition 4.25. Finally to justify why (4.5.3) is compatible with the canonical
action of R`

S(M∨
S (Sing(S, 0))) ' R`

S(BUS)⊕R`
S(BUS)[1] on the l.h.s, and the action
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of Q`(β) ⊕ Q`(β)(−1)[−1] on the r.h.s, we start by noticing that by the universal
property of base change, the maps sphI and can may also be written as maps of
BUσ-algebras

(4.5.7) can, sphI :
[
R`(BUσ)⊗Q`,σ HQ`(η)

]
⊗R`(BUσ) H

R`(BU)
Q` (Xσ) −→ HR`(BU)

Q` (Xη).

Now we use the following general fact: the fiber K of a morphism of commutative
algebras A → B has a canonical structure of A-module and this is functorial under
equivalences of algebras A ' C. In our case, we apply this to the map of algebras
(4.5.7) and the equivalence of algebras (4.3.44). �

Corollary 4.43. — Under the hypotheses and notations of Theorem 4.39, we have
an equivalence of étale `-adic hyper-cohomologies (i.e., derived global sections)

Hét(S,R
`
SM∨

S (Sing(X,π ◦ p))) ' Hét(Xσ,Vp(β)[−1])hI

in the ∞-category of Q`-dg-modules.(34)

Proof. — The statement follows by applying the hypercohomology functor Hét(S,−)

to the equivalence (4.5.4), and using in the r.h.s. that

Hét(Xσ,−) ' Hét(S, (iσ)∗(pσ)∗(−)).

Also observe that, since taking homotopy invariants can be represented as a limit, it
commutes with taking hyper-cohomology, so that we have

Hét(Xσ,Vp(β)[−1])hI ' Hét(Xσ, (Vp(β)[−1])hI). �

Corollary 4.44. — In the situation of Theorem 4.39, let us suppose that S = SpecA

is an excellent Henselian trait (so that its residue field is not necessarily separably
closed). Let us fix a separable closure k of k, and let S = SpecAsh be the correspond-
ing strict henselization of S. Then, in the notations of diagram (4.1.7), we have an
equivalence in ShQ`(S)Gal(σ|σ)

(4.5.8) R`
S((M∨

S (Sing(Xσ))) ' u∗(iσ)∗(pσ)∗(Vp(β)[−1])hI).

Proof. — We borrow our notations from diagram (4.1.7). First of all, observe that
since S is an excellent Henselian trait, the étale topos of `-torsion sheaves of any
S-scheme of finite type is of finite cohomological dimension (Remark 3.39), therefore
we still have an `-adic realization functor

Rnc
`,S := R`

S ◦M∨
S : dgcatidem

S −→ ShQ`(S).

Analogously, we will write

Rnc
`,S

:= R`
S
◦M∨

S
: dgcatidem

S
−→ ShQ`(S).

Notice that mAAsh = mAsh , so that any uniformizer π of A gives a uniformizer of Ash

(i.e., its image via A → Ash is a uniformizer in Ash). Since u : S → S is formally

(34)Note that in the literature the r.h.s of is often denoted as RΓ(I,Hét(Xσ ,Vp(β)[−1])).
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étale and the ramification locus of u : S → S is disjoint from the singularity locus of
p : X → S, in the base change X/S of X/S along u, X is still regular (since X is).

We now argue for the commutativity of the diagram

(4.5.9)

dgcatidem
S

u∗ := Restru
��

Rnc
`,S
// ModRnc

`,S
(Ash)(ShQ`(S))

u∗
��

dgcatidem
S Rnc

`,S

// ModRnc
`,S(A)(ShQ`(S))

Indeed, using the definitions, this amounts to check first that for any S-dg-catego-
ry T there is a natural equivalence of functors to spectra

u∗M
∨
S

(T ) 'M∨
S (Restru T ).

The first is the presheaf on S-dg-categories sending

T ′ 7−→ KHAsh(T ⊗Ash (T ′ ⊗A Ash).

The second is defined by

T ′ 7−→ KHA(Restru T ⊗A T ′).

The two agree by the projection formula for K-theory. Finally, the commutativity of
(4.5.9) follows from this computation together with the fact that the `-adic realization
(3.7.14) is strongly compatible with the six operations and u∗ : ShQ`(S) → ShQ`(S)

is lax monoidal.
We can now conclude the proof of the proposition: as already observed for

Rnc
`,S

(Ash) ' Q`,S(β), we have Rnc
`,S(A) ' Q`,S(β). Since X is regular, we have

u∗(Sing(X,π ◦ p)) ' Sing(Xσ), and recall that, by definition of vanishing cycles
for p and the fact that u∗(Q`,S(β)) ' Q`,S(β), we have Vp(Q`,S(β)) ' Vp(Q`,S(β))

inside ShQ`(Xσ)Gal(η|η). Now, the above commutative diagram of `-adic realizations
combined with Theorem 4.39, yields an equivalence in ShQ`(S)Gal(σ|σ)

�(4.5.10) Rnc
`,S(Sing(Xσ)) ' u∗(iσ)∗(pσ)∗(Vp(β)[−1])hI).

Remark 4.45. — The equivalence of Theorem 4.39 also provides a Chern character
map from the K-theory of matrix factorizations to `-adic 2-periodic inertia invariant
vanishing cohomology. Indeed, using the functoriality of the `-adic realization (3.7.14)
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one obtains a map

(4.5.11)

KH(MF(X,π ◦ p)) ∼ // MapModBUS
(BUS ,M∨

S (MF(X,π ◦ p))

i∗σ
��

MapModBUσ
(BUσ, i∗σM∨

S (MF(X,π ◦ p))

(3.7.14) + (4.5.3)
��

Hét(Xk,Vp(β)[−1])hI MapModQ`,σ(β)
(Q`,σ(β), ((pσ)∗Vp(β)[−1])hI)∼oo

Remark 4.46. — Notice that in the proof of Theorem 4.39, the hypothesis that X
is regular is crucial. Indeed, if X is not regular, the relative derived category of
singularities Sing(X,π) is not equivalent to the absolute one Sing(X0) as explained
in Remark 2.26. In the non-regular case we would need to provide a proof for all the
statements in Section 3.4 replacing Cohb(X0) by Cohb(X0)Perf(X).

Appendix. The formalism of six operations in the motivic setting

The ∞-functor SH⊗ carries a system of extra functorialities known as the six
operations. This means:

(1) For every smooth morphisms f : X → Y of base schemes, the assignment
f∗ : SHY → SHX has a left adjoint f] which is a map of SHY -modules with respect
to the natural map induced from the unit of the adjunctions (f], f

∗)

f](−⊗ f∗(−)) −→ f](−)⊗−,

where SHX is seen as a SHY -module via the monoidal functoriality f∗. Moreover,
(−)] should satisfy smooth base-change.

(2) The existence of a second functoriality for the assignment X 7→ SHX encoded
by an ∞-functor

SH! : Schsep,ft
/S −→ PrL

Stb

defined in Schsep,ft
/S - the subcategory of all S-schemes together with separated mor-

phisms of finite type between them.
(3) The existence of natural transformation (−)∗ → (−)! defined in Schsep,ft

/S which
is an equivalence for proper maps.(35);

(4) (Projection formula) The functoriality SH! has a module structure over the
functoriality SH⊗. More precisely, for any map f : X → Y separated of finite type,
we ask for f! : SHX → SHY to be a map of SHY -modules as in (1). Here SHX is seen
as a SHY -module via the monoidal functoriality f∗.

(35)Here (−)∗ denotes the right adjoints of the functoriality SH⊗
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(5) For any cartesian square of schemes

(A.0.1) Y ′
p′
//

f ′
��

X ′

f
��

Y
p
// X

with f separated of finite type, we ask for natural equivalences of ∞-functors

(A.0.2) p∗ ◦ f! ' (f ′)! ◦ (p′)∗

and

(A.0.3) f ! ◦ p∗ ' (p′)∗ ◦ (f ′)!.

(6) For any smooth morphism of relative dimension d, f : Y → X the adjunctions
(f!, f

!) and (f], f
∗) are related by a natural equivalence

(A.0.4) f] ' f!(−⊗ ThomY (NY/Y×XY )),

where ThomY (NY/Y×XY ) is the motivic thom spectrum of the normal bundle
NY/Y×XY .

In the presence of an orientation data (see [CD12, 2.4.c]) we have

ThomY (NY/Y×XY ) ' (P1
Y ,∞)⊗

d

so that

(A.0.5) f] ' f!(−⊗ (P1
Y ,∞)⊗

d

).

In particular, whenever f is an open immersion we have

f] ' f!.

Thanks to the main results of [Ayo07a, CD12] (see Proposition A.2), all these op-
erations and coherences can be constructed from the initial ∞-functor SH⊗. In the
setting of higher categories this can be done using the theory of correspondences de-
veloped in [GR17, Chap. 7]. Alternatively, one can also use results of [LZ12a, LZ12b]
as explained in [Rob14, §9.4]. In this appendix we give a brief survey of the construc-
tion based on the techniques of [GR17, Chap. 7] but we do not look at the necessary
Beck-Chevalley conditions. These have now been carefully treated in [Kha16b], in a
more general setting where base schemes are allowed to be derived.

Fix a base Noetherian scheme S and fix Sch/S a full subcategory of the category
of all Noetherian schemes as in [CD12, 2.0]. Suppose we are given an ∞-functor

F : Schop
/S −→ CAlg(PrL

Stb).

From this it is possible to extract a new functor

Arr(Sch/S)op −→ Mod(PrL
Stb)

where Mod(PrL
Stb) is the ∞-category of pairs (C,M) with C a symmetric monoidal

stable presentable ∞-category and M a stable presentable category endowed with a
structure of C-module. The new functor sends f : Y → X to the pair (F(X),F(Y ))
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with F(Y ) seen as a module via F(f). We will also denote by F. The reader can
consult [Rob14, §9.4.1.2] for a precise description of this assignment.

The ∞-category Mod(PrL
Stb) is a non-full subcategory of Mod(Catbig

∞ ) which is
the maximal (∞, 1)-category of the (∞, 2)-category Mod(Catbig

∞ )2-cat where we also
include natural transformations of functors. In reality, the initial data we are interested
in, is the new ∞-functor

F : Arr(Sch/S)op −→ Mod(Catbig
∞ )2-cat

and the six operations will express the coherences between F and the following five
distinct classes of maps in Sch/S:

– spft := separated morphisms of finite type
– all := all morphisms
– isom := isomorphisms
– proper := proper morphisms
– smooth := smooth morphisms
– open := open morphisms

These classes satisfy some standard stability assumptions—see [GR17, Chap. 7,
§1.1.1]. We will use the same notations for the classes of maps in Arr(Sch/S) given
by natural transformations where the maps belong to the respective classes.

We now explain the conditions and their consequences. The reader should consult
[GR17, Chap. 7] for the notations. The first two conditions are:

(i) F satisfies the right Beck-Chevalley condition with respect to the inclusion
vert := smooth ⊆ horiz := all [GR17, Chap. 7, Def. 3.1.5]. By the universal prop-
erty of correspondences [GR17, Chap. 7, Th. 3.2.2-b)] F extends in a unique way to
an (∞, 2)-functor

Fsmooth
smooth,all : Corr(Arr(Sch/S))smooth

smooth,all −→ Mod(Catbig
∞ )2-cat

whose restriction along the inclusion

((Sch/S)horiz)
op ⊆ Arr(Sch/S)op ⊆ Corr(Arr(Sch/S))smooth

smooth,all

recovers F.
Using the fact that (Corr(Arr(Sch/S))smooth

smooth,all)
1-op = Corr(Arr(Sch/S))smooth

all,smooth,
passing to the 1-opposite we obtain a new (∞, 2)-functor

((F)smooth
smooth,all)

1-op : Corr(Arr(Sch/S))smooth
all,smooth −→ (Mod(Catbig

∞ )2-cat)1-op

whose restriction along

(Sch/S)all ⊆ Corr(Arr(Sch/S))smooth
all,smooth

recovers Fop.
(ii) Fop : Arr(Sch/S) → (Mod(Catbig

∞ )2-cat)1-op satisfies the left Beck-Chevalley
with respect to the inclusion horiz := proper ⊆ vert := all [GR17, Chap. 7, Def. 3.1.2].
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By the universal property of correspondences [GR17, Chap. 7, Th. 3.2.2-a)] Fop ex-
tends in a unique way to an (∞, 2)-functor

(Fop)proper
all,proper : Corr(Arr(Sch/S))proper

all,proper −→ (Mod(Catbig
∞ )2-cat)1-op

whose restriction along the inclusion

((Sch/S)vert) = Arr(Sch/S) ⊆ Corr(Arr(Sch/S))proper
all,proper

recovers Fop.
We remark that these Beck-Chevalley conditions need to be verified at the level of

modules.
We consider now the restriction ((F)smooth

smooth,all)
1-op along the inclusion

Corr(Arr(Sch/S))isom
all,open ⊆ Corr(Arr(Sch/S))smooth

all,smooth

and observe that we have built a commutative diagram of (∞, 2)-functors

Arr(Sch/S)
� t

''

J j

xx

Corr(Arr(Sch/S))isom
all,open

&&

Corr(Arr(Sch/S))proper
all,proper

ww

(Mod(Catbig
∞ )2-cat)1-op

The formalism of six operations is constructed by gluing these two functors, merging
open immersions and proper maps. More precisely, it follows from Nagata’s compact-
ification that any morphism in spft can be written as a morphism in open composed
with a morphism in proper. In this sense what we would like is to produce a new
(∞, 2)-functor completing the commutativity of the diagram

Arr(Sch/S)
� t

''

J j

ww

Corr(Arr(Sch/S))isom
all,open

''

''

Corr(Arr(Sch/S))proper
all,proper

ww

ww

Corr(Arr(Sch/S))proper
all,spft

��

(Mod(Catbig
∞ )2-cat)1-op

This is solved by the theorem [GR17, Chap. 7, Th. 5.2.4] which gives necessary and
sufficient conditions for the existence and uniqueness of the dotted map. These are
the following:
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(iii) [GR17, Chap. 7, 5.1.2]: the class open∩ proper consists of embeddings of con-
nected components (therefore monomorphisms).

(iv) [GR17, Chap. 7, 5.1.4]: For any map f : X → Y separated of finite type, the
space Fact(f) of factorizations of f as an open immersion followed by a proper map,
is contractible. This is a consequence of Nagata’s compactification as explained in
[GR17, Chap. 5, Prop. 2.1.6].

(v) [GR17, Chap. 7, 5.2.2] It is the well-known support property of Deligne.

Definition A.1. — We say that an (∞, 1)-functor F : Schop
/S → CAlg(PrL

Stb) has the
six operations if it satisfies the conditions (1) to (5) above. We denote by Fproper

all,spft its
unique extension

Corr(Arr(Sch/S))proper
spft,all −→ Mod(Catbig

∞ )2-cat.

Let F satisfy the six operations. We will use the following notations:

F] := Fsmooth
smooth,all|Arr(Sch/S)smooth : Arr(Sch/S)smooth −→ Mod(Catbig

∞ )2-cat

F∗ := ((Fop)proper
all,proper|Arr(Sch/S)op

proper))
op : Arr(Sch/S)proper −→ Mod(Catbig

∞ )2-cat

F! := Fproper
all,spft|Arr(Sch/S)spft : Arr(Sch/S)spft −→ Mod(Catbig

∞ )2-cat.

The following result of Ayoub and Cisinski-Deglise gives sufficient conditions for a
given F to have the six operations:

Proposition A.2 (Ayoub and Cisinski-Deglise). — Let F : Schop
/S → CAlg(PrL

Stb) be
an ∞-functor satisfying the following conditions:

(a) F satisfies (i);
(b) for each proper map f : X → Y , F∗(f) has a right adjoint;
(c) (Localization) For every closed immersion i : Z ↪→ X of base schemes with

open complementary U := X − Z ↪→ X the commutative diagram

F(Z)

��

F∗(i)
// F(X)

F(f)
��

0 // F(U)

is a pullback in PrL
Stb. In particular F∗(i) is fully faithful.(36)

(d) (Homotopy Invariance) For any base scheme X, the map F(π) : F(X)→F(A1
X)

is fully faithful. Here π : A1
X → X is the canonical projection.

(e) (Stability) For any base scheme X, the composition F](π)◦F∗(s) : F(X)→F(X)

maps the tensor unit to a ⊗-invertible object (the Tate motive).(37)

Then F satisfies all the conditions (i)–(v).

(36)See for instance [Rob14, 9.4.20].
(37)s : X → A1

X being the zero section.
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Proposition A.3. — The ∞-functor SH⊗ satisfies all the conditions of Proposi-
tion A.2.

Proof. — The localization property was proved by Morel-Voevodsky in [MV99,
Th. 2.21 p. 114] in the unstable setting. The property in the stable setting as formu-
lated above follows as a consequence. The other conditions follow from the results
of Cisinski-Deglise in [CD12] and Ayoub [Ayo07a, Ayo07b]. The fact it satisfies the
necessary Beck-Chevalley conditions in the correct ∞-sense is proved in [Kha16b].
See also the survey in [Rob14, §§9.3& 9.4.1] for an overview and more precise
references. �

To conclude this Appendix we discuss the compatibility of the six operations under
natural transformations. We have the following result due to Ayoub (for the projective
case) and Cisinski-Deglise (for the generalization to proper morphisms)

Proposition A.4 (See [Ayo10, Th. 3.4] and [CD12]). — Let φ : F → G be a natural
transformation of ∞-functors Schop

/S → CAlg(PrL
Stb) such that

(1) both F and G satisfy the hypothesis of Proposition A.2.
(2) if f : X → Y is a smooth map in Sch/S, then the diagram

(A.0.6)
F(X)

φX
// G(X)

F(Y )
φY
//

F(f)

OO

G(Y )

G(f)

OO

is left-adjointable

(A.0.7)
F(X)

φX
//

F](f)
��

G(X)

G](f)
��

F(Y )
φY
// G(Y )

Then, the natural transformation induced from the adjunctions

(A.0.8) G! ◦ φ −→ φ ◦ F!

is an equivalence. Moreover, the natural transformations

(A.0.9) φ ◦ F∗ −→ G∗ ◦ φ φ ◦ F! −→ G! ◦ φ

are given by equivalences whenever f is proper, respectively, smooth.
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