Mean field equations, hyperelliptic curves and modular forms: II
[Équations de champ moyen, courbes hyperelliptiques et formes modulaires : II]
Journal de l’École polytechnique — Mathématiques, Tome 4 (2017), pp. 557-593.

Nous introduisons une forme pré-modulaire Z n (σ;τ) de poids 1 2n(n+1) pour chaque n, avec (σ,τ)×, de sorte que pour E τ =/(+τ), tout zéro non trivial de Z n (σ;τ), c’est-à-dire que σ n’est pas de 2-torsion dans E τ , correspond à une (famille de) solution de l’équation

u+eu=ρδ0,(MFE)

sur le tore plat E τ avec ρ=8πn.

Dans la partie I [1], nous avons construit une courbe hyperelliptique X ¯ n (τ)Sym n E τ , la courbe de Lamé, associée à l’équation (MFE). Notre construction de Z n (σ;τ) s’appuie sur une étude détaillée de la correspondance 1 ()X ¯ n (τ)E τ induite par la projection hyperelliptique et l’application d’addition.

Dans l’appendice, Y.-C. Chou donne, comme application de l’expression explicite de la forme Z 4 (σ;τ) pré-modulaire de poids 10, une formule de comptage pour les équations de Lamé de degré n=4 avec monodromie finie.

A pre-modular form Z n (σ;τ) of weight 1 2n(n+1) is introduced for each n, where (σ,τ)×, such that for E τ =/(+τ), every non-trivial zero of Z n (σ;τ), i.e. σ is not a 2-torsion of E τ , corresponds to a (scaling family of) solution to the equation

u+eu=ρδ0,(MFE)

on the flat torus E τ with singular strength ρ=8πn.

In Part I [1], a hyperelliptic curve X ¯ n (τ)Sym n E τ , the Lamé curve, associated to the MFE was constructed. Our construction of Z n (σ;τ) relies on a detailed study of the correspondence 1 ()X ¯ n (τ)E τ induced from the hyperelliptic projection and the addition map.

As an application of the explicit form of the weight 10 pre-modular form Z 4 (σ;τ), a counting formula for Lamé equations of degree n=4 with finite monodromy is given in the appendix (by Y.-C. Chou).

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.51
Classification : 33E10, 35J08, 35J75, 14H70
Keywords: Lamé curve, Hecke function, pre-modular form
Mot clés : Courbe de Lamé, fonction de Hecke, forme pré-modulaire
Chang-Shou Lin 1 ; Chin-Lung Wang 2

1 Department of Mathematics and Center for Advanced Studies in Theoretic Sciences (CASTS), National Taiwan University No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan 106
2 Department of Mathematics and Taida Institute of Mathematical Sciences (TIMS), National Taiwan University No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan 106
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2017__4__557_0,
     author = {Chang-Shou Lin and Chin-Lung Wang},
     title = {Mean field equations, hyperelliptic curves and modular forms: {II}},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {557--593},
     publisher = {\'Ecole polytechnique},
     volume = {4},
     year = {2017},
     doi = {10.5802/jep.51},
     zbl = {1376.33022},
     mrnumber = {3665608},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.51/}
}
TY  - JOUR
AU  - Chang-Shou Lin
AU  - Chin-Lung Wang
TI  - Mean field equations, hyperelliptic curves and modular forms: II
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2017
SP  - 557
EP  - 593
VL  - 4
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.51/
DO  - 10.5802/jep.51
LA  - en
ID  - JEP_2017__4__557_0
ER  - 
%0 Journal Article
%A Chang-Shou Lin
%A Chin-Lung Wang
%T Mean field equations, hyperelliptic curves and modular forms: II
%J Journal de l’École polytechnique — Mathématiques
%D 2017
%P 557-593
%V 4
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.51/
%R 10.5802/jep.51
%G en
%F JEP_2017__4__557_0
Chang-Shou Lin; Chin-Lung Wang. Mean field equations, hyperelliptic curves and modular forms: II. Journal de l’École polytechnique — Mathématiques, Tome 4 (2017), pp. 557-593. doi : 10.5802/jep.51. https://jep.centre-mersenne.org/articles/10.5802/jep.51/

[1] C.-L. Chai, C.-S. Lin & C.-L. Wang - “Mean field equations, hyperelliptic curves and modular forms: I”, Camb. J. Math. 3 (2015) no. 1-2, p. 127-274 | DOI | MR

[2] Z. Chen, K.-J. Kuo, C.-S. Lin & C.-L. Wang - “Green function, Painlevé VI equation, and Eisentein series of weight one”, J. Differential Geometry (to appear)

[3] S. Dahmen - Counting integral Lamé equations with finite monodromy by means of modular forms, Utrecht University, 2003, Master Thesis

[4] S. Dahmen - “Counting integral Lamé equations by means of dessins d’enfants”, Trans. Amer. Math. Soc. 359 (2007) no. 2, p. 909-922 | DOI | MR | Zbl

[5] G.-H. Halphen - Traité des fonctions elliptique II, Gauthier-Villars, Paris, 1888

[6] R. Hartshorne - Algebraic geometry, Graduate Texts in Math., vol. 52, Springer-Verlag, 1977 | Zbl

[7] B. Hassett - Introduction to algebraic geometry, Cambridge University Press, Cambridge, 2007 | DOI | MR | Zbl

[8] E. Hecke - “Zur Theorie der elliptischen Modulfunctionen”, Math. Ann. 97 (1926), p. 210-242 | DOI | Zbl

[9] C.-S. Lin & C.-L. Wang - “Elliptic functions, Green functions and the mean field equations on tori”, Ann. of Math. (2) 172 (2010) no. 2, p. 911-954 | DOI | MR

[10] C.-S. Lin & C.-L. Wang - “A function theoretic view of the mean field equations on tori”, in Recent advances in geometric analysis, Adv. Lect. Math. (ALM), vol. 11, Int. Press, Somerville, MA, 2010, p. 173-193 | MR

[11] C.-S. Lin & C.-L. Wang - “On the minimality of extra critical points of Green functions on flat tori”, Internat. Math. Res. Notices (2016), doi:10.1093/imrn/rnw176 | DOI

[12] R. S. Maier - “Lamé polynomials, hyperelliptic reductions and Lamé band structure”, Philos. Trans. Roy. Soc. London Ser. A 366 (2008) no. 1867, p. 1115-1153 | DOI | Zbl

[13] D. Mumford - Abelian varieties, Oxford University Press, Cambridge, 1974 | Zbl

[14] E. T. Whittaker & G. N. Watson - A course of modern analysis, Cambridge University Press, Cambridge, 1927 | Zbl

Cité par Sources :