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MEAN FIELD EQUATIONS, HYPERELLIPTIC CURVES

AND MODULAR FORMS: II

by Chang-Shou Lin & Chin-Lung Wang

Abstract. — A pre-modular form Zn(σ; τ) of weight 1
2
n(n+ 1) is introduced for each n ∈ N,

where (σ, τ) ∈ C× H, such that for Eτ = C/(Z+ Zτ), every non-trivial zero of Zn(σ; τ), i.e. σ
is not a 2-torsion of Eτ , corresponds to a (scaling family of) solution to the equation
(MFE) 4u+ eu = ρ δ0,

on the flat torus Eτ with singular strength ρ = 8πn.
In Part I [1], a hyperelliptic curveXn(τ) ⊂ SymnEτ , the Lamé curve, associated to the MFE

was constructed. Our construction of Zn(σ; τ) relies on a detailed study of the correspondence
P1(C)← Xn(τ)→ Eτ induced from the hyperelliptic projection and the addition map.

As an application of the explicit form of the weight 10 pre-modular form Z4(σ; τ), a counting
formula for Lamé equations of degree n = 4 with finite monodromy is given in the appendix
(by Y.-C. Chou).

Résumé (Équations de champ moyen, courbes hyperelliptiques et formes modulaires : II)
Nous introduisons une forme pré-modulaire Zn(σ; τ) de poids 1

2
n(n+1) pour chaque n ∈ N,

avec (σ, τ) ∈ C × H, de sorte que pour Eτ = C/(Z + Zτ), tout zéro non trivial de Zn(σ; τ),
c’est-à-dire que σ n’est pas de 2-torsion dans Eτ , correspond à une (famille de) solution de
l’équation
(MFE) 4u+ eu = ρ δ0,

sur le tore plat Eτ avec ρ = 8πn.
Dans la partie I [1], nous avons construit une courbe hyperelliptique Xn(τ) ⊂ SymnEτ ,

la courbe de Lamé, associée à l’équation (MFE). Notre construction de Zn(σ; τ) s’appuie sur
une étude détaillée de la correspondance P1(C) ← Xn(τ) → Eτ induite par la projection
hyperelliptique et l’application d’addition.

Dans l’appendice, Y.-C. Chou donne, comme application de l’expression explicite de la forme
Z4(σ; τ) pré-modulaire de poids 10, une formule de comptage pour les équations de Lamé de
degré n = 4 avec monodromie finie.
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0. Introduction

Let E = Eτ = C/Λτ be a flat torus, where τ ∈ H = {τ ∈ C | Im τ > 0} and
Λ = Λτ = Zω1 + Zω2 with ω1 = 1 and ω2 = τ . Also ω3 := ω1 + ω2.

Convention. — For z ∈ C we denote [z] := z (mod Λ) ∈ E. For a point [z] in E we
often write z instead of [z] to simplify notations when no confusion should arise. For
N ∈ N, E[N ] := {[z] ∈ E | Nz ∈ Λ} is the group of N -torsion points in E. Also
E× := E r {[0]}.

We will use the Weierstrass elliptic function ℘(z) = ℘(z; Λ) and its associated
functions ζ(z; Λ) and σ(z; Λ) extensively. We often write τ instead of Λ and even
omit it in the notation when no confusion should arise. We take [14] as our general
reference on elliptic functions.

In this paper, we continue our study, initiated in [9] and developed in Part I [1],
on the singular Liouville (mean field) equation:

(0.1) 4u+ eu = 8πn δ0 on E,

under the flat metric. Here, 4 = ∂2/∂x2 + ∂2/∂y2 is the Laplace operator on E

induced from C, n ∈ N, and δ0 is the Dirac measure at [0] ∈ E.
The solvability of equation (0.1) depends on the moduli τ in a sophisticated manner.

For n = 1, this was only recently settled in [9, 11, 2]. The aim of this paper is to develop
a theory via modular forms to investigate such a dependence for all n ∈ N and to lay
the foundation towards a complete resolution to equation (0.1).

We review briefly in Section 0.1 what had been done in earlier works (mainly in
Part I) to reformulate the problem using Lamé equations and Green functions. More
technical statements will be recalled in later sections whenever needed. In Section 0.2
we describe new results proved in this paper.

0.1. Reduction to a Green function equation over the Lamé curve

0.1.1. The Liouville curve. — It was shown in [1, Th. 0.3 & Th. 0.6] that if there is a
solution u to equation (0.1) then it lies in a scaling family of solutions uλ through the
Liouville formula:

(0.2) uλ(z) = log
8e2λ|f ′(z)|2

(1 + e2λ|f(z)|2)2
, λ ∈ R,

J.É.P. — M., 2017, tome 4
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where f is a meromorphic function on C, known as a developing map, which can be
normalized to satisfy the type II constraints:

(0.3) f(z + ωj) = e2iθjf(z), θj ∈ R, j = 1, 2.

(i) There is a unique λ so that uλ is even. Moreover, the normalized developing
map f has precisely n simple zeros [a1], . . . , [an] in E× := E r {[0]} and n simple
poles [−a1], . . . , [−an]. They are characterized by

(ii) The non-degenerate constraints: [ai] 6∈ E[2] for all i, [ai] 6= ±[aj ] for i 6= j.
(iii) The following n− 1 algebraic equations:

(0.4)
n∑
i=1

℘′(ai)℘
r(ai) = 0, r = 0, . . . , n− 2.

(iv) The transcendental equation on the Green function:(1)

(0.5)
n∑
i=1

∇G(ai) = 0.

The affine algebraic curve Xn ⊂ SymnE defined by equations (0.4) and the non-
degenerate constraints is called the (n-th) Liouville curve.

0.1.2. The Lamé curve. — The Liouville curve Xn has the important hyperelliptic
structure arising from its connection with the integral Lamé equations on E:

(0.6) w′′ = (n(n+ 1)℘+B)w,

where B ∈ C is usually known as the auxiliary or spectral parameter. For a =

(a1, . . . , an) ∈ Cn, let wa(z) be the classical Hermite–Halphen ansatz:

(0.7) wa(z) := ez
∑
ζ(ai;τ)

n∏
i=1

σ(z − ai; τ)

σ(z; τ)
.

Then the following statements were proved in [1, Th. 0.7].
(i) The point [a] := a (mod Λ) lies inXn if and only if wa and w−a are independent

solutions to equation (0.6). In that case, the parameter B equals

(0.8) Ba := (2n− 1)

n∑
i=1

℘(ai).

(ii) The compactified curve
Xn ⊂ SymnE

is a hyperelliptic curve, known as the Lamé curve, with the added points Xn r Xn

being the branch points of the hyperelliptic projection

B : Xn −→ P1(C).

(1)The Green function G(z) on E is defined by −4G = δ0 − 1/|E| and
∫
E G = 0, where |E| is

the area of E. Also G(z, w) = G(z − w, 0) = G(z − w) by the translation invariance.

J.É.P. — M., 2017, tome 4
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(iii) A point [a] ∈ Xn is a branched point if and only if [−a] = [a]. In fact

{[−ai]} ∩ {[ai]} 6= ∅ =⇒ [−a] = [a].

Also [0] ∈ {[ai]} ⇒ [a] = 0n.
(iv) The unique point at infinity [0]n ∈ Xn is a non-singular point.
(v) The finite branch points satisfy [a] ∈ (E×)n, [ai] 6= [aj ] for i 6= j, and [a] = [−a];

wa = w−a is still a solution to equation (0.6) with B = Ba. These solutions are known
as the Lamé functions.

(vi) Let Yn = B−1(C) be the finite part of Xn. Then Yn is parametrized by

Yn ∼= {(B,C) | C2 = `n(B)},

where `n(B) is the Lamé polynomial in B of degree 2n+1, and Xn coincides with the
projective hyperelliptic model of Yn. In particular, the Lamé curve Xn is irreducible
and is smooth if and only if `n(B) has no multiple roots.

Under this description, for [a] ∈ Xn, the ratio

f = fa :=
wa
w−a

= e2
∑n

i=1 ζ(ai)z
n∏
i=1

σ(z − ai; τ)

σ(z + ai; τ)

gives the candidate of a developing map in (0.2). The original singular Liouville equa-
tion (0.1) is then equivalent to the Green function equation (0.5) over the unramified
(Liouville) loci Xn of the map B : Xn → P1(C).

0.2. Main results: a theory of pre-modular forms. — Recall the Weierstrass equa-
tion ℘′2 = 4℘3 − g2℘ − g3 =

∏3
i=1(℘ − ei), where ei(τ) = ℘( 1

2ωi; τ), i = 1, 2, 3. We
will also use the quasi-periods ηi(τ) := ζ(z + ωi; τ) − ζ(z; τ) = 2ζ( 1

2ωi; τ), i = 1, 2,
extensively.

0.2.1. The Hecke function and pre-modular forms. — For z = x + iy = rω1 + sω2,
r, s ∈ R, it was shown in [9, Lem. 2.3, Lem. 7.1] that

(0.9) − 4π
∂G

∂z
(z; τ) = ζ(z; τ)− rη1(τ)− sη2(τ).

For [z] ∈ Eτ [N ] r {[0]}, the right-hand side of equation (0.9) first appeared in [8],
where Hecke showed that it is a modular form of weight one with respect to Γ(N) =

{A ∈ SL(2,Z) | A ≡ I2 (mod N)}. Thus we call the following function

(0.10) Z(z; τ) = Zr,s(τ) := ζ(rω1 + sω2; τ)− rη1(τ)− sη2(τ),

(z, τ) ∈ C × H, the Hecke function. Notice that it is holomorphic only in τ , and for
fixed τ it depends only on [z] = z (mod Λτ ) ∈ Eτ . In this paper, functions of this
sort are called pre-modular forms.

Definition 0.1. — An analytic function h in (z, τ) ∈ C×H is pre-modular of weight
k ∈ N if it satisfies

(1) For any fixed τ , the function h(z) is analytic in z and z and it depends only
on z (mod Λτ ) ∈ Eτ .

J.É.P. — M., 2017, tome 4
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(2) For any fixed torsion type z (mod Λτ ) ∈ Eτ [N ], the function h(τ) is modular
of weight k with respect to Γ(N).
We write h(z; τ) for a pre-modular form h.

By writing z = r+sτ with r, s ∈ R, it is easy to see that condition (1) is equivalent
to saying that h(z) is analytic and periodic in r, s with period 1. A torsion type in
condition (2) is simply a choice of r, s,∈ ( 1

NZ)/Z. In particular, the Hecke function Z
is pre-modular of weight one.

We may regard pre-modular forms as the restriction of holomorphic functions in
three complex variables (r, s, τ) ∈ C2 ×H to the R-linear slice L defined by r, s ∈ R.
Although L ∼= C×H, the embedding is not C-linear.

The notion of pre-modular forms allows us to study deformations in z to relate
different modular forms corresponding to different torsion points.

Recently this idea was applied in [2] to achieve a complete solution to equation
(0.1) for n = 1 and for all τ .(2) In that case equations (0.4) are vacuous and the
problem is equivalent to solving non-trivial zeros of Z(z; τ), i.e., z 6∈ Eτ [2]. Thus,
a key step towards the general cases is to generalize the pre-modular form Z1 = Z to
certain “Zn” for all n > 2.

0.2.2. The main constructions. — By the anti-symmetry of ∇G, equation (0.5) holds
automatically on the branch points of Yn, hence they are referred to as trivial solutions.
Nevertheless further investigations on the local structures of the branch points are
indispensable. This is done in Section 1.

We proceed to construct a pre-modular form Zn(σ; τ), with σ ∈ Eτ , associated to
the family of Lamé curves Xn(τ), τ ∈ H.(3) It should have the property that every
non-trivial solution [a] = {[a1], . . . , [an]} ∈ Xn(τ) to equation (0.5) comes from a zero
of Zn(σ; τ) with σ =

∑n
i=1[ai] 6∈ Eτ [2], and vice versa. The construction is stated

in (0.15). Its justification consists of three steps corresponding to Theorems 0.2, 0.3
and 0.4 in the following.

Consider the meromorphic function

(0.11) zn(a) := ζ
( n∑
i=1

ai

)
−

n∑
i=1

ζ(ai)

on En. Write ai = riω1 + siω2. If
∑n
i=1[ai] 6= 0 then from equation (0.9)

−4π

n∑
i=1

∂G

∂z
(ai) =

n∑
i=1

(
ζ(riω1 + siω2)− riη1 − siη2

)
= Z

( n∑
i=1

ai

)
− zn(a).

(2)It was stated in Part I [1, p. 141–142] that such a complete solution for n = 1 will appear
in Part II (this paper), and it was included in the first arXiv version arXiv:1502.03295v1. Later
on we found its deep connection with Painlevé VI equations. Therefore we extracted that part and
published it separately in [2].

(3)In this paper, we often use σ as the coordinate on E whenever the map σn : Xn → E defined
in (0.13) is involved. This should not be confused with the Weierstrass σ function.

J.É.P. — M., 2017, tome 4
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Hence the Green function equation (0.5) is equivalent to

(0.12) zn(a) = Z
( n∑
i=1

ai

)
.

This motivates us to study the map

(0.13) σn : Xn −→ E, [a] 7−→ σn([a]) :=

n∑
i=1

[ai]

induced from the addition map En → E. Since the algebraic curve Xn is irreducible,
σn is a finite morphism and deg σn is defined.

Theorem 0.2 (= Theorem 2.4). — The map σn : Xn → E has degree 1
2n(n+ 1).

From Theorem 0.2, there is a polynomial

Wn(z) ∈ Q[g2, g3, ℘(σ), ℘′(σ)][z]

of degree 1
2n(n+ 1) in z which defines the (branched) covering map σn.

The next task is to find a natural primitive element of this covering map, namely
a rational function on Xn which has Wn as its minimal polynomial. This is achieved
by the following fundamental theorem.

Theorem 0.3 (= Theorem 3.2). — The rational function zn ∈ K(Xn) is a primitive
generator for the field extension K(Xn) over K(E) which is integral over the affine
curve E×.

This means that Wn(zn) = 0, and conversely for generic choices of σ = σ0 ∈ Eτ ,
the roots of Wn(z)(σ0; τ) = 0 are precisely those 1

2n(n + 1) values z = zn(a) with
σn(a) = σ0. The proof is contained in Section 3. Here we give a brief sketch of the
idea used in the proof.

A major tool used is the tensor product of two Lamé equations w′′ = I1w and
w′′ = I2w, where I = n(n+ 1)℘(z), I1 = I +Ba and I2 = I +Bb.

For a general point σ0 ∈ E, we need to show that the 1
2n(n+ 1) points on the fiber

of Xn → E above σ0 has distinct zn values. From (0.11), it suffices to show that for
σn(a) = σn(b) = σ0,

n∑
i=1

ζ(ai) =

n∑
i=1

ζ(bi) =⇒ Ba = Bb.

Indeed, then we conclude [a] = [b] if σ0 6∈ E[2].
If w′′1 = I1w1 and w′′2 = I2w2, then the product q = w1w2 satisfies the fourth order

ODE

(0.14) q′′′′ − 2(I1 + I2)q′′ − 6I ′q′ + ((Ba −Bb)2 − 2I ′′)q = 0.

We remark that if Ba = Bb, then I1 = I2 and q actually satisfies a third order ODE
as the second symmetric product of a Lamé equation, which is a useful tool used in
Part I in the study of the Lamé curve.

J.É.P. — M., 2017, tome 4
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If however Ba 6= Bb, by the definition of wa in (0.7) and the addition law,

q = waw−b + w−awb

is an even elliptic function solution to equation (0.14), hence a polynomial in x = ℘(z).
This leads to strong constraints on equation (0.14) in the variable x and eventually
leads to a contradiction for generic choices of σ0.

Now we set

(0.15) Zn(σ; τ) := Wn(Z)(σ; τ).

Then Zn(σ; τ) is pre-modular of weight 1
2n(n+1). From the construction and equation

(0.12) it is readily seen that Zn(σ; τ) is the generalization of the Hecke function we
are looking for. In fact, for n > 1, we have

Theorem 0.4. — To every scaling family {uλ} of solutions to the singular Liouville
equation (0.1) on Eτ , the zero set a ∈ Xn of its normalized developing map f sat-
isfies Zn(σn(a); τ) = 0 with σn(a) 6∈ Eτ [2]. Conversely, given σ0 ∈ Eτ r Eτ [2] with
Zn(σ0; τ) = 0, there is a unique a ∈ Xn with σn(a) = σ0 and it determines a devel-
oping map f = wa/w−a of a scaling family of solutions to equation (0.1).

The proof is given in Section 4, where we also present a version of it in terms of
monodromy groups of Lamé equations in Theorem 4.5.

For σ ∈ Eτ [N ], the N -torsion points, the modular form Z2(σ; τ) and Z3(σ; τ) were
first constructed by Dahmen [3] in his study on integral Lamé equations (0.6) with
algebraic solutions (i.e., with finite monodromy group). For n > 4, the existence of a
modular form Zn(σ; τ) of weight 1

2n(n + 1) was also conjectured in [3]. This is now
settled by our results.

0.2.3. Relation with finite gap theory. — It remains to find effective and explicit con-
structions of Zn. Since σn is defined by the addition map, which is purely algebraic,
in principle this allows us to compute the polynomial Wn(z) for any n ∈ N by elim-
inating variables B and C. In practice the needed calculations are very demanding
and time consuming.

In a different direction, the Lamé curve had also been studied extensively in the
finite band integration theory. In the complex case this theory concerns the eigenvalue
problem on a second order ODE

Lw := w′′ − Iw = Bw

with eigenvalue B. The potential I = I(z) is called a finite-gap (band) potential if the
ODE has only logarithmic free solutions except for finitely many B ∈ C. The integral
Lamé equations (with I(z) = n(n + 1)℘(z)) provide the first non-trivial examples
of them. Using this theory, Maier [12] had recently written down an explicit map
πn : Xn → E in terms of the coordinates (B,C) on Xn (cf. Theorem 5.3). It turns
out we can prove

Theorem 0.5. — The map πn agrees with σn : Xn → E.

J.É.P. — M., 2017, tome 4
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This is part of Theorem 5.6 where another presentation of zn in this context is also
given. The main idea in the proof is to compare the Hermite–Halphen ansatz (0.7)
with the Hermite–Krichever ansatz (given in (5.1)) of solutions to the Lamé equations
(0.6).

This provides an alternative way to computeWn(z) by eliminating B, C. In partic-
ular the weight 10 pre-modular form Z4(σ; τ) is explicitly written down in Example
5.10. The existence and effective construction of Zn(σ; τ) opens the door to extend
our complete results on equation (0.1) for n = 1 to general n ∈ N.

As a related application, the explicit expression of Z4 is used to solve Dahmen’s
conjecture on a counting formula for Lamé equations (0.6) with finite monodromy in
the n = 4 case. The method works for general n once Zn is shown to have expec-
ted asymptotic behavior at cusps. The details are given in the appendix, written
by Y.-C.Chou.

Acknowledgement. — The second-named author would like to express his gratitude
to the anonymous referee for his/her valuable suggestions.

1. Geometry of B : Xn → P1(C)

In this section we investigate the local structure of the branch points of the hyper-
elliptic projection B : Xn → P1(C).

1.1. Some useful formulas from Part I. — We give quantitative descriptions on
those results recalled in Section 0.1 which will be used in this paper.

Let f be a normalized developing map of a solution u to equation (0.1) with
simple zeros {[a1], . . . , [an]} and simple poles {[b1], . . . , [bn]} in E. One of the crucial
properties proved in Part I (cf. Section 0.1.1 (i)) is the equality

{[b1], . . . , [bn]} = {[−a1], . . . , [−an]}.

With this being established, the logarithmic derivative g := (log f)′ = f ′/f is readily
seen to be an even elliptic function on E of the form

g(z) =

n∑
i=1

℘′(ai)

℘(z)− ℘(ai)
.(1.1)

It has simple poles at ±[ai] and only one zero at [0]. Hence ordz=0 g(z) = 2n. It leads
to the n − 1 equations in [a1], . . . , [an] given in equations (0.4): under the algebraic
coordinates (w, xi, yi) = (℘(z), ℘(ai), ℘

′(ai)),

g(z) =

n∑
i=1

1

w

yi
1− xi/w

=

n∑
i=1

yi
w

+

n∑
i=1

yixi
w2

+ · · ·+
n∑
i=1

yix
r
i

wr+1
+ · · · .

J.É.P. — M., 2017, tome 4
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Since ordz=0 g(z) = 2n and 1/w has a zero at z = 0 of order two, we get xi 6= xj for
i 6= j and

(1.2)
n∑
i=1

yix
r
i = 0, r = 0, . . . , n− 2.

Equations (1.2), together with the Weierstrass equation y2i = 4x3i − g2xi − g3 for all
i = 1, . . . , n, give the algebraic form of equations (0.4).

The Green function equation (0.5) is equivalent to the type II constraints (0.3)
([10, Lem. 2.4]). Indeed, by the addition law,

f = exp

∫
g dz = exp

∫ n∑
i=1

(2ζ(ai)− ζ(ai − z)− ζ(ai + z)) dz

= e2
∑n

i=1 ζ(ai)z
n∏
i=1

σ(z − ai)
σ(z + ai)

.

(1.3)

The monodromy effect on f is then calculated from the standard formula

(1.4) σ(z + ωj) = −eηj(z+ 1
2ωj)σ(z), j = 1, 2.

Let ai = riω1+siω2 for i = 1, . . . , n. By way of the Legendre relation η1ω2−η2ω1 = 2πi

we compute easily that

f(z + ω1) = e−4πi
∑

i si+2ω1(
∑
ζ(ai)−

∑
riη1−

∑
siη2)f(z),

f(z + ω2) = e4πi
∑

i ri+2ω2(
∑
ζ(ai)−

∑
riη1−

∑
siη2)f(z).

(1.5)

By equation (0.9) and the linear independence of ω1 and ω2, the equivalence of equa-
tion (0.5) and (0.3) follows immediately.

In Section 0.1.2 we have reviewed the hyperelliptic structure B : Xn → P1(C) on
the Lamé curve induced by a 7→ Ba = (2n−1)

∑
℘(ai). AlsoXn contains the Liouville

curve Xn as the unramified loci. By way of Lamé equation (0.6) with B = Ba and
by setting f = wa/w−a, where wa is the ansatz solution (0.7), we see that solving
equation (0.1) is equivalent to solving the integral Lamé equation (0.6) with unitary
projective monodromy groups.

The finite part Yn of Xn is defined by equation C2 = `n(B) where the Lamé
polynomial `n(B) is of degree 2n+1 and can be effectively computed (cf. [1, Th. 7.4]).
Later we will discuss factorization properties of `n(B) in Proposition 2.2. Here, we
focus on formulas which lead to parametrization of the Lamé curve near branched
points, i.e., a ∈ Xn with a = −a.

Proposition 1.1 ([1, (7.5.3) & Prop. 7.5])
(1) Let a ∈ Yn, then (B,C) can be parameterized by B(a) = Ba and

(1.6) C(a) = ℘′(ai)
∏
j 6=i

(℘(ai)− ℘(aj)).

Here, formula (1.6) is valid for any i ∈ {1, . . . , n}.
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(2) The limiting equations of equations (1.2) at a = 0n ∈ Xn are given by

(1.7)
n∑
i=1

t2r+1
i = 0, r = 1, . . . , n− 1,

subject to the non-degenerate constraints ti 6= 0, ti 6= −tj for i 6= j.
Equations (1.7) have a unique non-degenerate solution in Pn−1(C) up to permuta-

tions. It gives rise to the unique tangent direction

[t] = [t1 : · · · : tn] ∈ P(T0n(Xn)) ⊂ P(T0n(SymnE)).

Remark 1.2. — Notice that (1.6) arises from (1.1) and ordz=0 ga(z) = 2n in

ga(z) :=

n∑
i=1

℘′(ai)

℘(z)− ℘(ai)
=

∑n
i=1 ℘

′(ai)
∏
j 6=i(℘(z)− ℘(aj))∏n

i=1(℘(z)− ℘(ai))
,

where the numerator reduces to the constant C(a).

1.2. Local structures on finite and infinite branch points. — By working on for-
mula (1.6), we may relate various local parameters of Yn as follows:

Lemma 1.3. — Let a = {a1, . . . , an} ∈ Yn r Xn be a finite branched point and b =

{b1, . . . , bn} ∈ Xn be a point near a.
(i) Let i be an index with ai ∈ E[2], then C can be used as a parameter for bi − ai

with b′i(0) 6= 0,∞.
(ii) Let i be an index with ai 6∈ E[2], and let i′ be the corresponding index with

ai′ = −ai. Then C can be used as a parameter for bi + bi′ with (bi + bi′)
′(0) 6= 0,∞.

Proof

(i) For ai = −ai (2-torsion) in E, we have ℘′(ai) = 0 and ℘′(bi) = ℘′′(ai)(bi−ai)+

o(|bi − ai|). Formula (1.6) then implies that

C(b) =
[
℘′′(ai)

∏
j 6=i

(℘(ai)− ℘(aj))
]
(bi − ai) + o(|bi − ai|).

We get the inverse map C 7→ bi(C)− ai since ℘′′(ai) 6= 0 for ai ∈ E[2].
(ii) Similarly, for ai 6∈ E[2] with ai′ = −ai, we have

℘(bi)− ℘(bi′) = ℘′(−bi′)(bi + bi′) + o(|bi + bi′ |).

Since −bi′ is close to −ai′ = ai, we get

C(b) =
[
℘′(ai)

2
∏
j 6=i,i′

(℘(ai)− ℘(aj))
]
(bi + bi′) + o(|bi + bi′ |).

Then we get the inverse map C 7→ (bi + bi′)(C) since ℘′(ai) 6= 0. �

Remark 1.4. — From formula (1.6) (with a being substituted by b) we have bi′(C) =

−bi(−C), hence b′i′(C) = b′i(−C). If b′i(0) and b′i′(0) are finite then they are equal and
non-vanishing. If this holds for all i then C 7→ b(C) is a holomorphic map in each local
branch of Yn at a and we conclude that a ∈ Yn is either a smooth point or a nodal
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singularity (y2 = x2). We will see in Remark 5.14 that this is indeed the case. At this
point we conclude only the finiteness of (bi + bi′)

′(0) as stated in Lemma 1.3 (ii).

Now we give a precise description of the unique tangent direction at 0n ∈ Xn.
Denote by [t] = [t1, . . . , tn] the homogeneous coordinates satisfying the limiting equa-
tions (1.7) with non-degenerate constraints.

Let pj =
∑n
i=1 t

j
i be the j-th Newton symmetric polynomial and λj be the j-th

elementary symmetric polynomial of t1, . . . , tn. We use the convention that p0 = 0,
λ0 = 1 and λj = 0 for j > n. By a Vandermonde determinant argument we have
λ1 = p1 6= 0.

Proposition 1.5. — The point [t] ∈ P(T0n(Xn)) is characterized by the recursions

λk+1 = 2
(k − n)

(k − 2n)(k + 1)
λkλ1, 1 6 k 6 n− 1.(1.8)

Proof. — By Proposition 1.1 (2), namely the uniqueness of non-degenerate solutions
to (1.7), we only need to verify that that the point defined by (1.8) satisfies p3 = p5 =

· · · = p2n−1 = 0.
Since λ1 6= 0, without loss of generality we assume that λ1 = 1. The recursions in

(1.8), with λ1 = 1, are equivalent to saying that the polynomial

Q(t) :=

n∏
i=1

(1 + tit) =

n∑
k=0

λk t
k

coincides with the hypergeometric function F (−n;−2n | 2t). That is, f(t) := Q( 1
2 t)

satisfies the hypergeometric equation(
δ(δ − (2n+ 1))− t(δ − n)

)
f = t

(
tf ′′ − (t+ 2n)f ′ + nf

)
= 0,(1.9)

where δ = td/dt. Then g := (log f)′ = f ′/f satisfies

(1.10) g′ + g2 −
(

1 +
2n

t

)
g +

n

t
= 0.

Write g =
∑∞
k=0 gk t

k. From

g =
f ′

f
=

n∑
i=1

1
2 ti

1 + 1
2 tit

=

∞∑
k=0

pk+1

2k+1
tk,

we have gk = pk+1/2
k+1 and it suffices to show g2 = g4 = · · · = g2n−2 = 0.

From the series expansions

g′ = g1 +

∞∑
k=1

(k + 1)gk+1t
k,

g2 = 1
4 +

∞∑
k=1

( k∑
j=0

gjgk−j

)
tk,

(
1 +

2n

t

)
g =

n

t
+

∞∑
k=0

(gk + 2ngk+1) tk,

J.É.P. — M., 2017, tome 4



568 C.-S. Lin & C.-L. Wang

we get by equation (1.10) that

− n

t
+
n

t
+
(
g1 + 1

4 − ( 1
2 + 2ng1)

)
+

∞∑
k=1

(
(k + 1)gk+1 +

k∑
j=0

gjgk−j − (gk + 2ngk+1)
)
tk = 0.

Hence g1 = −1/(4(2n− 1)) and for all k > 1 we have recursions

(1.11) (2n− (k + 1))gk+1 =

k−1∑
j=1

gjgk−j .

(We have used the fact g0 = 1
2 to remove one gk.)

For k = 1, the sum is empty and we get g2 = 0. Now we conclude the proof by
induction. Suppose that g2 = g4 = · · · = g2m = 0 withm < n−1. Then for k = 2m+1

we have 2n−(k+1) = 2(n−(m+1)) > 0, and the recursions (1.11) show that g2(m+1)

is a sum of gjgk−j with either j or k − j being an even number no bigger than 2m.
Hence g2(m+1) = 0, and this completes the induction. �

2. Geometry of σn : Xn → E

The aim of this section is to prove Theorem 0.2.

2.1. Lamé functions [cf. Section 0.1.2 (v)]

Definition 2.1. — The type of a point a ∈ Yn rXn is defined to be the number of
half periods contained in a = {ai}. Hence there are four types O, I, II, III. For n = 2k,
a must be of type O or II. For n = 2k + 1, a must be of type I or III.

The type of a Lame functions wa (with [a] = [−a] ∈ Yn rXn) is defined to be the
type of its zero set a accordingly.

There are factorizations of the polynomial `n(B) according to the types:

Proposition 2.2 ([5, 14]). — We may decompose `n(B; g2, g3) as

`n(B; g2, g3) = c2nl0(B)l1(B)l2(B)l3(B),

where cn ∈ Q>0 is a constant, li(B)’s are monic polynomials in B whose coefficients
are polynomials in e1, e2, e3 such that

(1) For n = 2k, l0(B) =
∏

(B − Ba) with a being of type O, and deg l0(B) =
1
2n+ 1 = k+ 1. For i = 1, 2, 3, li(B) =

∏
(B −Ba) with a being of type II which does

not contain 1
2ωi, also deg li(B) = 1

2n = k.
(2) For n = 2k + 1, l0(B) =

∏
(B −Ba) with a being of type III, and deg l0(B) =

1
2 (n−1) = k. For i = 1, 2, 3, li(B) =

∏
(B−Ba) with a being of type I which contains

1
2ωi, also deg li(B) = 1

2 (n+ 1) = k + 1.

We remark that Proposition 2.2, together with Proposition 1.1 and Lemma 1.3,
will be used in the proof of Theorem 0.2. Here are some examples to illustrate Propo-
sition 2.2:
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Example 2.3 (Decompositions of `n(B) for 1 6 n 6 5)
(1) n = 1, k = 0, X1

∼= E,

C2 = `1(B) = 4B3 − g2B − g3 = 4

3∏
i=1

(B − ei).

(2) n = 2, k = 1, (notice that e1 + e2 + e3 = 0)
C2 = `2(B) = 4

81B
5 − 7

27g2B
3 + 1

3g3B
2 + 1

3g
2
2B − g2g3

=
22

34
(B2 − 3g2)

3∏
i=1

(B + 3ei).

(3) n = 3, k = 1, deg li(B) = 2 for i = 1, 2, 3,

C2 = `3(B) =
1

223454
B(16B6 − 504g2B

4 + 2376g3B
3

+ 4185g22B
2 − 36450g2g3B + 91125g23 − 3375g32)

=
22

3454
B

3∏
i=1

(B2 − 6eiB + 15(3e2i − g2)).

(4) n = 4, k = 2, deg l0(B) = 3,

C2 = `4(B) =
1

385474
(B3 − 52g2B + 560g3)

3∏
i=1

(B2 + 10eiB − 7(5e2i + g2)).

(5) n = 5, k = 2, deg li(B) = 3 for i = 1, 2, 3,

C2 = `5(B) =
1

3125474112
(B2 − 27g2)

×
3∏
i=1

(B3 − 15eiB
2 + (315e2i − 132g2)B + ei(2835e2i − 540g2)).

2.2. The degree of the addition map σn. — We are now ready to study the addition
map σn : Xn → E, a 7→ σn(a) =

∑n
i=1 ai defined in (0.13) and determine its degree

deg σn.
For a finite morphism of irreducible curves f : X → Y , the function field K(X) is

a finite extension of K(Y ) and deg f = [K(X) : K(Y )]. Geometrically, deg f is the
number of points for a general fiber f−1(p), p ∈ Y . If the image curve Y is smooth,
the degree is equal to the length of the scheme-theoretic fiber f−1(p) for any p ∈ Y .
A standard reference is [6].

Theorem 2.4 (= Theorem 0.2). — The map σn : Xn → E has degree 1
2n(n+ 1).

Proof. — The idea is to apply Theorem of the Cube [13, p. 58, Cor. 2] for morphisms
from an arbitrary variety V (not necessarily smooth) into abelian varieties (here the
torus E). For any three morphisms f, g, h : V → E and a line bundle L ∈ PicE, we
have

(2.1) (f + g+ h)∗L ∼= (f + g)∗L⊗ (g+ h)∗L⊗ (h+ f)∗L⊗ f∗L−1⊗ g∗L−1⊗ h∗L−1.
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We will apply it to the algebraic curve V = Vn ⊂ En which consists of the ordered
n-tuples a’s so that Vn/Sn = Xn. (Here, Sn is the permutation group on n letters.)

For any line bundle L and any finite morphism f : V → E, we have deg f∗L =

deg f degL. In the following we fix an L with degL = 1.
We prove inductively that for j = 1, . . . , n the morphism fj : Vn → E defined by

fj(a) := a1 + · · ·+ aj

has deg f∗j L = 1
2j(j + 1)n!. The case j = n then gives the result since fn is a finite

morphism which descends to σn under the Sn action. (Notice that for j < n the
map fj does not descend to a map on Xn.)

Assuming first that it has been proved for j = 1, 2. To go from j to j + 1, we let
f(a) = fj−1(a), g(a) = aj , and h(a) = aj+1. Then by (2.1), f∗j+1L has degree n! times

1
2j(j + 1) + 3 + 1

2j(j + 1)− 1
2 (j − 1)j − 1− 1 = 1

2 (j + 1)(j + 2)

as expected. It remains to investigate the case j = 1 and j = 2.
For j = 1, by Section 0.1.2 (iii)–(iv), the inverse image of 0 ∈ E under f1 : Vn → E

consists of a single point 0n. By Proposition 1.1 (2), the limiting system of equa-
tions (1.7) has a unique non-degenerate solution in Pn−1(C) up to permutations.
From this, we conclude that there are precisely n! branches of Vn → E near 0n. For
a point b ∈ E× close to 0, each branch will contribute a point a with a1 = b. In
particular, f1 is a finite morphism and deg f∗1L = deg f1 = n!.

For j = 2, we consider the (scheme-theoretic) inverse image of 0 ∈ E under
f2 : Vn → E. Namely Vn 3 a 7→ a1 + a2 = 0.

The point a = 0 again contributes degree n! by a similar branch argument. Indeed,
over each branch near 0n we may represent a = (ai(z)) by an analytic curve in z. Then
condition ti+tj 6= 0 in Proposition 1.1 (2) implies that z 7→ a1(z)+a2(z) ∈ E is still lo-
cally biholomorphic for z close to 0. As a byproduct, since every irreducible component
contains a branch near 0n, f2 is necessarily a finite morphism and deg f∗2L = deg f2.

For those points a 6= 0 with f2(a) = 0, we have a1 = −a2 and thus a = −a by
Section 0.1.2 (iii), i.e., a corresponds to a branch point for the hyperelliptic projection
Yn → C. Let b = (b1, . . . , bn) ∈ Vn be a point near a. By Lemma 1.3, we see that
C 7→ (b1 + b2)(C) is bi-holomorphic near C = 0. If a ∈ Vn is a non-singular point
then C is a local parameter and f2 is unramified at a. In that case the degree con-
tribution at a is one. We first treat the case that all branch points are non-singular
points:

If n = 2k, by Proposition 2.2 (1) the degree contribution from type O points a =

{±a1, . . . ,±ak} is given by

(k + 1)× (k × 2× (n− 2)!),

while the degree from the type II points {±a1, . . . ,±ak−1, 12ωi,
1
2ωj} is

3× k × ((k − 1)× 2× (n− 2)!).

The sum is 2(4k2 − 2k)(n− 2)! = 2n!.
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If n = 2k + 1, by Proposition 2.2 (2), the degree contribution from type III points
{±a1, . . . ,±ak−1, 12ω1,

1
2ω2,

1
2ω3} is

k × ((k − 1)× 2× (n− 2)!),

while the type I points {±a1, . . . ,±ak, 12ωi} contribute

3× (k + 1)× (k × 2× (n− 2)!).

The sum is again 2(4k2+2k)(n−2)! = 2n!. Thus in both cases we get the total degree
n! + 2n! = 3n! as expected.

If Yn = Yn(τ0) is singular, let a ∈ YnrXn be a singular (branch) point with C2 =

h(B)(B − Ba)m, m > 2 and h(Ba) 6= 0. The curve Yn arises from flat degenerations
of smooth curves Yn(τ) where m linear factors become the same. By Lemma 1.3, f2
leads to an analytic equivalence between C and b1 + b2 near a. That is, the equation
b1 + b2 = 0 is simply C = 0. Let B̃ = B − Ba. Then the analytic structure sheaf of
f−12 (0) at a is given by

C[[B̃, C]]/〈C2 − h(Ba + B̃)B̃m, C〉 ∼= C[[B̃]]/〈B̃m〉,

which also has length m. This shows that f2 is compatible with the degeneration and
the degree counting then follows from the smooth case. �

3. The primitive generator zn

We prove Theorem 0.3, in a more precise form, in Theorem 3.2.

3.1. Setup of the proof

Definition 3.1 (The fundamental rational function zn on Xn)
The function

zn(a1, . . . , an) := ζ
( n∑
i=1

ai

)
−

n∑
i=1

ζ(ai), ai ∈ C,

is meromorphic and periodic in each ai, hence it defines a rational function on En.
By symmetry, it descends to a rational function on SymnE. We denote the restriction
zn|Xn

also by zn, which is a rational function on Xn with poles along the fiber σ−1n (0).

The importance of zn is readily seen from investigation on the Green function
equation (0.5): Let ai = riω1 + siω2. Then by (0.9),

−4π
∑ ∂G

∂z
(ai) =

∑
(ζ(riω1 + siω2)− riη1 − siη2)

= Z(
∑

ai)− zn(a).
(3.1)

Hence
∑n
i=1∇G(ai) = 0⇐⇒ zn(a) = Z(σn(a)). This links σn(a) with zn.

Theorem 3.2 (= Theorem 0.3). — There is a weighted homogeneous polynomial

Wn(z) ∈ Q[g2, g3, ℘(σ), ℘′(σ)][z]
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of z-degree dn = deg σn such that for σ = σn(a) =
∑
ai, we have

Wn(zn)(a) = 0.

Here, the weights of z, ℘(σ), ℘′(σ), g2, g3 are 1, 2, 3, 4, 6 respectively.
Indeed, zn(a) is a primitive generator of the finite extension of rational function

field K(Xn) over K(E) with Wn(z) being its minimal polynomial.(4)

Moreover, the extension is integral over the affine curve E×.

Proof. — There is nothing to prove for n = 1, so we assume that n > 2.
Since zn ∈ K(Xn), which is algebraic over K(E) with degree dn, its minimal

polynomial Wn(z) ∈ K(E)[z] exists with d := degWn | dn.
Notice that for σ0 ∈ E being outside the branch loci of σn : Xn → E, there are

precisely dn different points a = {a1, . . . , an} ∈ Xn with σn(a) =
∑
ai = σ0. Thus for

the rational function zn = ζ(
∑
ai)−

∑
ζ(ai) ∈ K(Xn) to be a primitive generator, it

is sufficient to show that zn has exactly dn branches over K(E). That is,
∑
ζ(ai) gives

different values for different choices of those a above σ0. Indeed, for any given σ = σ0,
the polynomial Wn(z) = 0 has at most d roots. But now zn(a) with σn(a) = σ0
gives dn distinct roots of Wn(z), hence we must conclude d = dn and zn is a primitive
generator.

Hence it is sufficient to show the following more precise result:

Theorem 3.3. — Let a, b ∈ Yn and (a1, . . . , an), (b1, . . . , bn) ∈ Cn be representatives
of a, b such that
(3.2)

n∑
i=1

ai =

n∑
i=1

bi,

n∑
i=1

ζ(ai) =

n∑
i=1

ζ(bi).

Suppose that
∑
℘(ai) 6=

∑
℘(bi). Then a, b are branch points of Yn → C which

contains the same number of half periods. Equivalently, the Lamé functions wa and wb
are of the same type.

We emphasize that Xn is not required to be smooth. Theorem 3.2 follows imme-
diately by choosing σ0 outside the branch loci of Xn → E and σ0 6∈ E[2]. Indeed, let
a, b ∈ Yn with σn(a) = σn(b) = σ0 and zn(a) = zn(b), or more precisely with condi-
tions in (3.2) satisfied. By Theorem 3.3 we are left with the case

∑
℘(ai) =

∑
℘(bi)

but a 6= b. Then a = −b by Proposition 1.1 (1), and in particular σn(a) = −σn(b).
Together with σn(a) = σn(b) we conclude that σ0 = σn(a) = σn(b) ∈ E[2]. This
contradicts to the assumption σ0 6∈ E[2]. Hence we must have a = b.

Since zn has no poles over E×, it is indeed integral over the affine Weierstrass
model of E× with coordinate ring (let x0 = ℘(σ), y0 = ℘′(σ))

R(E×) = C[x0, y0]/(y20 − 4x30 − g2x0 − g3).

The homogeneity of Wn(z) also follows from this. �

(4)The fact that the coefficients lie in Q, instead of just in C, follows from standard elimination
theory and two facts (i) The equations of Xn are defined over Q[g2, g3] (cf. equations (1.2)), and (ii)
the addition map En → E is defined over Q. In Section 5, we carry out the elimination procedure
using the resultant for another explicit presentation πn of σn.
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Remark 3.4. — By Theorem 0.2 we have dn = 1
2n(n+ 1). We do not use this result

in the formulation nor in the proof of Theorem 3.2.

We will give two proofs to Theorem 3.3 in Section 3.2 and Section 3.3. The first
proof is longer but contains more information. Both proofs are based on the following
basic lemma.

Lemma 3.5 (Tensor product). — Let I = n(n+ 1)℘(z), I1 = I +Ba and I2 = I +Bb.
Suppose that w′′1 = I1w1 and w′′2 = I2w2. Then the product q := w1w2 satisfies the
following fourth order ODE:

(3.3) q′′′′ − 2(I1 + I2)q′′ − 6I ′q′ + ((Ba −Bb)2 − 2I ′′)q = 0.

Proof. — This follows from a straightforward computation. Indeed,
q′ = w′1w2 + w1w

′
2,

q′′ = (I1 + I2)q + 2w′1w
′
2,

q′′′ = 2I ′q + (I1 + I2)q′ + 2(I1w1w
′
2 + I2w

′
1w2).

Notice that if a = b (or just Ba = Bb) then I1 = I2 and we stop here to get the third
order ODE as the symmetric product of the Lamé equation.

In general, we take one more differentiation to get
q′′′′ = 2I ′′q + 4I ′q′ + (I1 + I2)q′′ + 2I ′q′ + 2(I1 + I2)w′1w

′
2 + 4I1I2q

= 2(I1 + I2)q′′ + 6I ′q′ + (2I ′′ − (I1 − I2)2)q.

This proves the lemma. �

Recall from the Hermite–Halphen ansatz in (0.7) that

w±a(z) = e±z
∑
ζ(ai)

n∏
i=1

σ(z ∓ ai)
σ(z)

are solutions to w′′ = (n(n+ 1)℘(z) +Ba)w =: I1w, and

w±b(z) = e±z
∑
ζ(bi)

n∏
i=1

σ(z ∓ bi)
σ(z)

are solutions to w′′ = (n(n + 1)℘(z) + Bb)w =: I2w. Then qa,−b := waw−b and
q−a,b := w−awb are solutions to equation (3.3).

3.2. First proof of Theorem 3.3. — By assumption we have
∑
ai =

∑
bi, hence

(3.4) qa,−b(z) =

n∏
i=1

σ(z − ai)σ(z + bi)

σ2(z)

is an elliptic function. Similarly q−a,b(z) = qa,−b(−z) is elliptic. In particular there
exists an even elliptic function solution to equation (3.3), namely

(3.5) Q := 1
2 (qa,−b + q−a,b) = (−1)n

∏n
i=1 σ(ai)σ(bi)

z2n
(1 +O(|z|)).
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Let q be an even elliptic solution to equation (3.3). Then we may investigate it in
variable x = ℘(z). To avoid confusion, we denote

ḟ = ∂f/∂x and f ′ = ∂f/∂z.

Let y2 = p(x) = 4x3−g2x−g3. Then ℘′ = y, ℘′′ = 6℘2− 1
2g2 = 1

2 ṗ(x). ℘′′′ = 12℘℘′ =

12xy, ℘′′′′ = 12℘′2 + 12℘℘′′ = 12p(x) + 6xṗ(x). Also

q′ = q̇℘′ = yq̇,

q′′ = q̈℘′2 + q̇℘′′ = p(x)q̈ + 1
2 ṗ(x)q̇,

q′′′ =
...
q ℘′3 + 3q̈℘′℘′′ + q̇℘′′′,

q′′′′ =
....
q ℘′4 + 6

...
q ℘′2℘′′ + 3q̈(℘′′)2 + 4q̈℘′℘′′′ + q̇℘′′′′

= p(x)2
....
q + 3p(x)ṗ(x)

...
q +

(
3
4 ṗ(x)2 + 48xp(x)

)
q̈ +

(
12p(x) + 6xṗ(x)

)
q̇.

By substituting these into equation (3.3) we get the ODE in x:

L4 q := p2
....
q + 3pṗ

...
q +

(
3
4 ṗ

2 − 2(2(n2 + n− 12)x+ β)p
)
q̈

−
(
(2(n2 + n− 3)x+ β)ṗ+ 6(n2 + n− 2)p

)
q̇

+
(
α2 − n(n+ 1)ṗ

)
q = 0,

(3.6)

where

(3.7) α := Ba −Bb and β := Ba +Bb.

We would like to find constraints for equation L4 q = 0 with α 6= 0 to have a
polynomial solution q(x). Here, g2 and g3 could be arbitrary, not necessarily satisfying
the non-degeneracy condition g32 − 27g23 6= 0.

Suppose that q(x) is a polynomial in x of degree m > 1:

q(x) = xm − s1xm−1 + s2x
m−2 − · · ·+ (−1)msm,(3.8)

which satisfies

(3.9) degx L4 q(x) 6 1.

Then we can solve sj recursively in terms of α2, β and g2, g3.
Indeed, the top degree term xm+2 in equation (3.6) has coefficient

16m(m− 1)(m− 2)(m− 3) + 144m(m− 1)(m− 2) + 108m(m− 1)

− 16(n2 + n− 12)m(m− 1)− 24(n2 + n− 3)m

− 24(n2 + n− 2)m− 12n(n+ 1)

= (m− n)
(

4m3 + (4n+ 68)m2 + (8n− 101)m+ 3(n+ 1)
)
,

which vanishes precisely when m = n. Thus we may assume m = n.
The next order term xn+1 without the s1 factor has coefficient

−8n(n− 1)β − 12nβ = −4n(2n+ 1)β,
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and the coefficient of −s1xn+1 is given by
16(n− 1)(n− 2)(n− 3)(n− 4) + 144(n− 1)(n− 2)(n− 3)

+ 108(n− 1)(n− 2)− 16(n2 + n− 12)(n− 1)(n− 2)

− 24(n2 + n− 3)(n− 1)− 24(n2 + n− 2)(n− 1)− 12n(n+ 1)

= −8n(2n− 1)(2n+ 1).

Hence

(3.10) s1 =
β

2(2n− 1)
.

Inductively the coefficients of xn+2−i in equation (3.6) for i = 1, . . . , n give rise to
recursions to solve si in terms of β, α2 and g2, g3. Hence we get

Lemma 3.6. — For i = 1, . . . , n, there is a polynomial expression

si = si(α
2, β, g2, g3) = Ciβ

i + · · ·

which is homogeneous of degree i with degα = deg β = 1 and deg g2 = 2, deg g3 = 3.(5)

Moreover, Ci is a non-zero rational number.

There are still two remaining terms in (3.9). That is,

(3.11) L4 q = F1(α, β, g2, g3)x+ F0(α, β, g2, g3).

The basic structure on the consistency equations is described by the following two
lemmas:

Lemma 3.7. — We have
F1(α, β, g2, g3) = α2G1(α, β, g2, g3) = α2((−1)n−1sn−1(α2, β, g2, g3) + · · · ),

F0(α, β, g2, g3) = α2G0(α, β, g2, g3) = α2((−1)nsn(α2, β, g2, g3) + · · · ).
For the remaining terms, each term of them has either g2 or g3 as a factor, hence it
has lower degree in α, β.

Proof. — Equation (3.11) gives
F1(α, β, g2, g3) = (−1)n−1α2sn−1 + terms in s1, . . . , sn−2,
F0(α, β, g2, g3) = (−1)nα2sn + terms in s1, . . . , sn−1.

If α = 0 then for any β ∈ C there is an a ∈ Yn with Ba = β/2 and a polynomial
solution qa(x) = waw−a =

∏n
i=1(x − ℘(ai)) to the symmetric product of the Lamé

equation, hence a polynomial solution to L4(q) = 0.
Thus F1(0, β, g2, g3) = 0 = F0(0, β, g2, g3). Since Fi depends on α2, we have Fi =

α2Gi, i = 0, 1, for some homogeneous polynomials G0, G1 in α2, β, g2, g3 of degree n
and n− 1 respectively, and Gi’s can be written as

G1 = (−1)n−1sn−1 + · · · ,
G0 = (−1)nsn + · · · .

(5)Notice that the weight, as assigned in Theorem 3.2, is twice the degree.

J.É.P. — M., 2017, tome 4



576 C.-S. Lin & C.-L. Wang

To see the dependence of the remaining terms on g2 and g3, we let g2 = 0 = g3,
and then L4(q) ≡ α2((−1)n−1sn−1x + (−1)nsn) (mod x2) because both p(x) = 4x3

and ṗ(x) = 12x2 vanish modulo x2. Thus we have F1(α, β) = (−1)n−1α2sn−1 and
F0(α, β) = (−1)nα2sn whenever g2 = 0 = g3. This proves the lemma. �

Lemma 3.8. — The polynomials G1 and G0 have no common factors for any g2, g3.

Proof. — We consider first the special case g2 = g3 = 0. Then (3.9) becomes

16x6
....
q + 144x5

...
q +

(
108x4 − 8x3(2(n2 + n− 12)x+ β)

)
q̈

−
(
12x2(2(n2 + n− 3)x+ β) + 24x3(n2 + n− 2)

)
q̇

+
(
α2 − 12n(n+ 1)x2

)
q ≡ 0 (mod C⊕ Cx).

(3.12)

The coefficients of xn−k, k = 0, . . . , n− 2, lead to recursive equations

(3.13) (−1)k(mk sk+2 + nkβ sk+1 + α2sk) = 0,

where the constants mk and nk are given by
mk = 16(n− (k + 2))(n− (k + 3))(n− (k + 4))(n− (k + 5))

+ 144(n− (k + 2))(n− (k + 3))(n− (k + 4))

+ (108− 16(n2 + n− 12))(n− (k + 2))(n− (k + 3))

− 24(2n2 + 2n− 5)(n− (k + 2))− 12n(n+ 1)

= −4(k + 2)(2n− (k + 1))(2n− (2k + 1))(2n− (2k + 3)),

nk = (8(n− (k + 1))(n− (k + 2)) + 12(n− (k + 1)))

= 4(n− (k − 1))(n− (k + 1)).

Since k 6 n− 2, we have mk 6= 0 and nk 6= 0.
Let γ be a non-trivial common factor of G1 and G0. Under the assumption g2 =

g3 = 0 we have G1 = (−1)n−1sn−1 and G0 = (−1)nsn. Then γ and α are co-prime,
because if α = 0 then sn−1(0, β) = cn−1β

n−1 and sn(0, β) = cnβ
n for some non-

zero constants cn−1 and cn. By the recursive equation (3.13) for k = n − 2, we have
γ | sn−2(α2, β, 0, 0) too. By induction on k for k = n− 3, . . . , 0 in decreasing order we
conclude that γ | s0 = 1, which leads to a contradiction.

For g2, g3 ∈ C, we see by Lemma 3.7 that the leading terms of G1, G0, as polynomi-
als in α and β, are (−1)n−1sn−1(α2, β, 0, 0) and (−1)nsn(α2, β, 0, 0) respectively. Since
sn−1(α2, β, 0, 0) and sn(α2, β, 0, 0) are co-prime, as we have just seen, we conclude that
G1(α, β, g2, g3) and G0(α, β, g2, g3) are also co-prime. The proof is complete. �

Proposition 3.9. — The common zeros of G1 = 0 and G0 = 0 consist of pairs of
branch points (a, b) corresponding to Lame functions of the same type. If Xn is non-
singular, there are exactly n(n− 1) such ordered pairs (a, b)’s.

Proof. — It suffices to prove the (generic) case that Xn is non-singular, namely the
case that all the Lamé functions are distinct. The general case follows from the non-
singular case by a limiting argument.

J.É.P. — M., 2017, tome 4



Mean field equations and modular forms II 577

For any two Lamé functions wa, wb of the same type (cf. Section 2.1), it is easy to
see that we may arrange the representatives of a and b so that equations (3.2) holds.
It follows that q := qa,−b = q−a,b (cf. (3.4)) is an even elliptic function solution to
equation (3.3), or equivalently q(x) is a polynomial solution to L4 q(x) = 0 in variable
x = ℘(z).

From the above discussion, (α, β) must be a common root of G1 and G0 (where
α = Ba − Bb, β = Ba + Bb). By Lemma 3.6 and 3.7, we have degG1 = n − 1 and
degG0 = n and G1, G0 are co-prime to each other by Lemma 3.8. Hence by Bézout
theorem there are at most n(n− 1) common zeros.

On the other hand, the number of such ordered pairs can be determined by Propo-
sition 2.2. Indeed, if n = 2k then we have

(k + 1)k + 3k(k − 1) = 4k2 − 2k = n(n− 1)

such pairs. If n = 2k + 1, the number of pairs is given by

k(k − 1) + 3(k + 1)k = 4k2 + 2k = n(n− 1).

Hence in all cases the number of ordered pairs coming from the Lamé functions of
the same type agrees with the Bézout degree of the polynomial system defined by
G1 = 0 = G0. Thus these n(n − 1) pairs form the zero locus as expected (and there
is no contribution from infinity). �

The above discussions from Lemma 3.5 to Proposition 3.9 constitute a complete
proof of Theorem 3.3. Here is a summary: we already know that Q in (3.5) is an even
elliptic function with singularity only at 0 ∈ E. Thus

Q(x) = c

n∏
i=1

(℘(z)− ℘(ci)) =: c

n∏
i=1

(x− xi)

is a polynomial solution to the ODE (3.6) with α = Ba −Bb, β = Ba +Bb.
Since α = Ba−Bb 6= 0, by Lemma 3.7 (α, β) must be a common root of G1(α, β) =

0 = G0(α, β). Then Proposition 3.9 says that (α, β) is pair of Lamé functions of the
same type. This proves Theorem 3.3.

For future reference, we summarize the results into the following statement on a
fourth order ODE which arises from the tensor product of two different Lamé equations
with the same parameter n ∈ N.

Theorem 3.10. — Let I(z) = n(n+ 1)℘(z). The fourth order ODE

(3.14) q′′′′(z)− 2(I + β)q′′(z)− 6I ′q′(z) + (α2 − 2I ′′)q(z) = 0

with α 6= 0 has an elliptic function solution q if and only if (α, β) is common zero to
G0(α, β) = 0 and G1(α, β) = 0. Moreover, this solution q must be even.

Example 3.11. — For n = 2, β = Ba +Bb, α = Ba −Bb, we have

s1 = 1
6β, s2 = 1

36β
2 + 1

72α
2 − 1

4g2.
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The first compatibility equation from x1 is

s1(α2 + 36g2)− 6βg2 = 0.

After substituting s1 we get

(3.15) 1
6α

2β = 0.

The second compatibility equation from x0 is

s2(α2 + 6g2)− s1(βg2 + 24g3) + 4βg3 + 3
2g

2
2 = 0.

By substituting s1, s2 and noticing the (expected) cancellations we get

(3.16) α2( 1
36β

2 + 1
72α

2 − 1
6g2) = 0.

If Ba 6= Bb then (3.15) implies that Bb = −Ba and then (3.16) leads to

B2
a = 3g2 =⇒ ℘(a1) + ℘(a2) = ±

√
g2/3.

By Example 2.3 (2), such a ∈ X2 lies in the branch loci of the Lamé curve. In par-
ticular, a, b ∈ σ−12 (0). Denote by ℘(±q±) = ±

√
g2/12. Then a := {q+,−q+} 6= b :=

{q−,−q−} unless g2 = 0. When g2 6= 0, z2 fails to distinguish the two points a and b.
When g2 = 0 (equivalently τ = eπi/3), a = b becomes a singular branch point for
σ2 : X2 → Eτ .

Example 3.12. — For n = 3, β = Ba +Bb, α = Ba −Bb. Then

s1 = 1
10β,

s2 = 1
600 (4β2 + α2 − 150g2),

s3 = 1
3600 (2β3 + 3α2β − 120βg2 + 900g3).

The two compatibility equations from x1 and x0 are

0 = 1
600α

2(4β2 + α2 + 60g2),

0 = 1
3600α

2(2β3 + 3α2β − 90βg2 + 540g3).

If α 6= 0 then α2 = −4β2 − 60g2 and the second equation becomes

β3 + 27g2β − 54g3 = 0.

It is clear that there are only finite solutions (Ba, Bb)’s to this, though it may not be
so straightforward to see that these 6 solution pairs (for generic tori) come from the
branch loci as proved in Proposition 3.9.

3.3. Second proof of Theorem 3.3

Proof. — Following the definition of qa,−b(z) in (3.4), we now consider the odd elliptic
solution to equation (3.3) (= equation (3.14)) instead:

q(z) := 1
2 (qa,−b(z)− q−a,b(z)).
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The function q(z) has a pole of order 3 + 2l at 0 ∈ E with l 6 n− 2. Thus q(z)/℘′(z)
is an even elliptic function with the only pole at 0 since q( 1

2ωi) = 0 for 1 6 i 6 3. If
q(z) does not vanish completely, then

q(z) = c℘′(z)

l∏
i=1

(℘(z)− ℘(ci)) =: c℘′(z)f(℘(z)),

where f(x) =
∏l
i=1(x− ℘(ci)) = xl − s1xl−1 + · · ·+ (−1)lsl.

Equation (3.14) now reads as

(3.17) q′′′′(z)− 2(β + 2n(n+ 1)℘(z))q′′(z)

− 6n(n+ 1)℘′(z)q′(z) + (α2 − 2n(n+ 1)℘′′(z))q(z) = 0.

By straightforward calculations, we get derivatives of q in terms of derivatives of ℘(z)

and f ′(x). For example,

q′(z) = ℘′′(z)f(x) + ℘′(z)2f ′(x),

q′′(z) = ℘′′′(z)f(x) + 3℘′′(z)℘′(z)f ′(x) + ℘′(z)3f ′′(x), etc.

Then (3.17) is equivalent to

f(x)
(

(360− 96n(n+ 1))x2 − 24βx+ (4n(n+ 1)− 18)g2 + α2
)

+f ′(x)
(

(1320− 96n(n+ 1))x3 − 36βx2

+ (12n(n+ 1)− 150)g2x+ (6n(n+ 1)− 60)g3 + 3βg2

)
+f ′′(x)

(
(1020− 16n(n+ 1))x4 − 8βx3 + (4n(n+ 1)− 210)g2x

2

+ (2βg2 + (4n(n+ 1)− 120)g3)x+ 2βg3 + 15
4 g

2
2

)
+f ′′′(x)(60x2 − 30g2)(4x3 − g2x− g3)

+f ′′′′(x)(4x3 − g2x− g3)2 = 0.

By comparing the coefficients of xl+2, we obtain

(360− 96n(n+ 1)) + l(1320− 96n(n+ 1)) + l(l − 1)(1020− 16n(n+ 1))

+ 240l(l − 1)(l − 2) + 16l(l − 1)(l − 2)(l − 3) = 0.

After simplification, this is reduced to

4n(n+ 1) = (2l + 3)(2l + 5),

which obviously leads to a contradiction since the number in the right-hand side is
odd while the number in the left-hand side is even. Therefore we must have q ≡ 0

from the beginning. That is, {ai,−bi} = {−ai, bi}.
If one of a, b does not correspond to a Lamé function, say a ∈ Xn, then

{ai} ∩ {−ai} = ∅ by Section 0.1.2 (iii) and we conclude that {ai} = {bi}. Otherwise,
a and b correspond to Lamé functions of the same type. �
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3.4. The degree of the rational function zn

Theorem 3.13. — The structure of the map zn : Xn → P1(C) over ∞ ∈ P1(C) is
analytically equivalent to σn : Xn → E over 0. In particular it has the same degree
as the one for σn, namely deg zn = deg σn = 1

2n(n+ 1).

Proof. — By definition, z−1n (∞) = σ−1n (0) as sets. So the crucial point is to compare
the ramification structures of Xn → E at 0 ∈ E and Xn → P1(C) at ∞ ∈ P1(C). Let
a ∈ Xn with σn(a) = 0. Then for b = {bi}ni=1 ∈ Xn in a small analytic neighborhood
of a we have bi 6= 0 all i.

If a 6= 0n, then every bi is away from 0 and

(zn(b))−1 =
(
ζ(σn(b))−

n∑
i=1

ζ(bi)
)−1

= σn(b) + o(σn(b)).

In terms of the coordinate of P1(C) at ∞, the map zn near a 6= 0n is seen to be
analytically equivalent to σn.

At a = 0n, we compute the expansion of (zn(b))−1 as

σn(b)

σn(b)ζ(σn(b))− σn(b)
∑n
i=1 ζ(bi)

= σn(b)
(

1 + σn(b)

n∑
i=1

ζ(bi) +O(σ4
n(b))

)
.

The tangent direction (ti) at 0n is related to (bi) through the asymptotic

ti|B|1/2 ∼ −1/bi

(cf. [1, Prop. 7.5] and the proof therein). Hence

lim
b→0

σn(b)

n∑
i=1

ζ(bi) =

n∑
i=1

t−1i

n∑
i=1

ti =: Λn.

The precise value of Λn follows from Proposition 1.5:

Λn =
en−1e1
en

= 1
2n(n+ 1) 6= −1.

Hence (zn(b))−1 = (1+Λn)σn(b)+o(σn(b)) and we again have the analytic equivalence
(up to a constant multiple).

In particular, deg zn = deg σn = 1
2n(n+ 1) by Theorem 0.2. �

4. Pre-modular forms Zn(σ; τ)

Pre-modular forms are defined in Definition 0.1. Since the Hecke function is pre-
modular of weight one, Theorem 3.2 then implies

Corollary 4.1. — Zn(σ; τ) := Wn(Z)(σ; τ) is pre-modular of weight 1
2n(n+ 1), with

Z, ℘(σ), ℘′(σ), g2, g3 being of weight 1, 2, 3, 4, 6 respectively.
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4.1. Completion of the proof of Theorem 0.4. — We call the 2n+ 1 branch points
a ∈ Yn rXn trivial critical points since a = −a and the Green equation (0.5) holds
trivially. They satisfy a nice compatibility condition with the case n = 1 under the
addition map:

Lemma 4.2. — Let a = {a1, . . . , an} ∈ Yn be a solution to the Green equation∑n
i=1∇G(ai) = 0. Then a is trivial, i.e., a = −a, if and only if σn(a) ∈ E[2].

Proof. — If a is trivial, then σn(a) ∈ E[2] clearly. If a is non-trivial, i.e., a ∈ Xn, by
equations (1.5), it gives rise to a type II developing map f with

f(z + ω1) = e−4πi
∑

i sif(z), f(z + ω2) = e4πi
∑

i rif(z).

Here, ai = riω1 + siω2 for i = 1, . . . , n.
If σn(a) ∈ E[2], then both exponential factors reduce to one and we conclude that

f(z) is an elliptic function on E. Notice that the only zero of f ′(z) is at z = 0 which
has order 2n, and the only poles of f ′(z) are at −ai of order 2, i = 1, . . . , n. This
forces that σn(a) = 0 and

f ′(z) =
∑n

j=1
Ej℘(z + aj) + C1

for some constants E1, . . . , En and C1, since f ′ is residue free. Then

f(z) = −
∑n

j=1
Ejζ(z + ai) + C1z + C2

for some constant C2. But f(z) is elliptic, which implies that C1 = 0 and
∑n
j=1Ej = 0.

Now f2k−1(0) = 0 for k = 1, . . . , n leads to a system of linear equations in Ej ’s
(cf. [1, Lem. 2.3.1]): ∑n

j=1
℘k(aj)Ej = 0, k = 1, . . . , n.

Then ℘(ai) 6= ℘(aj) for i 6= j forces that Ej = 0 for all j. This is a contradiction and
we conclude that σn(a) 6∈ E[2]. �

The following theorem completes the proof of Theorem 0.4:

Theorem 4.3 (Extra critical points versus non-trivial zeros of Zn(σ; τ))
(i) Given σ0 ∈ Eτ r Eτ [2] with Zn(σ0; τ) = 0, there is a unique a ∈ Xn such that

σn(a) = σ0 and zn(a) = Z(σ0).
(ii) Conversely, if a ∈ Xn and zn(a) = Z(σ(a)) then Zn(σ(a); τ) = 0 and σn(a) 6∈

Eτ [2].

Proof
(i) For any given σ0, by substituting σ with σ0 in Wn(z), we get a polynomial

Wn,σ0(z) of degree 1
2n(n+ 1). Since Wn(z) is the minimal polynomial of the rational

function zn ∈ K(Xn) over K(E), those zn(a) with a ∈ Xn and σn(a) = σ0 give rise
to all the roots, counted with multiplicities, of Wn,σ0

(a) = 0.
Now Z(σ0) is a root of Wn,σ0

(z) = 0 with σ0 6∈ E[2], hence there is a point a ∈ Xn

which corresponds to it. That is, Z(σ0) = zn(a) with σn(a) = σ0, and a is unique by
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Theorem 3.3. Notice that if a ∈ Xn rXn then a = −a and then σn(a) ∈ E[2]. So we
must have a ∈ Xn.

(ii) It is clear that Zn(σ(a)) = Wn(Z(σ(a)) = Wn(zn(a)) = 0. Since a ∈ Xn,
by equation (3.1) we have

∑n
i=1∇G(ai) = 0. But since a is non-trivial, Lemma 4.2

implies that σn(a) 6∈ E[2]. �

4.2. Monodromy aspects. — We present below an extended version of Theorem 0.4
in terms of monodromy groups of Lamé equations. The original case of mean field
equations corresponds to the case with unitary monodromy.

Let a = {a1, . . . , an} ∈ Xn, Ba = (2n − 1)
∑n
i=1 ℘(ai) and wa, w−a be the inde-

pendent ansatz solutions (0.7) to w′′ = (n(n+ 1)℘(z) +Ba)w. From equations (1.4),
one calculates that the monodromy matrices are given by(

wa
w−a

)
(z + ω1) =

(
e−2πis 0

0 e2πis

)(
wa
w−a

)
(z),

(
wa
w−a

)
(z + ω2) =

(
e2πir 0

0 e−2πir

)(
wa
w−a

)
(z),

(4.1)

where the two numbers r, s ∈ C (mod Z) are uniquely determined by

(4.2) rω1 + sω2 = σ(a) =

n∑
i=1

ai, rη1 + sη2 =

n∑
i=1

ζ(ai).

The system is non-singular by the Legendre relation ω1η2 − ω2η1 = −2πi.
The next lemma extends Lemma 4.2:

Lemma 4.4. — Let a ∈ Xn with (r, s) given by (4.2). Then (r, s) 6∈ 1
2Z

2.

Proof. — If (r, s) ∈ 1
2Z

2 then f := wa/w−a is elliptic by equations (4.1). Since

f ′ =
w′aw−a − waw′−a

w2
−a

=
C

w2
−a
,

we find that z = 0 is the only zero of f ′(z) in E, which has order 2n. The proof of
Lemma 4.2 for this f goes through and leads to a contradiction. �

Now we consider Zr,s(τ) in (0.10) but with r, s,∈ C, and define

(4.3) Zn; r,s(τ) := Wn(Zr,s)(r + sτ ; τ), r, s ∈ C.

It reduces to Zn(σ; τ) for σ = r + sτ when r, s ∈ R (see [2] for its role in the
isomonodromy problems and Painlevé VI equations).

By substituting Zn(σ; τ) with Zn;,r,s(τ) and using Lemma 4.4 in place of
Lemma 4.2, the proof of Theorem 4.3 also leads to:

Theorem 4.5. — Let r, s ∈ C. Then any non-trivial solution τ to Zn; r,s(τ) = 0,
i.e., with r + sτ (mod Λτ ) 6∈ Eτ [2], corresponds to an a = (a1, . . . , an) ∈ Cn such
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that a (mod Λτ ) ∈ Xn(τ) and
n∑
i=1

ai = r + sτ,

n∑
i=1

ζ(ai; τ) = rη1(τ) + sη2(τ).

Equivalently, by equations (4.2), the Lame equation w′′ = (n(n + 1)℘(z; Λτ ) + Ba)w

has its monodromy representation given by equations (4.1).

We leave the straightforward justifications to the interested readers.

5. An explicit determination of Zn

From the equations ofXn ⊂ SymnE (cf. (1.2)) and the recursively defined algebraic
formula for the addition map En → E, in principle it is possible to compute Wn

and hence Zn by elimination theory (cf. [7]). However we shall present a more direct
approach on this to reveal more structures inside it.

5.1. Comparisons with the Hermite–Krichever ansatz. — Besides the Hermite–
Halphen ansatz (0.7), there is another ansatz, the Hermite–Krichever ansatz, which
can also be used to construct solutions to the integral Lamé equation (0.6). It takes
the form

(5.1) ψ(z) :=
(
U(℘(z)) + V (℘(z))

℘′(z) + ℘′(a0)

℘(z)− ℘(a0)

) σ(z − a0)

σ(z)
e(ζ(a0)+κ)z,

where U(x) and V (x) are polynomials in x, the point a0 ∈ C r Λ, and κ ∈ C is a
constant. As usual, we set (x, y) = (℘(z), ℘′(z)) and (x0, y0) = (℘(a0), ℘′(a0)) to be
the corresponding algebraic coordinates.

The ansatz (5.1) makes sense since ψ only has poles at z = 0. The two poles at
z = ±a0 from (℘(z)−℘(a0))−1 cancel with the zeros from σ(z−a0) and ℘′(z)+℘′(a0).
In order for ordz=0 ψ(z) = −n, we must have

Lemma 5.1 (Degree constraints)
(i) If n = 2m with m ∈ N then degU 6 m− 1 and deg V = m− 1.
(ii) If n = 2m+ 1 with m ∈ N ∪ {0} then degU = m and deg V 6 m− 1.

By an obvious normalization, in case (i) we may assume that

U(x) =

m−1∑
i=0

uix
i, V (x) =

m−1∑
i=0

vix
i with vm−1 = 1,

and in case (ii) we assume that U(x) =
∑m
i=0 uix

i with um = 1 and V (x) =∑m−1
i=0 vix

i. In both cases, the requirement that ψ(z) satisfies equation (0.6) leads
to recursions on ui’s and vi’s. It turns out to be convenient to work with coordinates
(B, κ, x0, y0) to parametrize ui’s and vi’s, and this was carried out by Maier in [12, §4].
The following is a summary:

In case (i) the recursion determines vi (vm−1 = 1) and then ui for i = m − 1,
m − 2, . . . in descending order. In case (ii) it starts with um = 1 and determines vi
and then ui for i = m− 1,m− 2, . . . also in descending order.
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There are two compatibility equations coming from

u−1(B, κ, x0, y0) = 0 and v−1(B, κ, x0, y0) = 0.

The two parameters x0, y0 satisfy y20 = 4x30−g2x0−g3. Hence there are four variables
(B, κ, x0, y0) ∈ C4 which are subject to three polynomial equations. By taking into
account the limiting cases with (x0, y0) = (∞,∞), this recovers the Lame curve Y n
(which is denoted by Γ` in [12] with ` = n).

There are four natural coordinate projections (rational functions) Y n → P1(C),
namely B, κ, x0 and y0 respectively. The first one B : Y n → P1(C) is simply the
hyperelliptic structure map. The main result in [12] is an explicit description of the
other three maps in terms of the coordinates (B,C) on Y n. To state it we need to
first recall some variants of Lamé polynomials.

Definition 5.2 ([12, Def. 3.2, 3.4, 3.6])
(1) The twisted Lamé polynomials ltj(B), j = 0, 1, 2, 3 are monic polynomials

whose zeros correspond to solutions to (0.6) given by the Hermite–Krichever ansatz
with κ 6= 0 and a0 = 0, 1

2ω1, 1
2ω2, 1

2ω3 respectively, i.e., (x0, y0) = (∞,∞), (e1, 0),
(e2, 0), (e3, 0) respectively.

(2) The theta-twisted polynomial lθ(B) is the monic polynomial whose roots cor-
respond to the case κ = 0 and a0 6∈ E[2]. (For κ = 0 and a0 ∈ E[2] they correspond
to the ordinary Lamé polynomials li(B)’s.)

Theorem 5.3 ([12, Th. 4.1]). — For all n ∈ N and i ∈ {1, 2, 3},

x0(B) = ei +
4

n2(n+ 1)2
li(B)lti(B)2

l0(B)lt0(B)2
,

y0(B,C) =
16

n3(n+ 1)3
C

cn

lt1(B)lt2(B)lt3(B)

l0(B)2lt0(B)3
,

κ(B,C) = − (n− 1)(n+ 2)

n(n+ 1)

C

cn

lθ(B)

l0(B)lt0(B)
.

(5.2)

The formula for x0(B) is valid for all three choices of i.
All the factors lie in Q[e1, e2, e3, g2, g3, B] and are monic in B. They are homoge-

neous with degrees of B, ei, g2, g3 being 1, 1, 2, 3 respectively.

As a simple consistency check, we have C2 = `n(B) by Proposition 2.2.

Remark 5.4. — In [12] ν = C/cn is used instead.
The polynomials l0(B), li(B) (i = 1, 2, 3) are written there as LI` (B; g2, g3),

LII` (B; ei, g2, g3), called the Lamé spectral polynomials, where ` = n.
The polynomials lt0(B), lti(B) (i = 1, 2, 3) are written there as LtI` (B; g2, g3),

LtII` (B; ei, g2, g3), called the twisted Lamé polynomials.
Also lθ(B) is written there as Lθ`(B; g2, g3).

The compatibility equations from the recursive formulas for these special cases give
rise to explicit formulas for ltj(B)’s and lθ(B)’s. Tables for lt0(B), lθ(B) up to n = 8,
and for lti(B) up to n = 6, are given in [12, Tables 5, 6].

J.É.P. — M., 2017, tome 4



Mean field equations and modular forms II 585

Example 5.5. — We recall Maier’s formulas for ltj(B) and lθ(B) for n 6 4.
(1) First of all, lθ(B) = 1 for n 6 3. For n = 4,

lθ(B) = B2 − 193
3 g2.

Also for n = 1, ltj(B) = 1 for all j.
(2) n = 2: lt0(B) = 1, lti(B) = B − 6ei for i = 1, 2, 3.
(3) n = 3: lt0(B) = B2 − 75

4 g2, and for i = 1, 2, 3,

lti(B) = B2 − 15eiB + 75
4 g2 − 225e2i .

(4) n = 4: lt0(B) = B3 − 343
4 g2B − 1715

2 g3. For i = 1, 2, 3,

lti(B) = B4 − 55eiB
3 + ( 539

4 g2 − 945e2i )B
2

+ (1960eig2 + 2450g3)B + 61740e2i g2 − 68600eig3 − 9261g22 .

To apply Theorem 5.2, we need to compare the projection map

(5.3) πn : Y n −→ E, a 7−→ πn(a) := a0.

with the addition map σn : Y n → E. They turn out to be the same!

Theorem 5.6. — πn(a) = σn(a). Moreover, κ(a) = −zn(a).

Proof. — During the proof we view ai ∈ C instead of its image [ai] ∈ E.
Let a ∈ Yn. The two expressions (0.7) and (5.1), which correspond to the same

solution to the Lamé equation (0.6), must be proportional to each other by a constant.
Hence we get

κ(a) =
n∑
i=1

ζ(ai)− ζ(a0).

Recall that zn(a) = ζ(σn(a))−
∑n
i=1 ζ(ai). Then

(5.4) zn(a) + κ(a) = ζ(σn(a))− ζ(a0).

As a well-defined meromorphic function on Y n, we conclude that

a0(a) = σn(a) + c

for some constant c ∈ C. Consider a point a ∈ Yn r Xn with σn(a) = 1
2ω1, i.e.,

l1(Ba) = 0. Such an a exists by Proposition 2.2. Then zn(a) = 0 trivially. We also
have κ(a) = 0 by Theorem 5.2 since

C2
a = c2nl0(Ba)l1(Ba)l2(Ba)l3(Ba) = 0

(again by Proposition 2.2). So equation (5.4) implies 0 = 1
2η1− ζ( 1

2ω1 + c), and hence
c = 0. This proves σn(a) = a0, which represents πn(a) in E, and also κ(a) = −zn(a).
The proof is complete. �
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5.2. Effective construction and explicit formulas for Zn, n 6 4. — Now we de-
scribe an explicit construction, based on Theorem 5.3, of the polynomial Wn(z) in
Theorem 3.2. It is an application of elimination theory using resultants.

By Theorem 5.3 and Theorem 5.6, we may eliminate C to get

(5.5) y0
zn

=
16

n2(n+ 1)2(n− 1)(n+ 2)

lt1(B)lt2(B)lt3(B)

l0(B)lt0(B)2lθ(B)
,

which leads to a polynomial equation g = 0 for

(5.6) g := z

3∏
i=1

lti(B)− y0
n2(n+ 1)2(n− 1)(n+ 2)

16
l0(B)lt0(B)2lθ(B).

On the other hand, the three rational expressions of x0 lead to f = 0 for

f :=
1

3

3∑
i=1

li(B)lti(B)2 − x0
n2(n+ 1)2

4
l0(B)lt0(B)2

= li(B)lti(B)2 − (x0 − ei)
n2(n+ 1)2

4
l0(B)lt0(B)2, i ∈ {1, 2, 3}.

(5.7)

Notice that f, g are polynomials in g2, g3 (and B, x0, y0) instead of in ei’s.
Let R(f, g;B) be the resultant of the two polynomials f and g arising from the

elimination of the variable B. Standard elimination theory (see e.g [7, Chap. 5]) implies
that R(f, g;B) gives the equation defining the branched covering map σn : Y n → E

outside the loci C = 0:

Proposition 5.7. — R(f, g;B)(z) = λnWn(z) ∈ Q[g2, g3, x0, y0][z], where λn =

λn(g2, g3, x0, y0) is independent of z.

In particular, the pre-modular form Zn(σ; τ) = Wn(Z)(σ; τ) can be explicitly com-
puted for any n ∈ N by way of R(f, g;B).

In practice, such a computation is time consuming even using computer. In the
following, we apply it to the initial cases up to n = 4. As before we denote x0 =

℘(σ) =: ℘ and y0 = ℘′(σ) =: ℘′.

Example 5.8. — For n = 2, it is easy to see that
f = B3 − 9℘B2 + 27(g2℘+ g3),

g = zB3 − 9℘′B2 − 9zg2B + 27(g2℘
′ − 2zg3).

The resultant R(f, g;B) is calculated by the 6× 6 Sylvester determinant:∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −9℘ 0 27(g2℘+ g3) 0 0

0 1 −9℘ 0 27(g2℘+ g3) 0

0 0 1 −9℘ 0 27(g2℘+ g3)

z −9℘′ −9zg2 27(g2℘
′ − 2zg3) 0 0

0 z −9℘′ −9zg2 27(g2℘
′ − 2zg3) 0

0 0 z −9℘′ −9zg2 27(g2℘
′ − 2zg3)

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

A direct evaluation gives
R(f, g;B)(z) = −39∆(℘′)2(z3 − 3℘z− ℘′).
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Here, ∆ = g32 − 27g23 is the discriminant. This gives W2(z) = z3 − 3℘z − ℘′ and
Z2(σ; τ) = W2(Z) = Z3 − 3℘Z − ℘′.

Example 5.9. — For n = 3, we have
f = 16B6 − 576B5℘+ 360B4g2 + 5400B3(5g3 + 4g2℘)

− 3375B2g22 − 84375∆− 101250Bg2(3g3 + 2g2℘),

g = 16B6z− 1440B5℘′ − 1800B4g2z + 54000B3(g2℘
′ − g3z)

− 16875B2g22z− 506250Bg22℘
′ + 421875∆z.

It takes a couple seconds to evaluate the corresponding 12× 12 Sylvester determi-
nant (in Mathematica) to get

R(f, g;B)(z) = 236327530∆5(℘′)4W3(z),

where W3(z) is given by

W3(z) = z6 − 15℘z4 − 20℘′z3 + ( 27
4 g2 − 45℘2)z2 − 12℘℘′z− 5

4℘
′2.

It seems impractical to compute this resultant by hand.

Both Z2 and Z3 are known to Dahmen [3]. Here is a new example:

Example 5.10. — For n = 4, the expansions of the polynomials f and g, as given in
(5.7) and (5.6) by a direct substitution, are already too long to put here. Nevertheless,
a couple hours Mathematica calculation gives

R(f, g;B)(z) = −280363560763∆18(℘′)8W4(z),

where W4(z) is the degree 10 polynomial:
W4(z) = z10 − 45℘z8 − 120℘′z7 + ( 399

4 g2 − 630℘2)z6 − 504℘℘′z5

− 15
4 (280℘3 − 49g2℘− 115g3)z4 + 15(11g2 − 24℘2)℘′z3

− 9
4 (140℘4 − 245g2℘

2 + 190g3℘+ 21g22)z2

− (40℘3 − 163g2℘+ 125g3)℘′z + 3
4 (25g2 − 3℘2)(℘′)2.

(5.8)

The weight 10 pre-modular form Z4(σ; τ) is then obtained.

5.3. Remarks on rationality and singularities of the Lamé curve. — We have con-
structed two affine curves from Xn. One is the hyperelliptic model

Yn = {(B,C) | C2 = `n(B)},

another one is

Y ′n := {(x0, y0, z) | y20 = 4x20 − g2x0 − g3, Wn(x0, y0; z) = 0}

which is a degree 1
2n(n+ 1) branched cover of the original curve

E = {(x0, y0) | y20 = 4x30 − g2x0 − g3}

under the projection σ′n : Y ′n → E with defining equation Wn(z) = 0.
The curve Yn is birational to Y ′n over E, namely the addition map σn : Yn → E

is compatible with σ′n : Y ′n → E. Notice that both `n and Wn have coefficients
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in Q[g2, g3]. The explicit birational map φ : (B,C) 99K (x0, y0, z) (given in Theo-
rems 5.3 and 5.6 via zn = −κ) also has coefficients in Q[g2, g3]. This implies that φ is
defined over Q. Moreover φ extends to a birational morphism

Y n ∼= Xn

φ
//

σn
##

Y
′
n

σ′n��

E

by identifying σ−1n (0E) with z−1n (∞). The morphism φ is an isomorphism outside
those branch points for Yn → P1(C) (i.e., C = 0). In particular, the non-isomorphic
loci lie in zn = 0 by formulas (5.2) and Theorem 5.6.

Remark 5.11. — In contrast to the smoothness of Yn(τ) for general τ , for all n > 3

the model Y ′n(τ) is singular at points z = 0 = y0 (and hence x0 = ei for some i).
Indeed from (5.2) this is equivalent to C = 0 and li(B)lti(B)2 = 0 for some 1 6 i 6 3.
For n = 2, there is only one solution B for each fixed i (cf. Example 5.5). However,
for n > 3 there are more than one such solutions B. These points (B, 0) ∈ Yn are
collapsed to the same point (x0, y0, z) = (ei, 0, 0) ∈ Y ′n under φ, thus (ei, 0, 0) is a
singular point of Y ′n.

For n = 3, 4 this is easily seen from the equation Wn(z) = 0 given above since it
contains a quadratic polynomial in (z, ℘′) as its lowest degree terms.

In particular, the birational map φ−1 is also represented by rational functions
B = B(x0, y0, z) and C = C(x0, y0, z) with coefficients in Q[g2, g3] and with at most
poles along z = 0. In principle such an explicit inverse can be obtained by a Groebner
basis calculation associated to the ideal of the graph Γφ. The following statement is
clear from the above description:

Proposition 5.12. — Let E be defined over Q, i.e., g2, g3 ∈ Q. Then the Lamé
curve Y n is also defined over Q for all n ∈ N. Moreover, Y ′n and all the morphisms
σn, σ

′
n, φ are also defined over Q.

A rational point (B,C) ∈ Y n is mapped to a rational point (x0, y0, z) ∈ Y ′n by φ.
For the converse, given (x0, y0) ∈ E(Q), a point (x0, y0, z) in the σ′n-fiber gives a
unique (B,C) ∈ Y n(Q) if z ∈ Q and (x0, y0, z) 6= (ei, 0, 0) for any i.

Remark 5.13. — It is well-known that there are only few (i.e., at most finite) rational
points on a non-elliptic hyperelliptic curve. This phenomenon is consistent with the
irreducibility of the polynomial Wn(z) over K(E) in light of Hilbert’s irreducibility
theorem that there is an infinite (Zariski dense) set of (g2, g3, x0, y0) ∈ Q4 so that
the specialization of Wn(z) over there are all irreducible. Nevertheless, it might be
interesting to see if zn plays any role in the study of rational points.

Remark 5.14. — It was proved in [12, Prop. 3.2] that a Lamé curve is either smooth
or nodal, and there is at most one node. The proof relies on the degree formula
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deg πn = 1
2n(n + 1) = deg κ which was quoted as a significant formula from finite-

band integration theory without explicit references in [12, p. 1139]. While this might
be well-known to experts in this field, we want to point out that it also follows from
Theorem 5.6 and our degree formula deg σn = 1

2n(n + 1) = deg zn in Theorem 2.4
and Theorem 3.13.

Appendix. A counting formula for Lamé equations
by You-Cheng Chou(*)

Using the pre-modular forms constructed in Sections 4 and 5, we verify the n = 4

case of Dahmen’s conjectural counting formula [3, Conj. 73] for integral Lamé equa-
tions with finite monodromy. It is known that the finite monodromy group is neces-
sarily a dihedral group.

For N ∈ N we denote by φ(N) := #{k ∈ Z | gcd(k,N) = 1, 0 6 k < N} the Euler
function and we set φ(N) = 0 if N 6∈ N. Similarly we define

Ψ(N) := #{(k1, k2) | gcd(k1, k2, N) = 1, 0 6 ki < N}.

A.1. Dahmen’s conjecture. — Let Ln(N) be the number of Lamé equations w′′ =

(n(n + 1)℘(z) + B)w, up to linear equivalence, which has finite monodromy group
isomorphic to the dihedral group DN . Using the Hermite–Halphen ansatz (0.7) and
the theory in Section 4, the problem is reduced to the zero counting of the following
SL(2,Z) modular form

Mn(N) :=
∏

06k1,k2<N
gcd(k1,k2,N)=1

Zn

(k1 + k2τ

N
; τ
)
.

Using this, by repeating Dahmen’s argument in [3, Lem. 65, 74], we get

Proposition A.1. — Suppose that for all N ∈ Z>3 and n ∈ N we have that

ν∞(Mn(N)) = anφ(N) + bnφ (N/2) ,

where a2m = a2m+1 = m(m+ 1)/2, b2m = b2m−1 = m2. Then

Ln(N) = 1
2

(n(n+ 1)Ψ(N)

24
− (anφ(N) + bnφ (N/2))

)
+ 2

3 εn(N),

where εn(N) = 1 if N = 3 and n ≡ 1 (mod 3), and εn(N) = 0 otherwise.
Furthermore, Zn(σ; τ) with σ a torsion point has only simple zeros in τ ∈ H.

Proof. — Recall the formula for SL(2,Z) modular forms of weight k:∑
P 6=∞, i, ρ

νP (f) + ν∞(f) +
νi(f)

2
+
νρ(f)

3
=

k

12
.

(*)Taida Institute for Mathematical Sciences (TIMS), National Taiwan University, Taipei, Taiwan.
Email: b99201040@ntu.edu.tw
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The modular form f = Mn(N) has weight k = 1
2n(n + 1)Ψ(N). Notice that the

counting is always doubled under the symmetry (k1, k2)→ (N − k1, N − k2), thus by
[3, Lem. 65] an upper bound for Ln(N) is given by

Un(N) := 1
2

(n(n+ 1)Ψ(N)

24
− (anφ(N) + bnφ (N/2))

)
+ 2

3 εn(N).

That is, Ln(N) 6 Un(N). Moreover, the equality holds if and only if each factor
Zn((k1 + k2τ)/N ; τ) has only simple zeros.

We will show the equality holds by comparing it with the counting formula for the
projective monodromy group PLn(N) (cf. [3, Lem. 74]).

We recall the relation between Ln(N) and PLn(N):

PLn(N) =

{
Ln(N) + Ln(2N) if N is odd,
Ln(2N) if N is even.

If n is even and N is odd, we have

PLn(N) = Ln(N) + Ln(2N)

6 1
2

(
n(n+ 1)Ψ(N)

24
−
( n

2 (n2 + 1)

2
φ(N) +

n2

4
φ (N/2)

))
+ 2

3 εn(N)

+ 1
2

(
n(n+ 1)Ψ(2N)

24
−
( n

2 (n2 + 1)

2
φ(2N) +

n2

4
φ(N)

))
+ 2

3 εn(2N)

=
n(n+ 1)

12
(Ψ(N)− 3φ(N)) + 2

3 εn(N)

For the last equality, we use εn(2N) = 0, Ψ(2N) = 3Ψ(N) and φ(2N) = φ(N). (If N
is even, the relations are εn(N) = 0, Ψ(2N) = 4Ψ(N) and φ(2N) = φ(N).) For
the other three cases with (n,N) being (even, even), (odd, odd) or (odd, even), the
computations are similar. They lead to

PLn(N) 6
n(n+ 1)

12
(Ψ(N)− 3φ(N)) + 2

3 εn(N).

On the other hand, using the method of dessins d’enfants, Dahmen showed directly
that the equality holds [4]. Thus all the intermediate inequalities are indeed equalities,
and in particular Ln(N) = Un(N) holds. �

A.2. q-expansions for some modular forms. — Recall that∑
m∈Z

1

(m+ z)k
=

1

(k − 1)!
(−2πi)k

∞∑
n=1

nk−1e2πinz,

∑
n∈Z

1

(x+ n)2
= π2 cot2(πx) + π2,

∑
n∈Z

1

(x+ n)3
= π3 cot3(πx) + π3 cot(πx).
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We compute the q-expansions for g2, g3, ℘, ℘′, Z, where q = e2πiτ :

g2 = 60
∑

(n,m) 6=(0,0)

1

(n+mτ)4
= 60

(
2ζ(4) + 2

(−2πi)4

3!

∞∑
n=1

σ3(n)qn
)
,

where σk(n) :=
∑
d|n d

k. Similarly,

g3 = 140
∑

(n,m) 6=(0,0)

1

(n+mτ)6
= 140

(
2ζ(6) + 2

(−2πi)6

5!

∞∑
n=1

σ5(n)qn
)
.

Let z = r + sτ . For s = 0, we have

℘′(r; τ) = −2
∑
n,m∈Z

1

(r + n+mτ)3

= −2
∑
n∈Z

1

(r + n)3
− 2

∞∑
m=1

∑
n∈Z

( 1

(mτ + n+ r)3
− 1

(mτ + n− r)3
)

= −2
∑
n∈Z

1

(r + n)3
− 2

∞∑
m=1

(−2πi)3

2!

∞∑
n=1

n2
(
e2πin(mτ+r) − e2πin(mτ−r)

)
= −2π3 cot(πr)− 2π3 cot3(πr) + 16π3

∞∑
n,m=1

n2 sin(2πnr) qnm.

℘(r; τ) =
1

r2
+

∑
(n,m)6=(0,0)

( 1

(r + n+mτ)2
− 1

(n+mτ)2

)

=
∑
n∈Z

1

(r + n)2
−
∞∑
n=1

2

n2
+

∞∑
m=1

∑
n∈Z

( 1

(mτ + r + n)2
+

1

(mτ − r + n)2
− 2

(mτ + n)2

)
= π2 cot2(πr) + 2

3π
2 +

∞∑
m=1

(−2πi)2
∞∑
n=1

(
e2πin(mτ+r) + e2πin(mτ−r) − 2e2πinmτ

)
= π2 cot2(πr) + 2

3π
2 + 8π2

∞∑
n,m=1

(1− cos 2nπr)qnm.

Also, for the Hecke function Z (cf. (0.10)) we have

Z(r; τ) = π cot(πr) + 4π

∞∑
n,m=1

(sin 2nπr)qnm.

For s = 1
2 , we have

℘′(r + 1
2τ ; τ) = −2

∑
(n,m)6=(0,0)

1

(r + n+ ( 1
2 +m)τ)3

= −2

∞∑
m=1

(∑
m∈Z

1

(n+ r + (m− 1
2 )τ)3

−
∑
n∈Z

1

(n− r + (m− 1
2 )τ)3

)

= −2
(−2πi)3

2!

∞∑
n,m=1

n2
(
e2πin(r+(m−1/2)τ) − e2πin(−r)+(m−1/2)τ

)
= 16π3

∞∑
n,m=1

n2(sin 2πnr)qn(m−1/2).

J.É.P. — M., 2017, tome 4



592 C.-S. Lin & C.-L. Wang

Similarly,

℘(r + 1
2τ ; τ) = − 1

3π
2 + 8π2

∞∑
n,m=1

nqnm − 8π2
∞∑

n,m=1

n(cos 2πnr)qn(m−1/2),

and Z(r + 1
2τ ; τ) = 4π

∑∞
n,m=1(sin 2πnr)qn(m−1/2).

A.3. The counting formula for n = 4. — Now we give the computations for n = 4

and prove the formula L4(N) = U4(N) from Proposition A.1.

Theorem A.2. — For n = 4 and N ∈ Z>3, we have

L4(N) = 1
2

(
5
6Ψ(N)− (3φ(N) + 4φ (N/2))

)
.

Moreover, Z4(σ; τ) with σ ∈ Eτ [N ] has only simple zeros in τ ∈ H.

Proof. — For n = 4, the pre-modular form Z4 = W4(Z) is given in (5.8):

W4(Z) = Z10 − 45℘Z8 − 120℘′Z7 + ( 399
4 g2 − 630℘2)Z6 − (504℘℘′)Z5

− 15
4 (280℘3 − 49g2℘− 115g3)Z4 + 15(11g2 − 24℘2)℘′Z3

− 9
4 (140℘4 − 245g2℘

2 + 190g3℘+ 21g22)Z2

− (40℘3 − 163g2℘+ 125g3)℘Z + 3
4 (25g2 − 3℘2)℘′2,

where Z is the Hecke function. We compute the asymptotic behavior of W4(Z) when
τ →∞. Let z = r + sτ . We divide the problem into two cases

(1) s ≡ 0 (mod 1): according to the q-expansion given in Section A.2, we have

g2 → 3
4π

4, g3 → 8
27π

6, Z(z)→ π cot(πr),

℘′(z)→ −2π3 cot(πr)− 2π3 cot3(πr), ℘(z)→ π2 cot2(πr) + 2
3π

2.

A direct computation shows that W4(Z) has a zero at ∞ when s = 0.
By replacing all the modular forms g2, g3, ℘, ℘′ and Z appeared in W4(Z) with

their q-expansions, we have (e.g. using Mathematica)

W4(Z) = 21433527π10 cos2(πr) sin2(πr)q3 +O(q4)

(2) s 6≡ 0 (mod 1): in this case we have

Z → 2πi
(
s− 1

2

)
, ℘(z)→ − 1

3π
2, ℘′(z)→ 0, g2 → 4

3π
4, g3 → 8

27π
6.

Hence the constant term of W4(Z) is given by

W4(z) = −64π10(−2 + s)(−1 + s)2s2(1 + s)(−3 + 2s)(−1 + 2s)2(1 + 2s) +O(q).

If s 6≡ 0 (mod 1) then W4(Z) has a zero at τ =∞⇐⇒ s ≡ 1
2 (mod 1).

Now we fix s = 1
2 and replace the modular forms g2, g3, ℘, ℘′ and Z appeared in

W4(Z) with their q-expansions. We get

W4(Z) = 21033527π10 cos2(πr) sin2(πr)q2 +O(q3).
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These computations for the q-expansions imply that
ν∞(M4(N)) = 3 # {1 6 k1 6 N | gcd(N, k1) = 1}

+ 2 # {0 6 k1 6 N | gcd(N/2, k1) = 1}
= 3φ(N) + 4φ(N/2).

Since the value of ν∞(M4(N)) coincides with the assumption in Proposition A.1 for
n = 4, the theorem follows from it accordingly. �
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