Height, graded relative hyperbolicity and quasiconvexity
[Hauteur, hyperbolicité relative graduée, et quasiconvexité]
Journal de l’École polytechnique — Mathématiques, Tome 4 (2017) , pp. 515-556.

Nous introduisons les notions de hauteur géométrique d’un sous-groupe, et d’hyperbolicité relative graduée d’un groupe, avec une version géométrique de cette dernière. Nous utilisons ensuite ces notions pour caractériser la quasiconvexité des sous-groupes des groupes hyperboliques, la quasiconvexité relative des sous-groupes des groupes relativement hyperboliques, et le fait d’être convexe-cocompact dans un groupe modulaire de surface, ou dans un groupe d’automorphismes extérieurs de groupe libre.

We introduce the notions of geometric height and graded (geometric) relative hyperbolicity in this paper. We use these to characterize quasiconvexity in hyperbolic groups, relative quasiconvexity in relatively hyperbolic groups, and convex cocompactness in mapping class groups and Out(F n ).

Reçu le :
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/jep.50
Classification : 20F65,  20F67,  22E40
Mots clés : Sous-groupes quasi-convexes, groupes hyperboliques, groupes relativement hyperboliques, groupes convexes cocompacts
@article{JEP_2017__4__515_0,
     author = {Fran\c{c}ois Dahmani and Mahan Mj},
     title = {Height, graded relative hyperbolicity and quasiconvexity},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {515--556},
     publisher = {\'Ecole polytechnique},
     volume = {4},
     year = {2017},
     doi = {10.5802/jep.50},
     mrnumber = {3646028},
     zbl = {06754335},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.50/}
}
François Dahmani; Mahan Mj. Height, graded relative hyperbolicity and quasiconvexity. Journal de l’École polytechnique — Mathématiques, Tome 4 (2017) , pp. 515-556. doi : 10.5802/jep.50. https://jep.centre-mersenne.org/articles/10.5802/jep.50/

[Bes04] M. Bestvina - “Geometric group theory problem list” (2004), http:math.utah.edu/~bestvina

[BF14] M. Bestvina & M. Feighn - “Hyperbolicity of the complex of free factors”, Adv. in Math. 256 (2014), p. 104-155, Corrigendum: Ibid., 259 (2014), p. 843 | Article | MR 3177291 | Zbl 1348.20028

[Bow12] B. H. Bowditch - “Relatively hyperbolic groups”, Internat. J. Algebra Comput. 22 (2012) no. 3, 1250016, 66 pages | Article | MR 2922380 | Zbl 1259.20052

[Cou14] R. Coulon - “On the geometry of Burnside quotients of torsion free hyperbolic groups”, Internat. J. Algebra Comput. 24 (2014) no. 3, p. 251-345 | Article | MR 3211906 | Zbl 1348.20048

[Dah03] F. Dahmani - “Combination of convergence groups”, Geom. Topol. 7 (2003), p. 933-963 | Article | MR 2026551 | Zbl 1037.20042

[DDM14] S. Dowdall, M. Duchin & H. Masur - “Statistical hyperbolicity in Teichmüller space”, Geom. Funct. Anal. 24 (2014) no. 3, p. 748-795 | Article | Zbl 1302.30055

[DGO17] F. Dahmani, V. Guirardel & D. Osin - Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces, Mem. Amer. Math. Soc., vol. 245, no.  1156, American Mathematical Society, Providence, RI, 2017 | Zbl 1396.20041

[DH15] F. Dahmani & C. Horbez - “Spectral theorems for random walks on mapping class groups and Out(F N )” (2015), arXiv:1506.06790

[DM15] S. Das & M. Mj - “Controlled Floyd separation and non relatively hyperbolic groups”, J. Ramanujan Math. Soc. 30 (2015) no. 3, p. 267-294 | MR 3385238

[DS05] C. Druţu & M. Sapir - “Tree-graded spaces and asymptotic cones of groups”, Topology 44 (2005) no. 5, p. 959-1058, With an appendix by D. Osin and M. Sapir | Article | MR 2153979 | Zbl 1101.20025

[DT14] S. Dowdall & S. J. Taylor - “Hyperbolic extensions of free groups” (2014), arXiv:1406.2567

[DT15] M. G. Durham & S. J. Taylor - “Convex cocompactness and stability in mapping class groups”, Algebraic Geom. Topol. 15 (2015) no. 5, p. 2839-2859 | Article | MR 3426695 | Zbl 1364.20027

[Far98] B. Farb - “Relatively hyperbolic groups”, Geom. Funct. Anal. 8 (1998) no. 5, p. 810-840 | Article | MR 1650094 | Zbl 0985.20027

[FM02] B. Farb & L. Mosher - “Convex cocompact subgroups of mapping class groups”, Geom. Topol. 6 (2002), p. 91-152 | Article | MR 1914566 | Zbl 1021.20034

[GM08] D. Groves & J. F. Manning - “Dehn filling in relatively hyperbolic groups”, Israel J. Math. 168 (2008), p. 317-429 | Article | MR 2448064 | Zbl 1211.20038

[GMRS98] R. Gitik, M. Mitra, E. Rips & M. Sageev - “Widths of subgroups”, Trans. Amer. Math. Soc. 350 (1998) no. 1, p. 321-329 | Article | MR 1389776 | Zbl 0897.20030

[Ham08] U. Hamenstädt - “Word hyperbolic extensions of surface groups” (2008), arXiv:0807.4891v2

[Ham10] U. Hamenstädt - “Stability of quasi-geodesics in Teichmüller space”, Geom. Dedicata 146 (2010), p. 101-116 | Article | Zbl 1198.30047

[Hru10] G. C. Hruska - “Relative hyperbolicity and relative quasiconvexity for countable groups”, Algebraic Geom. Topol. 10 (2010) no. 3, p. 1807-1856 | Article | MR 2684983 | Zbl 1202.20046

[HW09] G. C. Hruska & D. T. Wise - “Packing subgroups in relatively hyperbolic groups”, Geom. Topol. 13 (2009) no. 4, p. 1945-1988 | Article | MR 2497315 | Zbl 1188.20042

[KL08] R. P. Kent IV & C. J. Leininger - “Shadows of mapping class groups: capturing convex cocompactness”, Geom. Funct. Anal. 18 (2008) no. 4, p. 1270-1325 | Article | MR 2465691 | Zbl 1282.20046

[Kla99] E. Klarreich - “Semiconjugacies between Kleinian group actions on the Riemann sphere”, Amer. J. Math. 121 (1999) no. 5, p. 1031-1078 | Article | MR 1713300 | Zbl 1011.30035

[Mas80] H. Masur - “Uniquely ergodic quadratic differentials”, Comment. Math. Helv. 55 (1980) no. 2, p. 255-266 | Article | MR 576605 | Zbl 0436.30034

[McM01] C. T. McMullen - “Local connectivity, Kleinian groups and geodesics on the blowup of the torus”, Invent. Math. 146 (2001) no. 1, p. 35-91 | Article | MR 1859018 | Zbl 1061.37025

[Mj08] M. Mj - “Relative rigidity, quasiconvexity and C-complexes”, Algebraic Geom. Topol. 8 (2008) no. 3, p. 1691-1716 | Article | MR 2448868 | Zbl 1179.20039

[Mj10] M. Mj - “Cannon-Thurston maps, i-bounded geometry and a theorem of McMullen”, in Sémin. Théor. Spectr. Géom., vol. 28, Univ. Grenoble I, Saint-Martin-d’Hères, 2010, p. 63-107 | Numdam | MR 2848212 | Zbl 1237.57018

[Mj14] M. Mj - “Cannon-Thurston maps for surface groups”, Ann. of Math. (2) 179 (2014) no. 1, p. 1-80 | Article | MR 3126566 | Zbl 1301.57013

[MM99] H. A. Masur & Y. N. Minsky - “Geometry of the complex of curves. I. Hyperbolicity”, Invent. Math. 138 (1999) no. 1, p. 103-149 | Article | MR 1714338 | Zbl 0941.32012

[Osi06a] D. V. Osin - “Elementary subgroups of relatively hyperbolic groups and bounded generation”, Internat. J. Algebra Comput. 16 (2006) no. 1, p. 99-118 | Article | MR 2217644 | Zbl 1100.20033

[Osi06b] D. V. Osin - Relatively hyperbolic groups: intrinsic geometry, algebraic properties, and algorithmic problems, Mem. Amer. Math. Soc., vol. 179, no.  843, American Mathematical Society, Providence, RI, 2006 | Zbl 1093.20025

[Sho91] H. Short - “Quasiconvexity and a theorem of Howson’s”, in Group theory from a geometrical viewpoint (Trieste, 1990), World Sci. Publ., River Edge, NJ, 1991, p. 168-176 | MR 1170365 | Zbl 0869.20023

[Szc98] A. Szczepański - “Relatively hyperbolic groups”, Michigan Math. J. 45 (1998) no. 3, p. 611-618 | Article | MR 1653287 | Zbl 0962.20031