Nous introduisons une forme pré-modulaire de poids pour chaque , avec , de sorte que pour , tout zéro non trivial de , c’est-à-dire que n’est pas de -torsion dans , correspond à une (famille de) solution de l’équation
sur le tore plat avec .
Dans la partie I [1], nous avons construit une courbe hyperelliptique , la courbe de Lamé, associée à l’équation (MFE). Notre construction de s’appuie sur une étude détaillée de la correspondance induite par la projection hyperelliptique et l’application d’addition.
Dans l’appendice, Y.-C. Chou donne, comme application de l’expression explicite de la forme pré-modulaire de poids , une formule de comptage pour les équations de Lamé de degré avec monodromie finie.
A pre-modular form of weight is introduced for each , where , such that for , every non-trivial zero of , i.e. is not a -torsion of , corresponds to a (scaling family of) solution to the equation
on the flat torus with singular strength .
In Part I [1], a hyperelliptic curve , the Lamé curve, associated to the MFE was constructed. Our construction of relies on a detailed study of the correspondence induced from the hyperelliptic projection and the addition map.
As an application of the explicit form of the weight pre-modular form , a counting formula for Lamé equations of degree with finite monodromy is given in the appendix (by Y.-C. Chou).
Accepté le :
Publié le :
DOI : 10.5802/jep.51
Keywords: Lamé curve, Hecke function, pre-modular form
Mot clés : Courbe de Lamé, fonction de Hecke, forme pré-modulaire
Chang-Shou Lin 1 ; Chin-Lung Wang 2
@article{JEP_2017__4__557_0, author = {Chang-Shou Lin and Chin-Lung Wang}, title = {Mean field equations, hyperelliptic curves and modular forms: {II}}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {557--593}, publisher = {\'Ecole polytechnique}, volume = {4}, year = {2017}, doi = {10.5802/jep.51}, zbl = {1376.33022}, mrnumber = {3665608}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.51/} }
TY - JOUR AU - Chang-Shou Lin AU - Chin-Lung Wang TI - Mean field equations, hyperelliptic curves and modular forms: II JO - Journal de l’École polytechnique — Mathématiques PY - 2017 SP - 557 EP - 593 VL - 4 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.51/ DO - 10.5802/jep.51 LA - en ID - JEP_2017__4__557_0 ER -
%0 Journal Article %A Chang-Shou Lin %A Chin-Lung Wang %T Mean field equations, hyperelliptic curves and modular forms: II %J Journal de l’École polytechnique — Mathématiques %D 2017 %P 557-593 %V 4 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.51/ %R 10.5802/jep.51 %G en %F JEP_2017__4__557_0
Chang-Shou Lin; Chin-Lung Wang. Mean field equations, hyperelliptic curves and modular forms: II. Journal de l’École polytechnique — Mathématiques, Tome 4 (2017), pp. 557-593. doi : 10.5802/jep.51. https://jep.centre-mersenne.org/articles/10.5802/jep.51/
[1] - “Mean field equations, hyperelliptic curves and modular forms: I”, Camb. J. Math. 3 (2015) no. 1-2, p. 127-274 | DOI | MR
[2] - “Green function, Painlevé VI equation, and Eisentein series of weight one”, J. Differential Geometry (to appear)
[3] - Counting integral Lamé equations with finite monodromy by means of modular forms, Utrecht University, 2003, Master Thesis
[4] - “Counting integral Lamé equations by means of dessins d’enfants”, Trans. Amer. Math. Soc. 359 (2007) no. 2, p. 909-922 | DOI | MR | Zbl
[5] - Traité des fonctions elliptique II, Gauthier-Villars, Paris, 1888
[6] - Algebraic geometry, Graduate Texts in Math., vol. 52, Springer-Verlag, 1977 | Zbl
[7] - Introduction to algebraic geometry, Cambridge University Press, Cambridge, 2007 | DOI | MR | Zbl
[8] - “Zur Theorie der elliptischen Modulfunctionen”, Math. Ann. 97 (1926), p. 210-242 | DOI | Zbl
[9] - “Elliptic functions, Green functions and the mean field equations on tori”, Ann. of Math. (2) 172 (2010) no. 2, p. 911-954 | DOI | MR
[10] - “A function theoretic view of the mean field equations on tori”, in Recent advances in geometric analysis, Adv. Lect. Math. (ALM), vol. 11, Int. Press, Somerville, MA, 2010, p. 173-193 | MR
[11] - “On the minimality of extra critical points of Green functions on flat tori”, Internat. Math. Res. Notices (2016), doi:10.1093/imrn/rnw176 | DOI
[12] - “Lamé polynomials, hyperelliptic reductions and Lamé band structure”, Philos. Trans. Roy. Soc. London Ser. A 366 (2008) no. 1867, p. 1115-1153 | DOI | Zbl
[13] - Abelian varieties, Oxford University Press, Cambridge, 1974 | Zbl
[14] - A course of modern analysis, Cambridge University Press, Cambridge, 1927 | Zbl
Cité par Sources :