[La répartition limite des chemins de Legendre]
Let be a prime number and be the Legendre symbol modulo . The Legendre path attached to is the polygonal path whose vertices are the normalized character sums for . In this paper, we investigate the distribution of Legendre paths as we vary over the primes such that , when is large. Our main result shows that as , these paths converge in law, in the space of real-valued continuous functions on , to a certain random Fourier series constructed using Rademacher random completely multiplicative functions. This was previously proved by the first author under the assumption of the Generalized Riemann Hypothesis.
Soient un nombre premier et le symbole de Legendre modulo . Le chemin de Legendre attaché à est le chemin polygonal dont les sommets sont les sommes de caractères normalisées pour . Dans cet article, nous étudions la répartition des chemins de Legendre lorsqu’on varie le premier dans un intervalle , où est grand. Notre résultat principal montre que lorsque , ces chemins convergent en loi, dans l’espace des fonctions continues à valeurs réelles sur , vers une certaine série de Fourier aléatoire construite en utilisant des fonctions aléatoires complètement multiplicatives de Rademacher. Ceci a été démontré précédemment par le premier auteur sous l’hypothèse de Riemann généralisée.
Accepté le :
Publié le :
DOI : 10.5802/jep.260
Keywords: Legendre symbol, character sums, Rademacher random multiplicative functions, random Fourier series
Mots-clés : Symbole de Legendre, sommes de caractères, fonctions multiplicatives aléatoires de Rademacher, séries de Fourier aléatoires
Ayesha Hussain 1 ; Youness Lamzouri 2

@article{JEP_2024__11__589_0, author = {Ayesha Hussain and Youness Lamzouri}, title = {The limiting distribution of {Legendre} paths}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {589--611}, publisher = {\'Ecole polytechnique}, volume = {11}, year = {2024}, doi = {10.5802/jep.260}, mrnumber = {4767013}, zbl = {07861393}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.260/} }
TY - JOUR AU - Ayesha Hussain AU - Youness Lamzouri TI - The limiting distribution of Legendre paths JO - Journal de l’École polytechnique — Mathématiques PY - 2024 SP - 589 EP - 611 VL - 11 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.260/ DO - 10.5802/jep.260 LA - en ID - JEP_2024__11__589_0 ER -
%0 Journal Article %A Ayesha Hussain %A Youness Lamzouri %T The limiting distribution of Legendre paths %J Journal de l’École polytechnique — Mathématiques %D 2024 %P 589-611 %V 11 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.260/ %R 10.5802/jep.260 %G en %F JEP_2024__11__589_0
Ayesha Hussain; Youness Lamzouri. The limiting distribution of Legendre paths. Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 589-611. doi : 10.5802/jep.260. https://jep.centre-mersenne.org/articles/10.5802/jep.260/
[1] - “The least quadratic non residue”, Ann. of Math. (2) 55 (1952), p. 65-72 | DOI | MR | Zbl
[2] - “Oscillations of quadratic -functions”, in Analytic number theory (Allerton Park, IL, 1989), Progress in Math., vol. 85, Birkhäuser Boston, Boston, MA, 1990, p. 23-40 | DOI | MR | Zbl
[3] - Convergence of probability measures, Wiley Series in Probability and Statistics, John Wiley & Sons, Inc., New York, 1999 | DOI | MR
[4] - “The frequency and the structure of large character sums”, J. Eur. Math. Soc. (JEMS) 20 (2018) no. 7, p. 1759-1818 | DOI | MR | Zbl
[5] - “On character sums and -series. II”, Proc. London Math. Soc. (3) 13 (1963), p. 524-536 | DOI | MR | Zbl
[6] - Multiplicative number theory, Graduate Texts in Math., vol. 74, Springer-Verlag, New York, 2000 | MR
[7] - “The distribution of quadratic and higher residues”, Publ. Math. Debrecen 2 (1952), p. 252-265 | DOI | MR | Zbl
[8] - “Lower bounds for least quadratic nonresidues”, in Analytic number theory (Allerton Park, IL, 1989), Progress in Math., vol. 85, Birkhäuser Boston, Boston, MA, 1990, p. 269-309 | DOI | MR | Zbl
[9] - “Three conjectures about character sums”, Math. Z. 305 (2023) no. 3, article ID 49, 34 pages | DOI | MR | Zbl
[10] - “Moments of random multiplicative functions, II: High moments”, Algebra Number Theory 13 (2019) no. 10, p. 2277-2321 | DOI | MR | Zbl
[11] - “Moments of random multiplicative functions, I: Low moments, better than squareroot cancellation, and critical multiplicative chaos”, Forum Math. Pi 8 (2020), article ID e1, 95 pages | DOI | MR | Zbl
[12] - “A note on character sums over short moving intervals”, 2022, 30 p. | arXiv
[13] - “A mean value estimate for real character sums”, Acta Arith. 72 (1995) no. 3, p. 235-275 | DOI | MR | Zbl
[14] - “The limiting distribution of character sums”, Internat. Math. Res. Notices (2022) no. 20, p. 16292-16326 | DOI | MR | Zbl
[15] - “Long nonnegative sums of Legendre symbols”, 2019, 23 p. | arXiv
[16] - An introduction to probabilistic number theory, Cambridge Studies in Advanced Math., vol. 192, Cambridge University Press, Cambridge, 2021 | DOI | MR
[17] - “Kloosterman paths and the shape of exponential sums”, Compositio Math. 152 (2016) no. 7, p. 1489-1516 | DOI | MR | Zbl
[18] - “Extreme values of ”, Acta Arith. 146 (2011) no. 4, p. 335-354 | DOI | MR | Zbl
[19] - “The distribution of large quadratic character sums and applications”, 2022, to appear in Algebra Number Theory | arXiv
[20] - “Incomplete Gauss sums”, Mathematika 23 (1976) no. 2, p. 125-135 | DOI | MR | Zbl
[21] - “The graphs of exponential sums”, Mathematika 30 (1983) no. 2, p. 153-163 | DOI | MR | Zbl
[22] - “The distribution of exponential sums”, Mathematika 32 (1985) no. 1, p. 16-25 | DOI | MR | Zbl
[23] - “Distribution of Kloosterman paths to high prime power moduli”, Trans. Amer. Math. Soc. Ser. B 10 (2023), p. 636-669 | DOI | MR | Zbl
[24] - Topics in multiplicative number theory, Lect. Notes in Math., vol. 227, Springer-Verlag, Berlin-New York, 1971 | MR
[25] - “Mean values of character sums”, Canad. J. Math. 31 (1979) no. 3, p. 476-487 | DOI | MR | Zbl
[26] - Multiplicative number theory. I. Classical theory, Cambridge Studies in Advanced Math., vol. 97, Cambridge University Press, Cambridge, 2007 | MR
[27] - “Kloosterman paths of prime powers moduli”, Comment. Math. Helv. 93 (2018) no. 3, p. 493-532 | DOI | MR | Zbl
[28] - “Kloosterman paths of prime powers moduli, II”, Bull. Soc. math. France 148 (2020) no. 1, p. 173-188 | DOI | MR | Zbl
[29] - The moment problem, Graduate Texts in Math., vol. 277, Springer, Cham, 2017 | DOI | MR
Cité par Sources :