The limiting distribution of Legendre paths
[La répartition limite des chemins de Legendre]
Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 589-611.

Soient p un nombre premier et (· p) le symbole de Legendre modulo p. Le chemin de Legendre attaché à p est le chemin polygonal dont les sommets sont les sommes de caractères normalisées 1 p nj (n p) pour 0jp-1. Dans cet article, nous étudions la répartition des chemins de Legendre lorsqu’on varie le premier p dans un intervalle [Q,2Q], où Q est grand. Notre résultat principal montre que lorsque Q, ces chemins convergent en loi, dans l’espace des fonctions continues à valeurs réelles sur [0,1], vers une certaine série de Fourier aléatoire construite en utilisant des fonctions aléatoires complètement multiplicatives de Rademacher. Ceci a été démontré précédemment par le premier auteur sous l’hypothèse de Riemann généralisée.

Let p be a prime number and (· p) be the Legendre symbol modulo p. The Legendre path attached to p is the polygonal path whose vertices are the normalized character sums 1 p nj (n p) for 0jp-1. In this paper, we investigate the distribution of Legendre paths as we vary over the primes p such that Qp2Q, when Q is large. Our main result shows that as Q, these paths converge in law, in the space of real-valued continuous functions on [0,1], to a certain random Fourier series constructed using Rademacher random completely multiplicative functions. This was previously proved by the first author under the assumption of the Generalized Riemann Hypothesis.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.260
Classification : 11L40, 11N64, 11K65
Keywords: Legendre symbol, character sums, Rademacher random multiplicative functions, random Fourier series
Mot clés : Symbole de Legendre, sommes de caractères, fonctions multiplicatives aléatoires de Rademacher, séries de Fourier aléatoires
Ayesha Hussain 1 ; Youness Lamzouri 2

1 Department of Mathematics, University of Exeter North Park Road, Exeter, EX4 4QF, U.K.
2 Université de Lorraine, CNRS, IECL, and Institut Universitaire de France F-54000 Nancy, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2024__11__589_0,
     author = {Ayesha Hussain and Youness Lamzouri},
     title = {The limiting distribution of {Legendre} paths},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {589--611},
     publisher = {\'Ecole polytechnique},
     volume = {11},
     year = {2024},
     doi = {10.5802/jep.260},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.260/}
}
TY  - JOUR
AU  - Ayesha Hussain
AU  - Youness Lamzouri
TI  - The limiting distribution of Legendre paths
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2024
SP  - 589
EP  - 611
VL  - 11
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.260/
DO  - 10.5802/jep.260
LA  - en
ID  - JEP_2024__11__589_0
ER  - 
%0 Journal Article
%A Ayesha Hussain
%A Youness Lamzouri
%T The limiting distribution of Legendre paths
%J Journal de l’École polytechnique — Mathématiques
%D 2024
%P 589-611
%V 11
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.260/
%R 10.5802/jep.260
%G en
%F JEP_2024__11__589_0
Ayesha Hussain; Youness Lamzouri. The limiting distribution of Legendre paths. Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 589-611. doi : 10.5802/jep.260. https://jep.centre-mersenne.org/articles/10.5802/jep.260/

[1] N. C. Ankeny - “The least quadratic non residue”, Ann. of Math. (2) 55 (1952), p. 65-72 | DOI | MR | Zbl

[2] R. C. Baker & H. L. Montgomery - “Oscillations of quadratic L-functions”, in Analytic number theory (Allerton Park, IL, 1989), Progress in Math., vol. 85, Birkhäuser Boston, Boston, MA, 1990, p. 23-40 | DOI | MR | Zbl

[3] P. Billingsley - Convergence of probability measures, Wiley Series in Probability and Statistics, John Wiley & Sons, Inc., New York, 1999 | DOI

[4] J. Bober, L. Goldmakher, A. Granville & D. Koukoulopoulos - “The frequency and the structure of large character sums”, J. Eur. Math. Soc. (JEMS) 20 (2018) no. 7, p. 1759-1818 | DOI | MR | Zbl

[5] D. A. Burgess - “On character sums and L-series. II”, Proc. London Math. Soc. (3) 13 (1963), p. 524-536 | DOI | MR | Zbl

[6] H. Davenport - Multiplicative number theory, Graduate Texts in Math., vol. 74, Springer-Verlag, New York, 2000 | MR

[7] H. Davenport & P. Erdős - “The distribution of quadratic and higher residues”, Publ. Math. Debrecen 2 (1952), p. 252-265 | DOI | MR | Zbl

[8] S. W. Graham & C. J. Ringrose - “Lower bounds for least quadratic nonresidues”, in Analytic number theory (Allerton Park, IL, 1989), Progress in Math., vol. 85, Birkhäuser Boston, Boston, MA, 1990, p. 269-309 | DOI | MR | Zbl

[9] A. Granville & A. P. Mangerel - “Three conjectures about character sums”, Math. Z. 305 (2023) no. 3, article ID 49, 34 pages | DOI | MR | Zbl

[10] A. J. Harper - “Moments of random multiplicative functions, II: High moments”, Algebra Number Theory 13 (2019) no. 10, p. 2277-2321 | DOI | MR | Zbl

[11] A. J. Harper - “Moments of random multiplicative functions, I: Low moments, better than squareroot cancellation, and critical multiplicative chaos”, Forum Math. Pi 8 (2020), article ID e1, 95 pages | DOI | MR | Zbl

[12] A. J. Harper - “A note on character sums over short moving intervals”, 2022, 30 p. | arXiv

[13] D. R. Heath-Brown - “A mean value estimate for real character sums”, Acta Arith. 72 (1995) no. 3, p. 235-275 | DOI | MR | Zbl

[14] A. Hussain - “The limiting distribution of character sums”, Internat. Math. Res. Notices (2022) no. 20, p. 16292-16326 | DOI | MR | Zbl

[15] A. Kalmynin - “Long nonnegative sums of Legendre symbols”, 2019, 23 p. | arXiv

[16] E. Kowalski - An introduction to probabilistic number theory, Cambridge Studies in Advanced Math., vol. 192, Cambridge University Press, Cambridge, 2021 | DOI | MR

[17] E. Kowalski & W. F. Sawin - “Kloosterman paths and the shape of exponential sums”, Compositio Math. 152 (2016) no. 7, p. 1489-1516 | DOI | MR | Zbl

[18] Y. Lamzouri - “Extreme values of arg L(1,χ), Acta Arith. 146 (2011) no. 4, p. 335-354 | DOI | MR | Zbl

[19] Y. Lamzouri - “The distribution of large quadratic character sums and applications”, 2022, to appear in Algebra Number Theory | arXiv

[20] D. H. Lehmer - “Incomplete Gauss sums”, Mathematika 23 (1976) no. 2, p. 125-135 | DOI | MR | Zbl

[21] J. H. Loxton - “The graphs of exponential sums”, Mathematika 30 (1983) no. 2, p. 153-163 | DOI | MR | Zbl

[22] J. H. Loxton - “The distribution of exponential sums”, Mathematika 32 (1985) no. 1, p. 16-25 | DOI | MR | Zbl

[23] D. Milićević & S. Zhang - “Distribution of Kloosterman paths to high prime power moduli”, Trans. Amer. Math. Soc. Ser. B 10 (2023), p. 636-669 | DOI | MR | Zbl

[24] H. L. Montgomery - Topics in multiplicative number theory, Lect. Notes in Math., vol. 227, Springer-Verlag, Berlin-New York, 1971

[25] H. L. Montgomery & R. C. Vaughan - “Mean values of character sums”, Canad. J. Math. 31 (1979) no. 3, p. 476-487 | DOI | MR | Zbl

[26] H. L. Montgomery & R. C. Vaughan - Multiplicative number theory. I. Classical theory, Cambridge Studies in Advanced Math., vol. 97, Cambridge University Press, Cambridge, 2007

[27] G. Ricotta & E. Royer - “Kloosterman paths of prime powers moduli”, Comment. Math. Helv. 93 (2018) no. 3, p. 493-532 | DOI | MR | Zbl

[28] G. Ricotta, E. Royer & I. Shparlinski - “Kloosterman paths of prime powers moduli, II”, Bull. Soc. math. France 148 (2020) no. 1, p. 173-188 | DOI | MR | Zbl

[29] K. Schmüdgen - The moment problem, Graduate Texts in Math., vol. 277, Springer, Cham, 2017 | DOI

Cité par Sources :