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THE LIMITING DISTRIBUTION OF LEGENDRE PATHS

by Ayesha Hussain & Youness Lamzouri

Abstract. — Let p be a prime number and ( ·
p
) be the Legendre symbol modulo p. The Legendre

path attached to p is the polygonal path whose vertices are the normalized character sums
1√
p

∑
n⩽j(

n
p
) for 0 ⩽ j ⩽ p−1. In this paper, we investigate the distribution of Legendre paths

as we vary over the primes p such that Q ⩽ p ⩽ 2Q, when Q is large. Our main result shows
that as Q → ∞, these paths converge in law, in the space of real-valued continuous functions
on [0, 1], to a certain random Fourier series constructed using Rademacher random completely
multiplicative functions. This was previously proved by the first author under the assumption
of the Generalized Riemann Hypothesis.

Résumé (La répartition limite des chemins de Legendre). — Soient p un nombre premier et ( ·
p
)

le symbole de Legendre modulo p. Le chemin de Legendre attaché à p est le chemin polygonal
dont les sommets sont les sommes de caractères normalisées 1√

p

∑
n⩽j(

n
p
) pour 0 ⩽ j ⩽ p− 1.

Dans cet article, nous étudions la répartition des chemins de Legendre lorsqu’on varie le pre-
mier p dans un intervalle [Q, 2Q], où Q est grand. Notre résultat principal montre que lorsque
Q → ∞, ces chemins convergent en loi, dans l’espace des fonctions continues à valeurs réelles
sur [0, 1], vers une certaine série de Fourier aléatoire construite en utilisant des fonctions aléa-
toires complètement multiplicatives de Rademacher. Ceci a été démontré précédemment par le
premier auteur sous l’hypothèse de Riemann généralisée.
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1. Introduction

A central question in number theory is to understand the behavior and the size of
the character sum
(1.1) Sp(x) :=

∑
n⩽x

(n
p

)
,

where
( ·
p

)
is the Legendre symbol modulo an odd prime p and 1 ⩽ x ⩽ p. Such

sums encode important information on the distribution of quadratic residues and
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590 A. Hussain & Y. Lamzouri

non-residues modulo p. In particular, bounds for Sp(x) lead to results on the size
of the least quadratic non-residue modulo p (see for example the works of Ankeny
[1]; Burgess [5]; Graham and Ringrose [8]; and Montgomery [24]). Moreover, a recent
work of Granville and Mangerel [9] shows that cancellations in the sum Sp(x) in short
initial intervals are more or less equivalent to improved bounds for the value of the
Dirichlet L-function L

(
s,
( ·
p

))
at s = 1, which is connected to class numbers of the

quadratic extensions Q(
√
±p).

The Legendre symbol appears to exhibit random behavior over short intervals.
This is for example illustrated by the work of Davenport and Erdős [7], who studied
the distribution of Sp(x) over short moving intervals. More precisely, they showed
that if p is large and x varies among the integers {0, 1, . . . , p − 1}, the short sum
Sp(x + H) − Sp(x) tends to a normal distribution with mean zero and variance H,
provided logH = o(log p) and H → ∞ as p → ∞. Recently, Harper [12] showed that
this is no longer the case if H is much larger, namely when H ⩾ p/(log p)A, and A > 0

is a fixed constant.
Our goal in this paper is to gain some understanding on the distribution of Sp(x)

over long intervals. In particular we will attempt to answer the following question:
do these character sums, viewed as functions of x, possess a limiting distribution as p

varies? and if so, can we describe this distribution?
Asked this way, this question does not make sense since one has max1⩽x⩽p |Sp(x)| ≫√
p (this is an easy consequence of Parseval’s theorem applied to Pólya’s Fourier

expansion (1.4) below), and max1⩽x⩽p |Sp(x)| ≪ε
√
p for all but at most O(επ(Q))

primes p ⩽ Q (this was proved by Montgomery and Vaughan [25]), where π(Q) is
the number of primes p ⩽ Q. Therefore, we need to normalize the sum Sp(x) by √

p.
Moreover, since Sp(x) is periodic with period p, we shall normalize the length of the
sum by p, and consider the function t → 1√

pSp(tp). However, a final complication
remains: this function is discontinuous, with jumps at every t ∈ 1

pN. Instead, we shall
consider the continuous function fp on [0, 1], where we concatenate the points where
1√
pSp(tp) changes. We call such a function the Legendre path associated to p. Note

that for t ∈ [0, 1] we have

(1.2) fp(t) =
1
√
p
Sp(tp) +

{pt}
√
p

(⌈pt⌉
p

)
=

1
√
p
Sp(tp) +O

( 1
√
p

)
,

where {x} is the fractional part of x.
In this paper, we shall prove that these paths, viewed as random processes on

[0, 1], have a nice limiting distribution. Before stating our result, we shall construct
a probabilistic random model for the Legendre path fp. A good random model for
the Legendre symbol, which was extensively studied in recent years, is a Rademacher
random completely multiplicative function. This is defined as
(1.3) Xn :=

∏
qk||n

Xk
q

for n ∈ N, where X1 = 1, and {Xq}q prime is a sequence of I. I. D. random vari-
ables taking the values ±1 with probability 1/2 each. The distribution of sums of

J.É.P. — M., 2024, tome 11



The limiting distribution of Legendre paths 591

The Legendre path for p = 991 ≡ 3 mod 4 The Legendre path for p = 997 ≡ 1 mod 4.

Figure 1. Legendre paths for p = 991 and p = 997, where the x-axis is pt.

Rademacher random multiplicative functions was extensively studied in recent years,
in particular by Harper [10] and [11]. In studying the distribution of the character
sum Sp(x), our first guess is to model the normalized sum 1√

pSp(tp) by the following
normalized sum of random variables

1
√
p

∑
n⩽tp

Xn.

However, it turns out that this is not a good model for 1√
pSp(tp), since it does not

account for the periodicity of the Legendre symbol modulo p. To exploit this period-
icity, we shall use the Fourier series expansion of fp, which was first established by
Pólya in the following quantitative form [26, eq. (9.19), p. 311]

(1.4) fp(t) =
τ(
( ·
p

)
)

2πi
√
p

∑
1⩽|n|⩽Z

(n
p

)1− e(−nt)

n
+O

( 1
√
p
+

√
p log p

Z

)
,

for any real number Z ⩾ 1, where e(t) := e2πit and τ(
( ·
p

)
) is the Gauss sum associated

to the Legendre symbol modulo p, more precisely

(1.5) τ
(( ·

p

))
:=

p∑
a=1

(a
p

)
e(a/p) =

{√
p, if p ≡ 1 (mod 4),

i
√
p, if p ≡ 3 (mod 4).

Remark 1.1. — The value of the prime modulo 4 influences the shape of the Legendre
path, as shown in Figure 1. In fact, a simple calculation implies that for all j ∈
{0, 1, . . . , p− 1} we have Sp(p− 1− j) = Sp(j) if p ≡ 3 (mod 4), and Sp(p− 1− j) =

−Sp(j) if p ≡ 1 (mod 4). This shows that if we extend the Legendre path fp to R by
periodicity, the periodic extension is an even function if p ≡ 3 (mod 4), and is an odd
function if p ≡ 1 (mod 4).

J.É.P. — M., 2024, tome 11



592 A. Hussain & Y. Lamzouri

Inserting the values of the Gauss sum (1.5) in the Fourier expansion (1.4) gives

(1.6) fp(t) =
εp
2πi

∑
1⩽|n|⩽Z

(n
p

)1− e(−nt)

n
+O

( 1
√
p
+

√
p log p

Z

)
,

where εp = 1 if p ≡ 1 (mod 4), and equals i if p ≡ 3 (mod 4). Let {Xq}q prime be
a sequence of I. I. D. random variables taking the values ±1 with equal probability
1/2. Since the primes split evenly into the residue classes 1 and 3 (mod 4), we shall
model the value

(−1
p

)
by a random variable X−1, which is independent from the Xq’s

for q prime, and takes the values ±1 with equal probability 1/2. We also extend the
definition of Rademacher random completely multiplicative functions to the negative
integers using multiplicativity, namely by setting X−n = X−1Xn for n ∈ N. Combining
all these elements together leads us to model the Legendre path fp by the following
random Fourier series

FX(t) :=
Y
2πi

∑
n∈Z∖{0}

Xn
1− e(−nt)

n

for t ∈ [0, 1], where the random variable Y is defined by Y = 1 if X−1 = 1, and Y = i

if X−1 = −1. For a fixed t ∈ [0, 1], it follows from [15, Lem. 1] that the series defining
FX(t) converges almost surely as the limit of the partial sums

FX,N (t) :=
Y
2πi

∑
0<|n|⩽N

Xn
1− e(−nt)

n
.

Note that FX,N are C([0, 1])-valued random variables. We will show, in Proposition 2.1
below, that the sequence of processes (FX,N )N⩾1 converges in C([0, 1]) to the pro-
cess FX as N → ∞. As a consequence, we deduce that FX is almost surely the Fourier
series of a continuous function. Figure 2 shows samples of the random process FX
depending on the value of X−1.

Let Q be a large positive integer. We shall view each p 7→ fp for Q ⩽ p ⩽ 2Q as
a random variable on the finite probability space {Q ⩽ p ⩽ 2Q} endowed with the
uniform probability measure. We denote this random variable by FQ. Our main result
shows that the stochastic process (FQ)Q converges in law, in the space of continuous
functions C([0, 1]), to the random process FX.

Theorem 1.2. — As Q → ∞, the sequence of processes (FQ)Q converges to the process
FX in the sense of convergence in law in the Banach space C([0, 1]) endowed with the
topology of uniform convergence. More precisely, for any continuous and bounded map

ϕ : C([0, 1]) → R,

we have
lim

Q→∞
E(ϕ(FQ)) = E(ϕ(FX)),

where
E(ϕ(FQ)) :=

1

π∗(Q)

∑
Q⩽p⩽2Q

ϕ(fp),

and π∗(Q) is the number of primes p in the interval [Q, 2Q].

J.É.P. — M., 2024, tome 11



The limiting distribution of Legendre paths 593

Sample of FX(t) with X−1 = −1. Sample of FX(t) with X−1 = 1

Figure 2. Samples, with 10,000 points, of FX(t), where the x axis is t.

The proof of this result is split into two main parts. We first show in Section 3 that
the sequence of processes (FQ)Q converges to the random process FX in the sense of
finite distributions, as Q → ∞. By Prokhorov’s theorem (see for example [3, Th. 5.1])
convergence in law in C([0, 1]) is then equivalent to showing that the sequence of
processes (FQ)Q is tight, which we establish in Section 4.

Remark 1.3. — The “graphs” of various exponential sums were investigated by several
authors since the seventies. See for example the works of Lehmer [20] and Loxton [21]
and [22]. Our work is motivated by the recent papers of Kowalski and Sawin [17] on
Kloosterman paths of prime moduli (paths constructed using partial sums of Kloost-
erman sums), and Ricotta-Royer [27], Ricotta-Royer-Shparlinski [28], and Milicevich-
Zhang [23] on generalizations to Kloosterman paths of prime power moduli. However,
unlike these works, where the corresponding equidistribution problem can be seen as
“vertical”, ours can be viewed as a “horizontal” problem, which is usually believed to
be more challenging.

In [14] the first author investigated the distribution of character paths (paths con-
structed using partial sums of non-principal Dirichlet characters modulo a prime q),
and proved the analogue of Theorem 1.2 for these paths. In this case, the sequence
of corresponding processes converges in law to an analogous random Fourier series
as q → ∞, where the Fourier coefficients are Steinhaus random multiplicative func-
tions, and where the random variable Y is uniformly distributed on the unit circle.
We should note that since the Legendre symbol is a real character, the Legendre
path is a time graph, while the Kloosterman paths and character paths (for non-real
Dirichlet characters) are instead polygonal curves in the complex plane.

In her thesis, the first author proved Theorem 1.2 assuming the Generalized Rie-
mann Hypothesis GRH. Our unconditional proof is completely different and uses
several new ideas to remove GRH from the different parts of the proof. More pre-
cisely, to prove that the sequence of processes (FQ)Q converges in law to the random

J.É.P. — M., 2024, tome 11



594 A. Hussain & Y. Lamzouri

process FX in the sense of finite distributions, we compute in Section 3 the multi-
variate moments of (fp(t1), . . . , fp(tk)) (for 0 ⩽ t1 < · · · < tk ⩽ 1) unconditionally,
by using a recent result of the second author [19] to considerably shorten the Pólya
Fourier expansion (1.4) of fp for almost all p. We also need to bound the contribu-
tion of the possible exceptional discriminant. At the end of Section 3, we describe
an alternative approach to establishing convergence in the sense of finite distribu-
tions, which is discussed in Section 6.2 of Kowalski’s book [16], and relies instead on
showing that the sequence of “Fourier coefficients” of the Legendre path converges in
the sense of finite distributions to those of FX. Although this approach is somewhat
simpler, we decided to include both since the original argument gives a quantitative
asymptotic formula for the joint moments of the Legendre path fp at different points,
which is interesting on its own, and might have further applications. Furthermore,
in Section 4 we prove tightness of the sequence of processes (FQ)Q by appealing to
a variant of Kolmogorov’s Tightness Criterion from [16], and then using Burgess’s
bound for short character sums along with the quadratic large sieve inequalities of
Heath-Brown [13] and Montgomery and Vaughan [26], in order to bound several mo-
ments of |fp(t) − fp(s)| depending on the range of |t − s| ∈ [0, 1]. We should note
that our proof is very different from the work of the first author [14] on character
paths associated to the family of non-principal characters modulo a large prime q,
since this family behave very differently from that of Legendre symbols. Indeed, the
crucial ingredients used in [14] are the orthogonality relations for characters modulo
q, as well as Deligne’s bound for hyper-Kloosterman sums, which is used by the first
author to control certain twisted moments of Gauss sums.

Remark 1.4. — Recall that the behavior of the Legendre path attached to p depends
on the value of the Legendre symbol

(−1
p

)
. Indeed, it follows from (1.6) that for any

real number Z ⩾ 1 we have

(1.7) fp(t) =
1

π

∑
1⩽|n|⩽Z

(n
p

) sin(2πnt)
n

+O
( 1
√
p
+

√
p log p

Z

)
,

if p ≡ 1 (mod 4), and

(1.8) fp(t) =
1

π

∑
1⩽|n|⩽Z

(n
p

)1− cos(2πnt)

n
+O

( 1
√
p
+

√
p log p

Z

)
,

if p ≡ 3 (mod 4). As before, we can view each p 7→ fp for Q ⩽ p ⩽ 2Q and p ≡ 1

(mod 4) (respectively p ≡ 3 (mod 4)) as a random variable on the finite probability
space {Q ⩽ p ⩽ 2Q and p ≡ 1 (mod 4)} (respectively {Q ⩽ p ⩽ 2Q and p ≡ 3

(mod 4)}) endowed with the uniform probability measure, and we denote this random
variable by FQ,+ (respectively FQ,−). We also do the same with the random Fourier
series, where we fix X−1 = 1 or −1. To this end we define for t ∈ [0, 1]

FX,+(t) =
1

π

∑
n⩾1

Xn
sin(2πnt)

n
, FX,−(t) =

1

π

∑
n⩾1

Xn
1− cos(2πnt)

n
.

J.É.P. — M., 2024, tome 11



The limiting distribution of Legendre paths 595

Then, it follows from the proof of Theorem 1.2 that the sequence of processes (FQ,±)Q
converges to the process FX,±.

The second author investigated in [19] the distribution of 1√
p max1⩽x⩽p |Sp(x)|, as

p varies over the primes satisfying Q ⩽ p ⩽ 2Q. In particular, he proved that the tail
of the distribution is double exponentially decreasing in a large uniform range, which
is believed to be best possible. Since the maximum of the Legendre path fp occurs at
its vertices and || · ||∞ is a continuous function on C([0, 1]), a direct consequence of
Theorem 1.2 is the existence of a limiting distribution of 1√

p max1⩽x⩽p |Sp(x)|.

Corollary 1.5. — Let µ be the probability measure on [0,∞) associated to the random
variable ||FX||∞. Then for any bounded continuous function h on [0,∞), we have

lim
Q→∞

1

π∗(Q)

∑
Q⩽p⩽2Q

h

(
1
√
p

max
1⩽x⩽p

|Sp(x)|
)

=

∫ ∞

0

h(x)dµ(x).

This result is the analogue of [4, Th. 1.4], which was proved (using a different and
more direct approach) by Bober, Goldmakher, Granville and Koukoulopoulos for the
family of non-principal characters modulo a large prime q.

Acknowledgements. — The authors would like to thank the anonymous referees for
carefully reading the paper, and for several helpful suggestions, which led in particular
to the simplification of the proof of Proposition 4.5, as well as to the new Section 3.2
on the convergence of the sequence of Fourier coefficients of the path in the sense of
finite distributions. The second author is supported by a junior chair of the Institut
Universitaire de France. Part of this work was completed while the second author
was on a Délégation CNRS at the IRL3457 CRM-CNRS in Montréal. The second
author would like to thank the CNRS for its support and the Centre de Recherches
Mathématiques for its excellent working conditions.

2. Properties of the random Fourier series FX(t)

2.1. Almost sure continuity of FX. — Recall that FX(t) is defined as the limit of
the finite sum FX,N (t) as N → ∞, and that for fixed t ∈ [0, 1], the series defining
FX(t) is almost surely convergent by [15, Lem. 1]. In order to prove that FX is almost
surely continuous, we use the fact that FX,N are C([0, 1])-valued random variables,
and then prove that the sequence of processes (FX,N )N converges in law to the pro-
cess FX. To this end we will show that (FX,N )N converges to FX in the sense of finite
distributions, and then show that the sequence (FX,N )N is tight.

Proposition 2.1. — As N → ∞, the sequence of processes (FX,N )N converges in the
Banach space C([0, 1]). In particular, its limit FX is almost surely the Fourier series
of a continuous function.

J.É.P. — M., 2024, tome 11



596 A. Hussain & Y. Lamzouri

Proof. — Let t ∈ [0, 1]. Then, we have

E
(
|FX(t)− FX,N (t)|2

)
=

1

(2π)2
E
(∣∣∣ ∑

|n|>N

Xn
1− e(−nt)

n

∣∣∣2)
=

1

(2π)2

∑
|n1|,|n2|>N

(1− e(−n1t))(1− e(n2t))

n1n2
E (Xn1n2

) .

Since E(Xn) = 1 if n is a square, and equals 0 otherwise, we deduce that

E
(
|FX(t)− FX,N (t)|2

)
≪

∑
|n1|,|n2|>N
n1n2=□

1

|n1n2|
≪

∑
n>N

d(n2)

n2
≪

∑
n>N

1

n3/2
≪ 1

N1/2
,

upon using the bound d(m) ≪ m1/4, where d(m) is the divisor function. Therefore,
FX,N converges to FX in L2([0, 1]) and hence in L1([0, 1]) as N → ∞. By [16, Lem. 3]
we deduce that the sequence of processes (FX,N )N converges to the process FX in the
sense of finite distributions.

To complete the proof, we need to show that the sequence of processes (FX,N )N⩾1

is tight. By Kolmogorov’s tightness criterion (see for example [16, Prop. B.11.10]),
we need to prove the existence of constants C ⩾ 0, α > 0 and δ > 0 such that for any
N ⩾ 1, and real numbers 0 ⩽ s < t ⩽ 1 we have

E (|FX,N (t)− FX,N (s)|α) ⩽ C|t− s|1+δ.

We will prove this with α = 4 and δ = 1/2. Let 0 ⩽ s < t ⩽ 1 be real numbers. For
an integer n ̸= 0 we define

(2.1) g(n) :=
∑

n1,n2∈Z
n1n2=n

(
e(−n1s)− e(−n1t)

)(
e(−n2s)− e(−n2t)

)
.

Then we have

(2.2)

E
(
|FX,N (t)− FX,N (s)|4

)
≪ E

(∣∣∣ ∑
1⩽|n|⩽N

Xn
e(−ns)− e(−nt)

n

∣∣∣4)
= E

(∣∣∣ ∑
1⩽|n|⩽N2

g(n)Xn

n

∣∣∣2) =
∑

1⩽|n1|,|n2|⩽N2

n1n2=□

g(n1)g(n2)

n1n2
.

Let ε > 0 be a small real number. Note that |e(α1n)−e(α2n)| ≪ min(1, |n(α1−α2)|),
and hence

(2.3)
g(n) ≪

∑
n1,n2∈Z
n1n2=n

min(1, |n1(t− s)|)min(1, |n2(t− s)|) ≪ d(|n|)min(1, |n|(t− s)2)

≪ε |n|ε/4 min(1, |n|(t− s)2),

J.É.P. — M., 2024, tome 11



The limiting distribution of Legendre paths 597

since d(|n|) ≪ε |n|ε/4. This implies

∑
1⩽|n1|,|n2|⩽N2

n1n2=□

∣∣∣g(n1)g(n2)

n1n2

∣∣∣ ≪ε

∑
1⩽|n1|,|n2|⩽N2

n1n2=□

min(1, |n1n2|(t− s)4)

|n1n2|1−ε/4

≪ε

∞∑
n=1

d(n2)
min(1, n2(t− s)4)

n2−ε/2
.

We now use the bound d(n2) ⩽ d(n)2 ≪ε n
ε/2 to get

(2.4)
∑

1⩽|n1|,|n2|⩽N2

n1n2=□

∣∣∣g(n1)g(n2)

n1n2

∣∣∣ ≪ε

∑
n⩾1/|t−s|2

1

n2−ε
+ |t− s|4

∑
n⩽1/|t−s|2

nε ≪ε |t− s|2−2ε.

Inserting this estimate in (2.2) and choosing ε = 1/4 implies that

E
(
|FX,N (t)− FX,N (s)|4

)
⩽ C|t− s|3/2,

for all positive integers N and real numbers 0 ⩽ s < t ⩽ 1, where C > 0 is an absolute
constant. This completes the proof. □

2.2. The sequence of joint moments of the random process is determinate

In Section 3 we shall use the method of moments to prove that the sequence of
processes (FQ)Q converges to the process FX in the sense of convergence of finite
distributions, as Q → ∞. More precisely, given an integer k ⩾ 1 and a k−tuple
0 ⩽ t1 < · · · < tk ⩽ 1, we will prove that the joint moments of (FQ(t1), . . . ,FQ(tk))

converge to those of (FX(t1), . . . , FX(tk)) as Q → ∞. However, we first need to ver-
ify that these moments are determinate, i.e. that they have only one representing
measure. For n = (n1, . . . , nk) ∈ (Z⩾0)

k we let n =
∑k

j=1 nj , and define

(2.5) MX(n) := E
( k∏

i=1

FX(ti)
ni

)
, MX,±(n) := E

( k∏
i=1

FX,±(ti)
ni

)
.

Then we have

(2.6)

MX(n) = E
( k∏

i=1

FX(ti)
ni

∣∣∣ X−1 = 1

)
P(X−1 = 1)

+ E
( k∏

i=1

FX(ti)
ni

∣∣∣ X−1 = −1

)
P(X−1 = −1)

=
1

2
(MX,+(n) +MX,−(n)) ,
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since P(X−1 = 1) = P(X−1 = −1) = 1/2. Therefore, using the definition of FX,+(t)

and expanding the moment MX,+(n) we obtain

(2.7)

MX,+(n) =
1

πn
E
( ∑

a1,1,...,ak,nk
⩾1

k∏
i=1

ni∏
j=1

Xai,j

sin(2πai,jti)

ai,j

)

=
1

πn
E
( ∞∑

a=1

Xa

a
Bn,t,+(a)

)
=

1

πn

∞∑
a=1

Bn,t,+(a
2)

a2
,

where

Bn,t,+(a) :=
∑

a1···ak=a

k∏
i=1

∑
bi,1···bi,ni

=ai

ni∏
j=1

sin(2πbi,jti).

We observe that uniformly for t we have

(2.8) |Bn,t,+(a)| ⩽
∑

a1···ak=a

k∏
i=1

dni
(ai) = dn(a),

where dn is the n-th divisor function. Similarly, one has

(2.9) MX,−(n) =
1

πn

∞∑
a=1

Bn,t,−(a
2)

a2
,

where

Bn,t,−(a) :=
∑

a1···ak=a

k∏
i=1

∑
bi,1···bi,ni

=ai

ni∏
j=1

(1− cos(2πbi,jti)).

We also have the following analogous bound to (2.8)

(2.10) |Bn,t,−(a)| ⩽ 2ndn(a).

We now prove the following lemma.

Lemma 2.2. — The sequence of moments (MX(n))n∈(Z⩾0)k have only one representing
measure.

Proof. — It is sufficient to show that the moments satisfy the Carleman condition
[29, Th. 15.11]:

∞∑
n=1

∣∣E(FX(ti)
2n
)∣∣−1/2n

= ∞,(2.11)

for all 1 ⩽ i ⩽ k.
Let t ∈ [0, 1] be fixed. Combining the identities (2.6), (2.7), and (2.9) with the

upper bounds (2.8) and (2.10) (with k = 1) we deduce that∣∣E(FX(t)
2n
)∣∣ ⩽ 22n + 1

2π2n

∞∑
a=1

d2n(a
2)

a2
.
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Now, it follows from [18, Lem. 3.3] that
∞∑
a=1

d2n(a
2)

a2
⩽

∞∑
a=1

d2n(a)
2

a2
= exp

(
O(n log log n)

)
.

Combining these estimates implies the existence of positive constants C1, C2 such that
for all integers n ⩾ 2 ∣∣E(FX(t)

2n
)∣∣− 1

2n ⩾ C2
1

(log n)C1
,

and hence
∞∑

n=2

∣∣E(FX(t)
2n
)∣∣− 1

2n ⩾ C2

∞∑
n=2

1

(log n)C1
= ∞.

This concludes the proof. □

3. Proof of convergence in the sense of finite distributions

3.1. Convergence in the sense of finite distributions of the process. — In this
section we will prove the following theorem.

Theorem 3.1. — As Q → ∞ the sequence of processes (FQ)Q converges to the pro-
cess FX in the sense of convergence of finite distributions. In other words, for every
k ⩾ 1 and for every k−tuple 0 ⩽ t1 < · · · < tk ⩽ 1, the vectors (FQ(t1), . . . ,FQ(tk))

converge in law, as Q → ∞, to (FX(t1), . . . , FX(tn)).

In order to prove this result it suffices to show that the joint moments of
(FQ(t1), . . . ,FQ(tn)) converge to those of (FX(t1), . . . , FX(tn)) as Q → ∞, since it fol-
lows from Section 2.2 that the distribution of the latter random vector is completely
determined by its joint moments. Therefore, Theorem 3.1 is a direct consequence of
the following proposition.

Proposition 3.2. — Let A > 1 be a fixed constant. Let k be a positive integer, n =

(n1, . . . , nk) ∈ (Z⩾0)
k and 0 ⩽ t1 < · · · < tk ⩽ 1 be real numbers. Then we have

(3.1) 1

π∗(Q)

∑
Q⩽p⩽2Q

k∏
i=1

fp(ti)
ni = MX(n) +On,A

( 1

(logQ)A

)
,

where MX(n) is defined in (2.5), and the implicit constant in the error term is not
effective.

Conditionally on GRH, the first author established this result in her thesis [14],
with a much stronger error term Q−1/2+o(1). In order to compute these moments
unconditionally, the main ingredient is a recent work of the second author [19], which
allows us to substantially reduce the length of the Pólya Fourier expansion of fp, for
almost all primes p such that Q ⩽ p ⩽ 2Q (see Lemma 3.4 below). Another difficulty
in proving Proposition 3.2 (which explains the weak error term of (3.1)) arises from
the possible existence of Landau-Siegel zeros. Let x be a large real number. By the

J.É.P. — M., 2024, tome 11



600 A. Hussain & Y. Lamzouri

results of [6, Chap. 20], it follows that for all square-free integers |d| ⩽ exp(
√
log x)

with at most one exception q1, we have

(3.2)
∑
p⩽x

χd(p) ≪ x exp
(
−c

√
log x

)
,

for some positive constant c, where χd denotes the Kronecker symbol attached to d.
Moreover, by Siegel’s theorem this exceptional discriminant if it exists must satisfy

(3.3) |q1| ≫A (log x)4A,

for any fixed constant A > 0, where the implicit constant is not effective. To lighten
our notation we shall denote by χp :=

( ·
p

)
the Legendre symbol modulo a prime p,

throughout the remaining part of the paper. The following lemma is standard (see [6])
but we include its proof for the sake of completeness.

Lemma 3.3. — Let Q be large and n ⩽ exp
(√

logQ
)

be a positive integer. Then,
we have∑
Q⩽p⩽2Q
p≡1 mod 4

χp(n)

=


π∗(Q)

2
+O

(
Q exp

(
−c

√
logQ

))
, if n = m2,

O
(
Q exp

(
−c

√
logQ

))
, if n is not of the form m2 or |q1| ·m2,

for some positive constant c. Moreover, the same estimate holds for
∑

Q⩽p⩽2Q
p≡3 mod 4

χp(n).

Proof. — We only prove the estimate for the character sum over primes p ≡ 1

(mod 4) since the proof in the case p ≡ 3 (mod 4) is similar. The first estimate
when n is a square follows simply from the prime number theorem in arithmetic pro-
gressions together with the trivial bound ω(n) ⩽ log n, where ω(n) is the number of
prime factors of n. Now, suppose that n is not a square, and write n = dm2 where d

is square-free and d ̸= |q1|. By the law of quadratic reciprocity we deduce that∑
Q⩽p⩽2Q
p≡1 mod 4

χp(n) =
∑

Q⩽p⩽2Q
p≡1 mod 4

χp(d) +O(ω(n)) =
∑

Q⩽p⩽2Q
p≡1 mod 4

χd(p) +O(
√

logQ).

The second estimate follows from (3.2), together with the fact that∑
Q⩽p⩽2Q
p≡1 mod 4

χd(p) =
1

2

∑
Q⩽p⩽2Q

χd(p) +
1

2

∑
p⩽Q

χ−d(p). □

In order to compute the joint moments of fp(t1), . . . , fp(tk) we need to considerably
shorten the sum in the main term of (1.4), for all t ∈ {t1, t2, . . . , tk}. To this end we
shall use the following result from a recent work of the second author [19] on the
distribution of large values of quadratic character sums.
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Lemma 3.4. — Let B > 0 be a fixed constant. For all real numbers N1, N2 verifying
exp

(
(log logQ)2

)
⩽ N1 < N2 ⩽ 2N1 ⩽ Q21/40, the number of primes p such that

Q ⩽ p ⩽ 2Q and

max
α∈[0,1)

∣∣∣∣ ∑
N1⩽n⩽N2

χp(n)e(αn)

n

∣∣∣∣ ⩾ 1

(logN1)B
,

is
≪B Q exp

(
− logQ

10 log logQ

)
.

Proof. — This is a direct consequence of [19, Prop. 4.2 & 4.3] by embedding the set
of primes p such that Q ⩽ p ⩽ 2Q into the set of all fundamental discriminants
|d| ⩽ 2Q. □

We now have all the ingredients to prove Proposition 3.2.

Proof of Proposition 3.2. — Let k be a positive integer, n = (n1, . . . , nk) ∈ (Z⩾0)
k

and 0 ⩽ t1 < · · · < tk ⩽ 1 be real numbers. Throughout the proof we shall assume
that Q is sufficiently large in terms of n = n1 + · · ·+ nk. To shorten our notation we
define

MQ(n) :=
1

π∗(Q)

∑
Q⩽p⩽2Q

k∏
i=1

fp(ti)
ni .

Then, we note that

MQ(n) =
1

2
(MQ,+(n) +MQ,−(n)) ,

where

(3.4)

MQ,+(n) :=
2

π∗(Q)

∑
Q⩽p⩽2Q
p≡1 mod 4

k∏
i=1

fp(ti)
ni ,

MQ,−(n) :=
2

π∗(Q)

∑
Q⩽p⩽2Q
p≡3 mod 4

k∏
i=1

fp(ti)
ni .

Therefore, in view of (2.6) it suffices to establish the following asymptotic formulas

(3.5)
MQ,+(n) = MX,+(n) +On,A

( 1

(logQ)A

)
,

MQ,−(n) = MX,−(n) +On,A

( 1

(logQ)A

)
.

We shall only prove this estimate for MQ,+(n), since the proof for MQ,−(n) is similar.
Using (1.4) with Z := Q21/40 we get

MQ,+(n) =
1

πn

2

π∗(Q)

∑
Q⩽p⩽2Q
p≡1 mod 4

k∏
i=1

(∑
a⩽Z

χp(a)
sin(2πati)

a
+O

(
Q−1/50

))ni

.
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We now define Y := exp((logQ)1/3). Let L1 := ⌊log Y/ log 2⌋, L2 := ⌊logZ/ log 2⌋,
and put sL1 := Y , sL2+1 := Z, and sℓ := 2ℓ for L1 + 1 ⩽ ℓ ⩽ L2. Then we have

(3.6) max
t∈[0,1)

∣∣∣∣ ∑
Y⩽a⩽Z

χp(a)
sin(2πat)

a

∣∣∣∣ ⩽ ∑
L1⩽ℓ⩽L2

max
t∈[0,1)

∣∣∣∣ ∑
sℓ⩽a⩽sℓ+1

χp(a)e(at)

a

∣∣∣∣.
Furthermore, it follows from Lemma 3.4 with the choice B = 6An+ 1 that

(3.7)
∑

L1⩽ℓ⩽L2

max
t∈[0,1)

∣∣∣∣ ∑
sℓ⩽a⩽sℓ+1

χp(a)e(at)

a

∣∣∣∣ ≪ ∑
L1⩽ℓ⩽L2

1

ℓB
≪ 1

(logQ)2An
,

for all primes p such that Q ⩽ p ⩽ 2Q except for a set E(Q) of size

|E(Q)| ≪n L2Q exp
(
− logQ

10 log logQ

)
≪n Q exp

(
− logQ

20 log logQ

)
.

Combining the estimates (3.6) and (3.7) we deduce that MQ,+(n) equals

2

πnπ∗(Q)

∑
p∈[Q,2Q]∖E(Q)

p≡1 mod 4

k∏
i=1

(∑
a⩽Z

χp(a)
sin(2πati)

a
+O(Q−1/50)

)ni

+On

(
exp

(
− logQ

30 log logQ

))
=

2

πnπ∗(Q)

∑
p∈[Q,2Q]∖E(Q)

p≡1 mod 4

k∏
i=1

(∑
a⩽Y

χp(a)
sin(2πati)

a
+O

( 1

(logQ)2An

))ni

+On

(
exp

(
− logQ

30 log logQ

))
=

2

πnπ∗(Q)

∑
p⩽Q

p≡1 mod 4

k∏
i=1

(∑
a⩽Y

χp(a)
sin(2πati)

a
+O

( 1

(logQ)2An

))ni

+On

(
exp

(
− logQ

30 log logQ

))
.

Expanding the main term we obtain

(3.8)

MQ,+(n) =
2

πnπ∗(Q)

∑
Q⩽p⩽2Q
p≡1 mod 4

∑
a⩽Y n

χp(a)
BY,n,t,+(a)

a
+On

( (log Y )n

(logQ)2An

)

=
2

πn

∑
a⩽Y n

BY,n,t,+(a)

a

1

π∗(Q)

∑
Q⩽p⩽2Q
p≡1 mod 4

χp(a) +On

( 1

(logQ)An

)
,

where BY,n,t,+(a) is defined by

BY,n,t,+(a) =
∑

a1···ak=a

k∏
i=1

∑
bi,1,···bi,ni

=ai

bi,j⩽Y

ni∏
j=1

sin(2πbi,jti).

We shall first estimate the contribution of the squares a = m2 which gives rise to the
main term of MQ,+(n). Indeed, the contribution of these terms to the right hand side
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of (3.8) equals

1

πn

∑
m⩽Y n/2

BY,n,t,+(m
2)

m2

(
1 +O

(
exp

(
−c0

√
logQ

)))
+O

(
1

π∗(Q)

∑
m⩽Y n/2

|BY,n,t,+(m
2)|ω(m)

m2

)
,

for some positive constant c0, by the prime number theorem for arithmetic progres-
sions. Let ε > 0 be small. By (2.8) we have BY,n,t,+(m

2),Bn,t,+(m
2) ≪ε,n mε. Since

ω(m) ⩽ logm and BY,n,t,+(ℓ) = Bn,t,+(ℓ) if ℓ ⩽ Y , we deduce that this contribution
equals

(3.9)

1

πn

∑
m⩽

√
Y

BY,n,t,+(m
2)

m2
+On

( ∑
√
Y <m⩽Y n/2

1

m2−ε
+ exp

(
−c0

√
logQ

))

=
1

πn

∞∑
m=1

Bn,t,+(m
2)

m2
+On

( ∑
m>

√
Y

1

m2−ε
+ exp

(
−c0

√
logQ

))
= MX,+(n) +O

(
Y −1/3

)
,

by (2.7). Next, we bound the contribution of the terms a which are not of the form m2

or |q1|m2. Since Y n ⩽ exp
(√

logQ
)

by our assumptions on Y and Q, it follows from
Lemma 3.3 that the contribution of these terms to the main term on the right hand
side of (3.8) is

(3.10)
≪ exp

(
− c

2

√
logQ

) ∑
a⩽Y n

|BY,n,t,+(a)|
a

≪ Y n/2 exp
(
− c

2

√
logQ

)
≪ exp

(
− c

3

√
logQ

)
,

since BY,n,t,+(a) ≪
√
a, and where c > 0 is the constant in Lemma 3.3.

Finally, we bound the contribution of the terms a = |q1|m2. Using the bound
BY,n,t,+(a) ≪n a1/4, and bounding the inner character sum in the right hand side of
(3.8) trivially, we deduce that the contribution of these terms is

(3.11) ≪
∑

m⩽Y n/2/
√

|q1|

BY,n,t,+(|q1|m2)

|q1|m2
≪n |q1|−3/4

∑
m⩾1

1

m3/2
≪A,n (logQ)−A,

by (3.3). Inserting the estimates (3.9), (3.10), and (3.11) in (3.8) completes the proof.
□

3.2. Establishing convergence in the sense of finite distributions for the se-
quence of “Fourier coefficients” of the path. — In this section, we describe a
different approach to establishing convergence in the sense of finite distributions. Let
C0([0, 1]) be the subspace of C([0, 1]) consisting of functions vanishing at 0, and let
C0(Z) be the Banach space of complex-valued functions on Z converging to 0 at infin-
ity with the sup norm. Then note that fp ∈ C0([0, 1]) for all primes p. We will follow
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the notation in Chapter 6 of Kowalski’s book [16]. Let FTp = (FTp(h))h∈Z be defined
by FTp(0) = 0 and for h ̸= 0

FTp(h) :=

∫ 1

0

fp(t)e(−ht)dt.

By [16, Prop. B.11.8], one can replace Theorem 3.1 (convergence in the sense of finite
distributions of the process) in the proof of Theorem 1.2, by the convergence in the
sense of finite distributions of the sequence of the Fourier coefficients (FTp)Q⩽p⩽2Q

in C0(Z). Here convergence in the sense of finite distributions of a sequence (Xn)

of C0(Z)-valued random variables to X means that for any H ⩾ 1, the vectors
(Xn,h)|h|⩽H converge in law to (Xh)|h|⩽H , in the sense of convergence in law in C2H+1.
More specifically, in our case one needs to compute the moments

(3.12) 1

π∗(Q)

∑
Q⩽p⩽2Q

∏
0<|h|⩽H

FTp(h)
jh ,

where {jh}0<|h|⩽H are non-negative integers, since FTp(0) = 0 for all p.
Let p be a large prime number. It follows from formula (6.5) of [16, Chap. 6] that

FTp(h) =
1

2πih

sin(πh/(p− 1))

πh/(p− 1)
e
(
− −h

2(p− 1)

) 1
√
p

p−1∑
m=1

(m
p

)
e
(
− hm

p− 1

)
,

for h ̸= 0. Since

e
(
− hm

p− 1

)
= e

(
−hm

p

)
+Oh

(1
p

)
,

for fixed h and
p−1∑
m=1

(m
p

)
e
(
−hm

p

)
= τ

(( ·
p

))(−h

p

)
,

we deduce that

FTp(h) =
εp

2πih

sin(πh/(p− 1))

πh/(p− 1)
e
(
− −h

2(p− 1)

)(−h

p

)
+Oh

( 1
√
p

)
,

where εp is defined in (1.6). By using the Taylor expansions of sin(πh/(p − 1)) and
e(−h/(2(p− 1))) we deduce that

FTp(h) =
εp

2πih

(−h

p

)
+Oh

( 1
√
p

)
.

Using this estimate and taking H and j = (jh)0<|h|⩽H fixed we obtain

1

π∗(Q)

∑
Q⩽p⩽2Q

∏
0<|h|⩽H

FTp(h)
jh =

∏
0<|h|⩽H

( 1

2πih

)jh 1

π∗(Q)

∑
Q⩽p⩽2Q
p≡1 mod 4

(∏
0<|h|⩽H(−h)jh

p

)

+
∏

0<|h|⩽H

( 1

2πh

)jh 1

π∗(Q)

∑
Q⩽p⩽2Q
p≡3 mod 4

(∏
0<|h|⩽H(−h)jh

p

)
+OH,j

( 1√
Q

)
.
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Therefore, using Lemma 3.3 and the bound (3.3) together with the fact that H and j

are fixed, we get

1

π∗(Q)

∑
Q⩽p⩽2Q

∏
0<|h|⩽H

FTp(h)
jh = E

( ∏
0<|h|⩽H

( Y
2πih

X−h

)jh
)

+OH,j

(
exp

(
− c

2

√
logQ

))
,

where c is the constant from Lemma 3.3. This shows that the Fourier coefficients of the
Legendre path converge to those of FX in the sense of finite distributions, as desired.

4. Tightness of the sequence of processes FQ

To complete the proof of Theorem 1.2 we need to show that the sequence of pro-
cesses (FQ)Q is tight. To this end we shall use the following variant of Kolmogorov’s
tightness criterion.

Proposition 4.1 ([16, Prop. B.11.11]). — Let (Yn)n⩾1 be a sequence of C([0, 1])-valued
random variables. Suppose that there exist positive real numbers α1, α2, α3, β1, β2, δ, C,
such that β2 < β1 and for any real numbers 0 ⩽ s < t ⩽ 1 and any n ⩾ 1, we have

E(|Yn(t)− Yn(s)|α1) ⩽ C|t− s|1+δ if 0 < |t− s| ⩽ n−β1 ,

E(|Yn(t)− Yn(s)|α2) ⩽ C|t− s|1+δ if n−β1 ⩽ |t− s| ⩽ n−β2 ,

E(|Yn(t)− Yn(s)|α3) ⩽ C|t− s|1+δ if n−β2 ⩽ |t− s| ⩽ 1.

Then (Yn)n⩾1 is tight.

Let 0 ⩽ s < t ⩽ 1 be real numbers. To use this criterion for the sequence (FQ)Q,
we shall bound different moments of |fp(t)−fp(s)| (as p varies in [Q, 2Q]) in the three
ranges 0 < |t− s| ⩽ Q−1, Q−1 ⩽ |t− s| ⩽ Q−2/5, and Q−2/5 ⩽ |t− s| ⩽ 1.

4.1. The “trivial” range: 0 < |t − s| ⩽ 1/Q. — Recall the definition of fp: the
concatenation of points in the time graph of 1√

p

∑
n⩽pt χp(n). This implies the trivial

bound

|fp(t)− fp(s)| ⩽
1
√
p
|pt− ps| = √

p|t− s|.

Therefore, if 0 < |t− s| ⩽ 1/Q then |fp(t)− fp(s)| ⩽ |t− s|1/2 and hence

(4.1) 1

π∗(Q)

∑
Q⩽p⩽2Q

|fp(t)− fp(s)|4 ⩽ |t− s|2.

Remark 4.2. — By taking a very large moment of |fp(t) − fp(s)| we can cover the
whole range 0 ⩽ |t− s| ⩽ Q−1/2−ε.
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4.2. The “Burgess” range: Q−1 ⩽ |t − s| ⩽ Q−2/5. — In this range we shall bound
a very large moment of |fp(t)− fp(s)| using the following bound of Burgess for short
character sums (see [5, Th. 1] with r = 2)

(4.2)
∑

M⩽n⩽M+N

χp(n) ≪ N1/2p3/16 log p,

which is valid uniformly in N .

Lemma 4.3. — Let 0 ⩽ s < t ⩽ 1 be real numbers such that Q−1 ⩽ |t − s| ⩽ Q−2/5.
Then we have

1

π∗(Q)

∑
Q⩽p⩽2Q

|fp(t)− fp(s)|1000 ≪ |t− s|2.

Proof. — It follows from (4.2) that

|fp(t)− fp(s)| ⩽
1
√
p

∣∣∣∣ ∑
ps⩽n⩽pt

χp(n)

∣∣∣∣+O
( 1
√
p

)
≪ p3/16(log p)|t− s|1/2,

since |t− s| ⩾ 1/Q. Therefore, using that |t− s| ⩽ Q−2/5 we obtain
1

π∗(Q)

∑
Q⩽p⩽2Q

|fp(t)− fp(s)|1000 ≪ Q375/2(logQ)1000|t− s|500 ≪ |t− s|2,

as desired. □

Remark 4.4. — By taking a very large moment of |fp(t) − fp(s)| we can cover the
whole range Q−1 ⩽ |t− s| ⩽ Q−3/8−ε using the Burgess bound (4.2).

4.3. The range Q−2/5 ⩽ |t−s| ⩽ 1. — This final range is the hardest to deal with. In-
deed, a new feature occurs here (and more generally in the range Q−1/2+ε⩽ |t− s|⩽1),
caused by the fact that the random variables Xn are not independent, and FX,p are
not sub-Gaussian. In this case we shall use the quadratic large sieve to prove the
following key proposition.

Proposition 4.5. — Let β = 1/1000 and 0 ⩽ s < t ⩽ 1 be real numbers such that
Q−2/5 ⩽ |t− s| ⩽ 1. Then we have

1

π∗(Q)

∑
Q⩽p⩽2Q

|fp(t)− fp(s)|4 ≪ |t− s|1+β .

We shall require the following important large sieve inequalities for quadratic char-
acters. The first is a direct consequence of a classical result due to Heath-Brown [13].

Lemma 4.6. — Let Q,Y ⩾ 2. Then for arbitrary complex numbers an and for any
ε > 0 we have ∑

Q⩽p⩽2Q

∣∣∣∣∑
n⩽Y

anχp(n)

∣∣∣∣2 ≪ε (QY )ε(Q+ Y )
∑

m,n⩽Y
mn=□

|aman|.

Proof. — This follows from [13, Cor. 2] by embedding the set of primes p such that
Q ⩽ p ⩽ 2Q in the set of fundamental discriminants d with |d| ⩽ 2Q. □
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As a corollary we deduce the following lemma.

Lemma 4.7. — Let ε > 0 be a fixed small real number and (an)n⩾1 be an arbitrary
bounded sequence of complex numbers. Let Q be large, 1 ⩽ Y ⩽ Q and δ > 0 be real
numbers. The number of primes p such that Q ⩽ p ⩽ 2Q and

(4.3)
∣∣∣∣ ∑
Y⩽|n|⩽Q

anχp(n)

n

∣∣∣∣ > δ,

is ≪ε Q
1+ε/δ2Y .

Proof. — By Lemma 4.6 we have∑
Q⩽p⩽2Q

∣∣∣∣ ∑
Y⩽|n|⩽Q

anχp(n)

n

∣∣∣∣2 ≪ε Q
1+ε/2

∑
Y⩽|n1|,|n2|⩽Q

|n1n2|=□

∣∣∣an1an2

n1n2

∣∣∣ ≪ε Q
1+ε/2

∑
n>Y

d(n2)

n2
,

by writing n2 = |n1n2| and using that (an)n⩾1 is bounded. Finally, using the trivial
bound d(n2) ≪ε nε/2 we deduce that the number of primes Q ⩽ p ⩽ 2Q such that
(4.3) holds is

≪ε
1

δ2
Q1+ε/2

∑
n>Y

d(n2)

n2
≪ε

1

δ2
Q1+ε/2

∑
n>Y

1

n2−ε/2
≪ε

Q1+ε/2

δ2Y 1−ε/2
≪ε

Q1+ε

δ2Y
,

as desired. □

The next lemma is a large sieve inequality for prime discriminants, which is a
special case of [25, Lem. 9] (see also [2, Lem. 1]).

Lemma 4.8 ([25, Lem. 9]). — Let ε > 0 be a fixed small number. Let x,N be real
numbers such that x ⩾ 2 and 2 ⩽ N ⩽ x1/2−ε. Then for arbitrary complex numbers
a1, . . . , aN we have ∑

p⩽x

∣∣∣∣∑
n⩽N

anχp(n)

∣∣∣∣2 ≪ x

log x

∑
m,n⩽N
mn=□

|aman|.

Proof of Proposition 4.5. — Taking Z = Q in Pólya’s Fourier expansion (1.4) gives for
all primes p such that Q ⩽ p ⩽ 2Q and all t ∈ [0, 1]

(4.4) fp(t) =
τ(χp)

2πi
√
p

∑
1⩽|n|⩽Q

χp(n)(1− e(−nt))

n
+O

( logQ√
Q

)
.

Let 0 ⩽ s < t ⩽ 1 be real numbers such that Q−2/5 ⩽ |t−s| ⩽ 1. Using (4.4) together
with the easy inequality |a+ b|4 ⩽ 24(|a|4 + |b|4), valid for all a, b ∈ R, we get

(4.5)

∑
Q⩽p⩽2Q

|fp(t)− fp(s)|4

=
∑

Q⩽p⩽2Q

∣∣∣∣ τ(χp)

2πi
√
p

∑
1⩽|n|⩽Q

χp(n)(e(−ns)− e(−nt))

n
+O

( logQ√
Q

)∣∣∣∣4

≪
∑

Q⩽p⩽2Q

∣∣∣∣ ∑
1⩽|n|⩽Q

χp(n)(e(−ns)− e(−nt))

n

∣∣∣∣4 +O
( (logQ)3

Q

)
.
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Therefore, our goal is to show that

I :=
∑

Q⩽p⩽2Q

∣∣∣∣ ∑
1⩽|n|⩽Q

χp(n)(e(−ns)− e(−nt))

n

∣∣∣∣4 ≪ π∗(Q)|t− s|1+β .

Hence, throughout the proof we will work under the assumption that
(4.6) I ⩾ π∗(Q)|t− s|1+β ,

otherwise there is nothing to prove. Let ε > 0 be a small fixed real number. Let
0 < δ < 1 and 1 ⩽ Y ⩽ Q be parameters to be chosen, and define A(δ, Y ) to be the
set of primes p ∈ [Q, 2Q] such that∣∣∣∣ ∑

Y⩽|n|⩽Q

χp(n)(e(−ns)− e(−nt))

n

∣∣∣∣ > δ.

Then it follows from Lemma 4.7 (with the choice an = e(−ns)− e(−nt)) that

(4.7) |A(δ, Y )| ≪ε
Q1+ε/2

δ2Y
.

We now write
I := I1(δ, Y ) + I2(δ, Y ),

where I1(δ, Y ) denotes the corresponding sum over primes p ∈ [Q, 2Q]∖A(δ, Y ) and
I2(δ, Y ) denotes the sum over those in A(δ, Y ). We start by bounding the latter term.
By the Cauchy-Schwarz inequality and the bound (4.7) we derive

(4.8)

I2(δ, Y ) ⩽ |A(δ, Y )|1/2
( ∑

p∈A(δ,Y )

∣∣∣∣ ∑
1⩽|n|⩽Q

χp(n)(e(−ns)− e(−nt))

n

∣∣∣∣8)1/2

≪ε
Q1/2+ε/4

δY 1/2

(
(logQ)4

∑
p∈A(δ,Y )

∣∣∣∣ ∑
1⩽|n|⩽Q

χp(n)(e(−ns)− e(−nt))

n

∣∣∣∣4)1/2

≪ε
Q1/2+ε/2

δY 1/2

√
I ≪ε

Qε

δY 1/2|t− s|(1+β)/2
I.

by (4.6) and since the inner sum over n is trivially ≪ logQ.
We now handle I1(δ, Y ). Using our assumption on A(δ, Y ) together with the in-

equality |a+ b|4 ⩽ 24(|a|4 + |b|4) we obtain

I1(δ, Y ) =
∑

p∈[Q,2Q]∖A(δ,Y )

∣∣∣∣ ∑
1⩽|n|⩽Y

χp(n)(e(−ns)− e(−nt))

n
+O(δ)

∣∣∣∣4

≪
∑

Q⩽p⩽2Q

∣∣∣∣ ∑
1⩽|n|⩽Y

χp(n)(e(−ns)− e(−nt))

n

∣∣∣∣4 + π∗(Q)δ4.

We choose δ := |t−s|(1+β)/4. With this choice, the previous estimate and (4.8) become

(4.9) I1(δ, Y ) ≪
∑

Q⩽p⩽2Q

∣∣∣∣ ∑
1⩽|n|⩽Y

χp(n)(e(−ns)− e(−nt))

n

∣∣∣∣4 + π∗(Q)|t− s|1+β ,
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and

(4.10) I2(δ, Y ) ≪ε
Qε

Y 1/2|t− s|3(1+β)/4
I.

To complete the proof we will choose Y in such a way to insure that I2(δ, Y ) ⩽ I/2.
This will imply I ⩽ 2I1(δ, Y ), and hence it will only remain to bound the fourth
moment on the right hand side of (4.9), which we shall handle using the quadratic
large sieve. The choice of the parameter Y as well as which large sieve inequality to
use (Heath-Brown’s large sieve (Lemma 4.6), or the Montgomery-Vaughan large sieve
(Lemma 4.8)) will depend on the size of |t− s|. We will consider two cases:

Case 1: Q−2/5 ⩽ |t− s| ⩽ Q−1/6. — In this range we use Heath-Brown’s large sieve.
Indeed, by Lemma 4.6 and Equation (2.4) we obtain∑

Q⩽p⩽2Q

∣∣∣∣ ∑
1⩽|n|⩽Y

χp(n)(e(−ns)− e(−nt))

n

∣∣∣∣4 =
∑

Q⩽p⩽2Q

∣∣∣∣ ∑
1⩽|m|⩽Y 2

χp(m)g(m)

m

∣∣∣∣2(4.11)

≪ε Q
ε/2(Q+ Y 2)

∑
1⩽|n1|,|n2|⩽Y 2

n1n2=□

∣∣∣g(n1)g(n2)

n1n2

∣∣∣(4.12)

≪ε Q
ε/2(Q+ Y 2)|t− s|2−2ε,

where g is defined by (2.1). We now choose Y = Q1/2−ε|t− s|(β−1)/2. Then by (4.10)
we obtain

I2(δ, Y ) ≪ε
Q−1/4+2ε

|t− s|1/2+β
I ⩽

I

2
,

if ε is suitably small and Q is large enough, by our assumption on |t− s|. Therefore,
combining the estimates (4.9) and (4.11) we deduce that

(4.13) I ⩽ 2I1(δ, Y ) ≪ε Q
ε/2(Q+Y 2)|t−s|2−2ε+π∗(Q)|t−s|1+β ≪ π∗(Q)|t−s|1+β ,

as desired.

Case 2: Q−1/6 ⩽ |t−s| ⩽ 1. — In this range we can no longer use Lemma 4.6 (Heath-
Brown’s quadratic large sieve) to bound the left hand side of (4.11) since the extra
factor Qε/2 is problematic if |t− s| is large (for example if |t− s| ≍ 1). In this case we
choose Y = Q1/2−ε and use the large sieve inequality of Montgomery and Vaughan
(Lemma 4.8) instead. Indeed, it follows from Lemma 4.8 and Equation (2.4) that

(4.14)

∑
Q⩽p⩽2Q

∣∣∣∣ ∑
1⩽|n|⩽Y

χp(n)(e(−ns)− e(−nt))

n

∣∣∣∣4 =
∑

Q⩽p⩽2Q

∣∣∣∣ ∑
1⩽|m|⩽Y 2

χp(m)g(m)

m

∣∣∣∣2
≪ π∗(Q)

∑
1⩽|n1|,|n2|⩽Y 2

n1n2=□

∣∣∣∣g(n1)g(n2)

n1n2

∣∣∣∣
≪ε π

∗(Q)|t− s|2−2ε.
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Choosing ε to be suitably small and inserting this estimate in (4.9) gives

I1(δ, Y ) ≪ π∗(Q)|t− s|1+β .

Finally, using (4.10) and our assumption on |t− s| we derive

I2(δ, Y ) ≪ε
Q−1/4+2ε

|t− s|3(1+β)/4
I ⩽

I

2
,

if ε is suitably small and Q is large enough. Combining these estimates we deduce
that

I ⩽ 2I1(δ, Y ) ≪ π∗(Q)|t− s|1+β ,

which completes the proof. □

Remark 4.9. — By optimizing this method and allowing the exponent β > 0 to be
very close to 0, we can cover the wider range Q−1/2+ε ⩽ |t− s| ⩽ 1.
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