Soit un orbifold hyperbolique de dimension 2, et son fibré unitaire tangent. Étant donnée une représentation , nous étudions dans cet article une fonction zêta dynamique introduite par Ruelle, notée , associée à la paire . Nous montrons que sa valeur en est un invariant topologique, la torsion de Reidemeister-Turaev , si la représentation ne factorise pas par . Cela généralise des résultats de Fried, qui avait prouvé pour unitaire et classique. Nous levons donc les restrictions sur le choix de , et les indéterminations de phase pour la torsion. Pour cela, nous utilisons la structure d’Euler associée au flot géodésique sur . Quand la représentation est un relevé d’une représentation de , nous déterminons son ordre d’annulation en , ainsi que son coefficient dominant.
Let be a compact hyperbolic surface with finite order singularities, its unit tangent bundle. We consider the Ruelle zeta function associated to a representation . If does not factor through , we show that the value at of the Ruelle zeta function equals the sign-refined Reidemeister–Turaev torsion of with respect to the Euler structure induced by the geodesic flow and to the natural homology orientation of . It generalizes Fried’s conjecture to non-unitary representations, and solves the phase and sign ambiguity in the unitary case. We also compute the vanishing order and the leading coefficient of the Ruelle zeta function at when factors through .
Accepté le :
Publié le :
Keywords: Hyperbolic orbisurface, twisted Ruelle zeta function, non-unitary representation, Reidemeister–Turaev torsion, Selberg trace formula
Mot clés : Orbifold hyperbolique, fonctions zêta de Ruelle, torsion de Reidemeister-Turaev, formule des traces de Selberg
Léo Bénard 1 ; Jan Frahm 2 ; Polyxeni Spilioti 3
@article{JEP_2023__10__1391_0, author = {L\'eo B\'enard and Jan Frahm and Polyxeni Spilioti}, title = {The twisted {Ruelle} zeta function on compact~hyperbolic orbisurfaces and {Reidemeister{\textendash}Turaev} torsion}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {1391--1439}, publisher = {\'Ecole polytechnique}, volume = {10}, year = {2023}, doi = {10.5802/jep.247}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.247/} }
TY - JOUR AU - Léo Bénard AU - Jan Frahm AU - Polyxeni Spilioti TI - The twisted Ruelle zeta function on compact hyperbolic orbisurfaces and Reidemeister–Turaev torsion JO - Journal de l’École polytechnique — Mathématiques PY - 2023 SP - 1391 EP - 1439 VL - 10 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.247/ DO - 10.5802/jep.247 LA - en ID - JEP_2023__10__1391_0 ER -
%0 Journal Article %A Léo Bénard %A Jan Frahm %A Polyxeni Spilioti %T The twisted Ruelle zeta function on compact hyperbolic orbisurfaces and Reidemeister–Turaev torsion %J Journal de l’École polytechnique — Mathématiques %D 2023 %P 1391-1439 %V 10 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.247/ %R 10.5802/jep.247 %G en %F JEP_2023__10__1391_0
Léo Bénard; Jan Frahm; Polyxeni Spilioti. The twisted Ruelle zeta function on compact hyperbolic orbisurfaces and Reidemeister–Turaev torsion. Journal de l’École polytechnique — Mathématiques, Tome 10 (2023), pp. 1391-1439. doi : 10.5802/jep.247. https://jep.centre-mersenne.org/articles/10.5802/jep.247/
[1] - “Spectral deviations for the damped wave equation”, Geom. Funct. Anal. 20 (2010) no. 3, p. 593-626 | DOI | MR | Zbl
[2] - “-index and the Selberg trace formula”, J. Funct. Anal. 53 (1983) no. 2, p. 151-201 | DOI | MR | Zbl
[3] - “Refined analytic torsion”, J. Differential Geom. 78 (2008) no. 2, p. 193-267 | MR | Zbl
[4] - Selberg zeta and theta functions. A differential operator approach, Math. Research, vol. 83, Akademie-Verlag, Berlin, 1995
[5] - “The Ruelle zeta function at zero for nearly hyperbolic 3-manifolds”, Invent. Math. 229 (2022) no. 1, p. 303-394 | DOI | MR | Zbl
[6] - “Topological invariance of Whitehead torsion”, Amer. J. Math. 96 (1974), p. 488-497 | DOI | MR | Zbl
[7] - “Dynamical torsion for contact Anosov flows”, 2019 | arXiv
[8] - “The Fried conjecture in small dimensions”, Invent. Math. 220 (2020) no. 2, p. 525-579 | DOI | MR | Zbl
[9] - “Ruelle zeta function at zero for surfaces”, Invent. Math. 210 (2017) no. 1, p. 211-229 | DOI | MR | Zbl
[10] - “The twisted Selberg trace formula and the twisted Selberg zeta function for compact orbifolds”, Math. Z. 305 (2023) no. 1, article ID 4, 33 pages | DOI | MR | Zbl
[11] - “Meromorphic continuation of Selberg zeta functions with twists having non-expanding cusp monodromy”, Selecta Math. (N.S.) 26 (2020) no. 1, article ID 9 | MR | Zbl
[12] - “Twisted Ruelle zeta function at zero for compact hyperbolic surfaces”, J. Number Theory 243 (2023), p. 38-61 | DOI | MR | Zbl
[13] - “Analytic torsion and closed geodesics on hyperbolic manifolds”, Invent. Math. 84 (1986), p. 523-540 | DOI | MR | Zbl
[14] - “Fuchsian groups and Reidemeister torsion”, in The Selberg trace formula and related topics (Brunswick, Maine, 1984), Contemp. Math., vol. 53, American Mathematical Society, Providence, RI, 1986, p. 141-163 | DOI | MR | Zbl
[15] - “The length spectra of some compact manifolds of negative curvature”, J. Differential Geom. 12 (1977) no. 3, p. 403-424 | DOI | MR | Zbl
[16] - The Selberg trace formula for . Vol. 2, Lect. Notes in Math., vol. 1001, Springer-Verlag, Berlin, 1983 | DOI
[17] - “An invariant trace formula for the universal covering group of ”, Ann. Global Anal. Geom. 12 (1994) no. 1, p. 19-63 | DOI | MR | Zbl
[18] - “Reidemeister torsion of Seifert fibered spaces for -representations”, Tokyo J. Math. 17 (1994) no. 1, p. 59-75 | DOI | MR | Zbl
[19] - Introduction to the spectral theory of polynomial operator pencils, Transl. of Math. Monographs, vol. 71, American Mathematical Society, Providence, RI, 1988
[20] - “-torsion and zeta functions for locally symmetric manifolds”, Invent. Math. 105 (1991) no. 1, p. 185-216 | DOI | MR | Zbl
[21] - “A Selberg trace formula for non-unitary twists”, Internat. Math. Res. Notices 2011 (2011) no. 9, p. 2068-2109 | MR | Zbl
[22] - “The asymptotics of the Ray-Singer analytic torsion of hyperbolic 3-manifolds”, in Metric and differential geometry, Progress in Math., vol. 297, Birkhäuser/Springer, Basel, 2012, p. 317-352 | DOI | MR | Zbl
[23] - “Ruelle zeta functions of hyperbolic manifolds and Reidemeister torsion”, J. Geom. Anal. (2021), p. 1-24 | MR | Zbl
[24] - “Analytic torsion of complete hyperbolic manifolds of finite volume”, J. Funct. Anal. 263 (2012) no. 9, p. 2615-2675 | DOI | MR | Zbl
[25] - The Reidemeister torsion of 3-manifolds, De Gruyter studies in math., vol. 30, Walter de Gruyter, 2003 | DOI
[26] - “Analytic torsion, dynamical zeta functions, and the Fried conjecture”, Anal. PDE 11 (2018) no. 1, p. 1-74 | DOI | MR | Zbl
[27] - “Analytic torsion, dynamical zeta function, and the Fried conjecture for admissible twists”, Comm. Math. Phys. 387 (2021) no. 2, p. 1215-1255 | DOI | MR | Zbl
[28] - “Complex valued analytic torsion and dynamical zeta function on locally symmetric spaces”, Internat. Math. Res. Notices (2023) no. 5, p. 3676-3745 | DOI | MR | Zbl
[29] - “Flat vector bundles and analytic torsion on orbifolds”, Comm. Anal. Geom. 30 (2022) no. 3, p. 575-656 | DOI | MR | Zbl
[30] - “Twisted Ruelle zeta function and complex-valued analytic torsion”, 2020 | arXiv
[31] - “Euler structures, nonsingular vector fields, and torsions of Reidemeister type”, Math. USSR-Izv. 34 (1990) no. 3, p. 627-662 | DOI | Zbl
[32] - Introduction to combinatorial torsions, Lectures in Math. ETH Zürich, Birkhäuser Verlag, Basel, 2001
[33] - Torsions of -dimensional manifolds, Progress in Math., vol. 208, Birkhäuser Verlag, Basel, 2002 | DOI
[34] - “On the Selberg trace formula in the case of compact quotient”, Bull. Amer. Math. Soc. 82 (1976) no. 2, p. 171-195 | DOI | MR | Zbl
[35] - Die Ruellesche Zetafunktion und die analytische Torsion hyperbolischer Mannigfaltigkeiten, PhD thesis, Bonn, Bonner Mathematische Schriften Nr. 389, 2008, available at bib.math.uni-bonn.de/downloads/bms/BMS-389.pdf
[36] - “Dynamical zeta functions for geodesic flows and the higher-dimensional Reidemeister torsion for Fuchsian groups”, J. reine angew. Math. 784 (2022), p. 155-176 | DOI | MR | Zbl
Cité par Sources :