This article is the second in a series of two whose aim is to extend a recent result of Guillarmou-Lefeuvre [GL19] on the local rigidity of the marked length spectrum from the case of compact negatively-curved Riemannian manifolds to the case of manifolds with hyperbolic cusps. We deal with the nonlinear version of the problem and prove that such manifolds are locally rigid for nonlinear perturbations of the metric that slightly decrease at infinity. Our proof relies on the linear theory addressed in [GBL23a] and on a careful analytic study of the generalized X-ray transform operator . In particular, we prove that the latter fits in the microlocal theory for cusp manifolds developed in [GB16, GBW22, GBL23a].
Cet article est le second d’une série de deux visant à étendre un résultat récent de Guillarmou-Lefeuvre [GL19] sur la rigidité locale du spectre des longueurs marquées, passant du cas des variétés riemanniennes compactes à courbure négative au cas des variétés à pointes hyperboliques. Nous abordons la version non linéaire du problème et montrons que de telles variétés sont localement rigides pour des perturbations non linéaires de la métrique qui décroissent légèrement à l’infini. Notre démonstration repose sur la théorie linéaire abordée dans [GBL23a] et sur une étude analytique approfondie de l’opérateur de transformée en rayons X généralisée . En particulier, nous montrons que ce dernier s’inscrit dans la théorie microlocale des variétés à pointes développée dans [GB16, GBW22, GBL23a].
Accepted:
Published online:
Keywords: Marked length spectrum, hyperbolic cusps, microlocal analysis, geometric rigidity
Mot clés : Spectre marqué des longueurs, pointes hyperboliques, analyse microlocale, rigidité géométrique
Yannick Guedes Bonthonneau 1; Thibault Lefeuvre 2
@article{JEP_2023__10__1441_0, author = {Yannick Guedes Bonthonneau and Thibault Lefeuvre}, title = {Local rigidity of manifolds with~hyperbolic~cusps {II.~Nonlinear~theory}}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {1441--1510}, publisher = {\'Ecole polytechnique}, volume = {10}, year = {2023}, doi = {10.5802/jep.248}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.248/} }
TY - JOUR AU - Yannick Guedes Bonthonneau AU - Thibault Lefeuvre TI - Local rigidity of manifolds with hyperbolic cusps II. Nonlinear theory JO - Journal de l’École polytechnique — Mathématiques PY - 2023 SP - 1441 EP - 1510 VL - 10 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.248/ DO - 10.5802/jep.248 LA - en ID - JEP_2023__10__1441_0 ER -
%0 Journal Article %A Yannick Guedes Bonthonneau %A Thibault Lefeuvre %T Local rigidity of manifolds with hyperbolic cusps II. Nonlinear theory %J Journal de l’École polytechnique — Mathématiques %D 2023 %P 1441-1510 %V 10 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.248/ %R 10.5802/jep.248 %G en %F JEP_2023__10__1441_0
Yannick Guedes Bonthonneau; Thibault Lefeuvre. Local rigidity of manifolds with hyperbolic cusps II. Nonlinear theory. Journal de l’École polytechnique — Mathématiques, Volume 10 (2023), pp. 1441-1510. doi : 10.5802/jep.248. https://jep.centre-mersenne.org/articles/10.5802/jep.248/
[AB22] - “Horocycle averages on closed manifolds and transfer operators”, Tunis. J. Math. 4 (2022) no. 3, p. 387-441 | DOI | MR | Zbl
[BCD11] - Fourier analysis and nonlinear partial differential equations, Grundlehren Math. Wissen., vol. 343, Springer, Berlin-Heidelberg, 2011 | DOI
[BCG95] - “Entropies et rigidités des espaces localement symétriques de courbure strictement négative”, Geom. Funct. Anal. 5 (1995) no. 5, p. 731-799 | DOI
[BK85] - “Manifolds with nonpositive curvature”, Ergodic Theory Dynam. Systems 5 (1985) no. 2, p. 307-317 | DOI | MR
[BT08] - “Dynamical determinants and spectrum for hyperbolic diffemorphisms”, in Geometric and probabilistic structures in dynamics, Contemp. Math, vol. 469, American Mathematical Society, Providence, RI, 2008, p. 29-68 | DOI | Zbl
[Cao95] - “Rigidity for non-compact surfaces of finite area and certain Kähler manifolds”, Ergodic Theory Dynam. Systems 15 (1995) no. 3, p. 475-516 | DOI | MR
[CL22] - “Generic dynamical properties of connections on vector bundles”, Internat. Math. Res. Notices (2022) no. 14, p. 10649-10703 | DOI | MR | Zbl
[Con92] - “Regularity of topological and metric entropy of hyperbolic flows”, Math. Z. 210 (1992) no. 1, p. 97-112 | DOI | MR | Zbl
[Cro90] - “Rigidity for surfaces of nonpositive curvature”, Comment. Math. Helv. 65 (1990) no. 1, p. 150-169 | DOI | MR | Zbl
[Cro04] - “Rigidity theorems in Riemannian geometry”, in Geometric methods in inverse problems and PDE control, IMA Vol. Math. Appl., vol. 137, Springer, New York, 2004, p. 47-72 | DOI | MR | Zbl
[DGRS20] - “The Fried conjecture in small dimensions”, Invent. Math. 220 (2020) no. 2, p. 525-579 | DOI | MR | Zbl
[dlLMM86] - “Canonical perturbation theory of Anosov systems and regularity results for the Livšic cohomology equation”, Ann. of Math. (2) 123 (1986) no. 3, p. 537-611 | DOI | Zbl
[dlLO99] - “Regularity of the composition operator in spaces of Hölder functions”, Discrete Contin. Dynam. Systems 5 (1999) no. 1, p. 157-184 | DOI | Zbl
[DZ16] - “Dynamical zeta functions for Anosov flows via microlocal analysis”, Ann. Sci. École Norm. Sup. (4) 49 (2016) no. 3, p. 543-577 | DOI | MR | Zbl
[Ebi68] - “On the space of Riemannian metrics”, Bull. Amer. Math. Soc. 74 (1968), p. 1001-1003 | DOI | MR | Zbl
[FS11] - “Upper bound on the density of Ruelle resonances for Anosov flows”, Comm. Math. Phys. 308 (2011) no. 2, p. 325-364 | DOI | MR | Zbl
[FT13] - “Band structure of the Ruelle spectrum of contact Anosov flows”, Comptes Rendus Mathématique 351 (2013) no. 9-10, p. 385-391 | DOI | Numdam | MR | Zbl
[GB15] - Résonances du laplacien sur les variétés à pointes, Ph. D. Thesis, Université Paris Sud XI, 2015, https://theses.hal.science/tel-01194752
[GB16] - “Long time quantum evolution of observables on cusp manifolds”, Comm. Math. Phys. 343 (2016) no. 1, p. 311-359 | DOI | MR | Zbl
[GBL23a] - “Local rigidity of manifolds with hyperbolic cusps I. Linear theory and microlocal tools”, Ann. Inst. Fourier (Grenoble) 73 (2023) no. 1, p. 335-421 | DOI | MR | Zbl
[GBL23b] - “Radial source estimates in Hölder-Zygmund spaces for hyperbolic dynamics”, Ann. H. Lebesgue 6 (2023), p. 643-686 | DOI | Zbl
[GBW22] - “Ruelle-Pollicott resonances for manifolds with hyperbolic cusps”, J. Eur. Math. Soc. (JEMS) 24 (2022) no. 3, p. 851-923 | DOI | MR | Zbl
[GKL22] - “Geodesic stretch, pressure metric and marked length spectrum rigidity”, Ergodic Theory Dynam. Systems 42 (2022) no. 3, p. 974–1022 | DOI | MR | Zbl
[GL19] - “The marked length spectrum of Anosov manifolds”, Ann. of Math. (2) 190 (2019) no. 1, p. 321-344 | DOI | MR | Zbl
[GL21] - “Classical and microlocal analysis of the x-ray transform on Anosov manifolds”, Anal. PDE 14 (2021) no. 1, p. 301-322 | DOI | MR | Zbl
[GLP13] - “Anosov flows and dynamical zeta functions”, Ann. of Math. (2) 178 (2013) no. 2, p. 687-773 | DOI | MR | Zbl
[Gre56] - “Geodesic Instability”, Proc. Amer. Math. Soc. 7 (1956) no. 3, p. 438-448 | DOI | MR | Zbl
[Gro00] - “Three remarks on geodesic dynamics and fundamental group”, Enseign. Math. (2) 46 (2000) no. 3-4, p. 391-402 | MR | Zbl
[GS94] - Microlocal analysis for differential operators, London Math. Society Lect. Note Series, vol. 196, Cambridge University Press, Cambridge, 1994 | DOI
[Gui17] - “Invariant distributions and X-ray transform for Anosov flows”, J. Differential Geom. 105 (2017) no. 2, p. 177-208 | MR | Zbl
[Ham99] - “Cocycles, symplectic structures and intersection”, Geom. Funct. Anal. 9 (1999) no. 1, p. 90-140 | DOI | MR | Zbl
[Has92] - “Bootstrapping regularity of the Anosov splitting”, Proc. Amer. Math. Soc. 115 (1992) no. 3, p. 817-819 | DOI | MR | Zbl
[Kat88] - “Four applications of conformal equivalence to geometry and dynamics”, Ergodic Theory Dynam. Systems 8 * (1988), p. 139-152, Charles Conley Memorial Issue | DOI | MR | Zbl
[Kat95] - Perturbation theory for linear operators, Class. Math., Springer-Verlag, Berlin, 1995 | DOI
[KKPW89] - “Differentiability and analyticity of topological entropy for Anosov and geodesic flows”, Invent. Math. 98 (1989) no. 3, p. 581-597 | DOI | MR | Zbl
[Kli74] - “Riemannian manifolds with geodesic flow of Anosov type”, Ann. of Math. (2) 99 (1974), p. 1-13 | DOI | MR | Zbl
[Kni02] - “Hyperbolic dynamical systems”, in Handbook of dynamical systems (B. Hasselblatt & A. Katok, eds.), vol. 1A, Elsevier, Amsterdam, 2002, p. 239-319
[Lef19] - Sur la rigidité des variétés riemanniennes, Ph. D. Thesis, Université Paris-Saclay, 2019, https://theses.hal.science/tel-02462364
[Liv72] - “Cohomology of dynamical systems”, Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), p. 1296-1320 | MR
[Mel93] - The Atiyah-Patodi-Singer index theorem, Research Notes in Math., vol. 4, A K Peters, Ltd., Wellesley, MA, 1993 | DOI
[NT98] - “Regularity of the transfer map for cohomologous cocycles”, Ergodic Theory Dynam. Systems 18 (1998) no. 5, p. 1187-1209 | DOI | MR | Zbl
[Ota90] - “Le spectre marqué des longueurs des surfaces à courbure négative”, Ann. of Math. (2) 131 (1990) no. 1, p. 151-162 | DOI | Zbl
[Pat99] - Geodesic flows, Progress in Math., vol. 180, Birkhäuser Boston, Inc., Boston, MA, 1999 | DOI
[PPS15] - Equilibrium states in negative curvature, Astérisque, vol. 373, Société Mathématique de France, Paris, 2015
[Riq18] - “Ruelle’s inequality in negative curvature”, Discrete Contin. Dynam. Systems 38 (2018) no. 6, p. 2809-2825 | DOI | MR | Zbl
[Shu01] - Pseudodifferential operators and spectral theory, Springer-Verlag, Berlin, 2001 | DOI
[Tay97] - Partial differential equations. III, Applied Math. Sciences, vol. 117, Springer-Verlag, New York, 1997
[Wil14] - “Lectures on marked length spectrum rigidity”, in Geometric group theory, IAS/Park City Math. Ser., vol. 21, American Mathematical Society, Providence, RI, 2014, p. 283-324 | DOI | MR | Zbl
[Zwo12] - Semiclassical analysis, Graduate Studies in Math., vol. 138, American Mathematical Society, Providence, RI, 2012 | DOI
Cited by Sources: