Our main theorem describes the degree cohomology of non-basic Igusa varieties in terms of one-dimensional automorphic representations in the setup of mod Hodge-type Shimura varieties with hyperspecial level at . As an application we obtain a completely new approach to two geometric questions. Firstly, we deduce irreducibility of Igusa towers and its generalization to non-basic Igusa varieties in the same generality, extending previous results by Igusa, Ribet, Faltings–Chai, Hida, and others. Secondly, we verify the discrete part of the Hecke orbit conjecture, which amounts to the assertion that the irreducible components of a non-basic central leaf belong to a single prime-to- Hecke orbit, generalizing preceding works by Chai, Oort, Yu, et al. We also show purely local criteria for irreducibility of central leaves. Our proof is based on a Langlands–Kottwitz type formula for Igusa varieties due to Mack-Crane, an asymptotic study of the trace formula, and an estimate for unitary representations and their Jacquet modules in representation theory of -adic groups due to Howe–Moore and Casselman.
Notre théorème principal décrit la cohomologie en degré des variétés d’Igusa non basiques en termes de représentations automorphes de dimension dans le cadre des réductions modulo des variétés de Shimura de type Hodge avec niveau hyper-spécial en . Nous obtenons comme application une approche complètement nouvelle de deux questions géométriques. Premièrement, nous déduisons l’irréductibilité de la tour d’Igusa et sa généralisation aux variétés d’Igusa non basiques dans la même généralité, ce qui étend des résultats d’Igusa, Ribet, Falting-Chai, Hida, et d’autres. Deuxièmement, nous vérifions la partie discrète de la conjecture des orbites de Hecke, qui revient à l’assertion que les composantes irréductibles d’une feuille centrale non basique appartiennent à une unique orbite sous l’action de l’algèbre de Hecke première à , ce qui généralise des travaux de Chai, Oort, Yu, entre autres. Nous démontrons aussi des critères purement locaux d’irréductibilité de la feuille centrale. Notre preuve est basée sur une formule de type Langlands-Kottwitz pour les variétés d’Igusa due à Mack-Crane, sur une étude asymptotique de la formule des traces, et sur une estimée pour les représentations unitaires et leurs modules de Jacquet en théorie des représentations des groupes -adiques due à Howe-Moore et à Casselman.
Accepted:
Published online:
Keywords: Shimura varieties, Igusa varieties, central leaves, automorphic representations, trace formula
Mot clés : Variétés de Shimura, variétés d’Igusa, feuilles centrales, représentations automorphes, formule des traces
Arno Kret 1; Sug Woo Shin 2
@article{JEP_2023__10__1299_0, author = {Arno Kret and Sug Woo Shin}, title = {$H^0$ of {Igusa} varieties via automorphic forms}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {1299--1390}, publisher = {\'Ecole polytechnique}, volume = {10}, year = {2023}, doi = {10.5802/jep.246}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.246/} }
TY - JOUR AU - Arno Kret AU - Sug Woo Shin TI - $H^0$ of Igusa varieties via automorphic forms JO - Journal de l’École polytechnique — Mathématiques PY - 2023 SP - 1299 EP - 1390 VL - 10 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.246/ DO - 10.5802/jep.246 LA - en ID - JEP_2023__10__1299_0 ER -
%0 Journal Article %A Arno Kret %A Sug Woo Shin %T $H^0$ of Igusa varieties via automorphic forms %J Journal de l’École polytechnique — Mathématiques %D 2023 %P 1299-1390 %V 10 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.246/ %R 10.5802/jep.246 %G en %F JEP_2023__10__1299_0
Arno Kret; Sug Woo Shin. $H^0$ of Igusa varieties via automorphic forms. Journal de l’École polytechnique — Mathématiques, Volume 10 (2023), pp. 1299-1390. doi : 10.5802/jep.246. https://jep.centre-mersenne.org/articles/10.5802/jep.246/
[ACC + 23] - “Potential automorphy over CM fields”, Ann. of Math. (2) 197 (2023) no. 3, p. 897-1113 | DOI | MR | Zbl
[AIP16] - “The adic, cuspidal, Hilbert eigenvarieties”, Res. Math. Sci. 3 (2016), article ID 34, 36 pages | DOI | MR | Zbl
[AIP18] - “Le halo spectral”, Ann. Sci. École Norm. Sup. (4) 51 (2018) no. 3, p. 603-655 | DOI | MR | Zbl
[Art89] - “The -Lefschetz numbers of Hecke operators”, Invent. Math. 97 (1989) no. 2, p. 257-290 | DOI | MR | Zbl
[Art96] - “On local character relations”, Selecta Math. (N.S.) 2 (1996) no. 4, p. 501-579 | DOI | MR | Zbl
[BC17] - “Sur la cohomologie des variétés hyperboliques de dimension trialitaires”, Israel J. Math. 222 (2017) no. 1, p. 333-400 | DOI | Zbl
[BDK86] - “Trace Paley-Wiener theorem for reductive -adic groups”, J. Analyse Math. 47 (1986), p. 180-192 | DOI | MR | Zbl
[BMS22] - “A stable trace formula for Igusa varieties, II”, 2022 | arXiv
[Bor79] - “Automorphic -functions”, in Automorphic forms, representations and -functions (Oregon State Univ., Corvallis, Ore., 1977), Part 2, Proc. Sympos. Pure Math., vol. XXXIII, American Mathematical Society, Providence, R.I., 1979, p. 27-61 | Zbl
[Bor91] - Linear algebraic groups, Graduate Texts in Math., vol. 126, Springer-Verlag, New York, 1991 | DOI
[Boy07] - “On the irreductibility of some Igusa varieties”, 2007 | arXiv
[BS15] - The pro-étale topology for schemes, Astérisque, vol. 369, Société Mathématique de France, Paris, 2015
[BS17] - “Projectivity of the Witt vector affine Grassmannian”, Invent. Math. 209 (2017) no. 2, p. 329-423 | DOI | MR | Zbl
[BZ77] - “Induced representations of reductive -adic groups. I”, Ann. Sci. École Norm. Sup. (4) 10 (1977) no. 4, p. 441-472 | DOI | MR | Zbl
[Cas95] - “Introduction to the theory of admissible representations of -adic reductive groups”, 1995, https://www.math.ubc.ca/~cass/research/pdf/p-adic-book.pdf
[CD85] - “Pseudo-coefficients et cohomologie des groupes de Lie réductifs réels”, C. R. Acad. Sci. Paris Sér. I Math. 300 (1985) no. 12, p. 385-387 | Zbl
[CEF + 16] - “-adic -expansion principles on unitary Shimura varieties”, in Directions in number theory, Assoc. Women Math. Ser., vol. 3, Springer, Cham, 2016, p. 197-243 | DOI | MR | Zbl
[Cha05] - “Hecke orbits on Siegel modular varieties”, in Geometric methods in algebra and number theory, Progress in Math., vol. 235, Birkhäuser Boston, Boston, MA, 2005, p. 71-107 | DOI | MR | Zbl
[Cha06] - “Hecke orbits as Shimura varieties in positive characteristic”, in International Congress of Mathematicians. Vol. II, European Mathematical Society, Zürich, 2006, p. 295-312 | MR | Zbl
[Cha08] - “Methods for -adic monodromy”, J. Inst. Math. Jussieu 7 (2008) no. 2, p. 247-268 | DOI | MR | Zbl
[CL10] - “Constructible exponential functions, motivic Fourier transform and transfer principle”, Ann. of Math. (2) 171 (2010) no. 2, p. 1011-1065 | DOI | MR | Zbl
[CO11] - “Monodromy and irreducibility of leaves”, Ann. of Math. (2) 173 (2011) no. 3, p. 1359-1396 | DOI | MR | Zbl
[CO19] - “The Hecke orbit conjecture: a survey and outlook”, in Open problems in arithmetic algebraic geometry, Adv. Lect. Math. (ALM), vol. 46, International Press, Somerville, MA, 2019, p. 235-262 | MR | Zbl
[COU01] - “Hecke operators and equidistribution of Hecke points”, Invent. Math. 144 (2001) no. 2, p. 327-351 | DOI | MR | Zbl
[CS17] - “On the generic part of the cohomology of compact unitary Shimura varieties”, Ann. of Math. (2) 186 (2017) no. 3, p. 649-766 | DOI | MR | Zbl
[CS19] - “On the generic part of the cohomology of non-compact unitary Shimura varieties”, 2019 | arXiv
[Dal22] - “Sato-Tate equidistribution for families of automorphic representations through the stable trace formula”, Algebra Number Theory 16 (2022) no. 1, p. 59-137 | DOI | MR | Zbl
[DeB06] - “Parameterizing conjugacy classes of maximal unramified tori via Bruhat-Tits theory”, Michigan Math. J. 54 (2006) no. 1, p. 157-178 | DOI | MR | Zbl
[Del71] - “Travaux de Shimura”, in Séminaire Bourbaki, (1970/71), Lect. Notes in Math., vol. 244, Springer, Berlin, 1971, p. 123-165, Exp. No. 389 | DOI | Numdam | MR | Zbl
[Del79] - “Variétés de Shimura: interprétation modulaire, et techniques de construction de modèles canoniques”, in Automorphic forms, representations and -functions (Oregon State Univ., Corvallis, Ore., 1977), Part 2, Proc. Sympos. Pure Math., vol. XXXIII, American Mathematical Society, Providence, R.I., 1979, p. 247-289 | Zbl
[EM21] - “-adic families of automorphic forms in the -ordinary setting”, Amer. J. Math. 143 (2021) no. 1, p. 1-52 | DOI | MR | Zbl
[EMO01] - “Open problems in algebraic geometry”, Bull. Sci. Math. 125 (2001) no. 1, p. 1-22 | DOI | MR | Zbl
[EO06] - “Ergodic theoretic proof of equidistribution of Hecke points”, Ergodic Theory Dynam. Systems 26 (2006) no. 1, p. 163-167 | DOI | MR | Zbl
[Far04] - “Cohomologie des espaces de modules de groupes -divisibles et correspondances de Langlands locales”, in Variétés de Shimura, espaces de Rapoport-Zink et correspondances de Langlands locales, Astérisque, vol. 291, Société Mathématique de France, Paris, 2004, p. 1-199 | MR | Zbl
[FK88] - “A simple trace formula”, J. Analyse Math. 50 (1988), p. 189-200 | DOI | MR | Zbl
[FLN10] - “Formule des traces et fonctorialité: le début d’un programme”, Ann. Sci. Math. Québec 34 (2010) no. 2, p. 199-243 | Zbl
[Fra98] - “Harmonic analysis in weighted -spaces”, Ann. Sci. École Norm. Sup. (4) 31 (1998) no. 2, p. 181-279 | DOI | MR
[GK21] - “-adic dynamics of Hecke operators on modular curves”, J. Théor. Nombres Bordeaux 33 (2021) no. 2, p. 387-431 | DOI | Numdam | MR | Zbl
[GKM97] - “Discrete series characters and the Lefschetz formula for Hecke operators”, Duke Math. J. 89 (1997) no. 3, p. 477-554 | DOI | MR | Zbl
[Ham17] - “The almost product structure of Newton strata in the deformation space of a Barsotti-Tate group with crystalline Tate tensors”, Math. Z. 287 (2017) no. 3-4, p. 1255-1277 | DOI | MR | Zbl
[Ham19] - “The product structure of Newton strata in the good reduction of Shimura varieties of Hodge type”, J. Algebraic Geom. 28 (2019) no. 4, p. 721-749 | DOI | MR | Zbl
[He14] - “Geometric and homological properties of affine Deligne-Lusztig varieties”, Ann. of Math. (2) 179 (2014) no. 1, p. 367-404 | DOI | MR | Zbl
[Hid04] - -adic automorphic forms on Shimura varieties, Springer Monogr. in Math., Springer-Verlag, New York, 2004 | DOI
[Hid09] - “Irreducibility of the Igusa tower”, Acta Math. Sinica (N.S.) 25 (2009) no. 1, p. 1-20 | DOI | MR | Zbl
[Hid11] - “Irreducibility of the Igusa tower over unitary Shimura varieties”, in On certain -functions, Clay Math. Proc., vol. 13, American Mathematical Society, Providence, RI, 2011, p. 187-203 | MR | Zbl
[HK19] - “-adic étale cohomology of Shimura varieties of Hodge type with non-trivial coefficients”, Math. Ann. 375 (2019) no. 3-4, p. 973-1044 | DOI | Zbl
[HM79] - “Asymptotic properties of unitary representations”, J. Funct. Anal. 32 (1979) no. 1, p. 72-96 | DOI | MR | Zbl
[HMRL20] - “-adic distribution of CM points and Hecke orbits I: Convergence towards the Gauss point”, Algebra Number Theory 14 (2020) no. 5, p. 1239-1290 | DOI | MR | Zbl
[How20] - “A unipotent circle action on -adic modular forms”, Trans. Amer. Math. Soc. Ser. B 7 (2020), p. 186-226 | DOI | MR | Zbl
[HT01] - The geometry and cohomology of some simple Shimura varieties, Annals of Math. Studies, vol. 151, Princeton University Press, Princeton, NJ, 2001
[HZZ21] - “Stabilizers of irreducible components of affine Deligne–Lusztig varieties”, 2021 | arXiv
[Igu68] - “On the algebraic theory of elliptic modular functions”, J. Math. Soc. Japan 20 (1968), p. 96-106 | DOI | MR
[Kaz86] - “Cuspidal geometry of -adic groups”, J. Analyse Math. 47 (1986), p. 1-36 | DOI | MR | Zbl
[Kim19] - “On central leaves of Hodge-type Shimura varieties with parahoric level structure”, Math. Z. 291 (2019) no. 1-2, p. 329-363 | DOI | MR | Zbl
[Kis10] - “Integral models for Shimura varieties of abelian type”, J. Amer. Math. Soc. 23 (2010) no. 4, p. 967-1012 | DOI | MR | Zbl
[Kis17] - “ points on Shimura varieties of abelian type”, J. Amer. Math. Soc. 30 (2017) no. 3, p. 819-914 | DOI | MR | Zbl
[KM85] - Arithmetic moduli of elliptic curves, Annals of Math. Studies, vol. 108, Princeton University Press, Princeton, NJ, 1985 | DOI
[KMP16] - “2-adic integral canonical models”, Forum Math. Sigma 4 (2016), article ID e28, 34 pages | DOI | MR | Zbl
[KMPS22] - “Honda-Tate theory for Shimura varieties”, Duke Math. J. 171 (2022) no. 7, p. 1559-1614 | DOI | MR | Zbl
[Kot82] - “Rational conjugacy classes in reductive groups”, Duke Math. J. 49 (1982) no. 4, p. 785-806 | MR | Zbl
[Kot84a] - “Shimura varieties and twisted orbital integrals”, Math. Ann. 269 (1984) no. 3, p. 287-300 | DOI | MR | Zbl
[Kot84b] - “Stable trace formula: cuspidal tempered terms”, Duke Math. J. 51 (1984) no. 3, p. 611-650 | DOI | MR | Zbl
[Kot85] - “Isocrystals with additional structure”, Compositio Math. 56 (1985) no. 2, p. 201-220 | Numdam | MR | Zbl
[Kot86] - “Stable trace formula: elliptic singular terms”, Math. Ann. 275 (1986) no. 3, p. 365-399 | DOI | MR | Zbl
[Kot88] - “Tamagawa numbers”, Ann. of Math. (2) 127 (1988) no. 3, p. 629-646 | DOI | MR | Zbl
[Kot90] - “Shimura varieties and -adic representations”, in Automorphic forms, Shimura varieties, and -functions, Vol. I (Ann Arbor, MI, 1988), Perspect. Math., vol. 10, Academic Press, Boston, MA, 1990, p. 161-209 | MR | Zbl
[Kot92a] - “On the -adic representations associated to some simple Shimura varieties”, Invent. Math. 108 (1992) no. 3, p. 653-665 | DOI | MR | Zbl
[Kot92b] - “Points on some Shimura varieties over finite fields”, J. Amer. Math. Soc. 5 (1992) no. 2, p. 373-444 | DOI | MR | Zbl
[Kot97] - “Isocrystals with additional structure. II”, Compositio Math. 109 (1997) no. 3, p. 255-339 | DOI | MR | Zbl
[KS99] - Foundations of twisted endoscopy, Astérisque, vol. 255, Société Mathématique de France, Paris, 1999 | Numdam
[KST20] - “Asymptotic behavior of supercuspidal representations and Sato-Tate equidistribution for families”, Adv. Math. 362 (2020), article ID 106955, 57 pages | DOI | MR | Zbl
[KSZ] - “The stable trace formula for certain Shimura varieties of abelian type”
[KV16] - “Geometric approach to parabolic induction”, Selecta Math. (N.S.) 22 (2016) no. 4, p. 2243-2269 | DOI | MR | Zbl
[Lab99] - Cohomologie, stabilisation et changement de base, Astérisque, vol. 257, Société Mathématique de France, Paris, 1999 | Numdam
[Lan79] - “Stable conjugacy: definitions and lemmas”, Canad. Appl. Math. Quart. 31 (1979) no. 4, p. 700-725 | DOI | MR | Zbl
[Lan83] - Les débuts d’une formule des traces stable, Publications Mathématiques de l’Université Paris VII, vol. 13, Université de Paris VII, U.E.R. de Mathématiques, Paris, 1983
[Lan89] - “On the classification of irreducible representations of real algebraic groups”, in Representation theory and harmonic analysis on semisimple Lie groups, Math. Surveys Monogr., vol. 31, American Mathematical Society, Providence, RI, 1989, p. 101-170 | DOI | MR | Zbl
[Lan13] - Arithmetic compactifications of PEL-type Shimura varieties, Lond. Math. Soc. Monogr. Ser., vol. 36, Princeton University Press, Princeton, NJ, 2013 | DOI
[Lau97] - “Sur la cohomologie à supports compacts des variétés de Shimura pour ”, Compositio Math. 105 (1997) no. 3, p. 267-359 | DOI | Zbl
[Lau05] - “Fonctions zêtas des variétés de Siegel de dimension trois”, in Formes automorphes. II. Le cas du groupe , Astérisque, vol. 302, Société Mathématique de France, Paris, 2005, p. 1-66 | Numdam | Zbl
[Lov17] - “Filtered F-crystals on Shimura varieties of abelian type”, 2017 | arXiv
[LR87] - “Shimuravarietäten und Gerben”, J. reine angew. Math. 378 (1987), p. 113-220 | Zbl
[LS87] - “On the definition of transfer factors”, Math. Ann. 278 (1987) no. 1-4, p. 219-271 | DOI | MR | Zbl
[Man05] - “On the cohomology of certain PEL-type Shimura varieties”, Duke Math. J. 129 (2005) no. 3, p. 573-610 | DOI | MR | Zbl
[MC22] - “Counting points on Igusa varieties of Hodge type”, 2022 | arXiv
[Mil05] - “Introduction to Shimura varieties”, in Harmonic analysis, the trace formula, and Shimura varieties, Clay Math. Proc., vol. 4, American Mathematical Society, Providence, RI, 2005, p. 265-378 | MR | Zbl
[MP19] - “Toroidal compactifications of integral models of Shimura varieties of Hodge type”, Ann. Sci. École Norm. Sup. (4) 52 (2019) no. 2, p. 393-514 | DOI | MR | Zbl
[MST22] - “Picard ranks of K3 surfaces over function fields and the Hecke orbit conjecture”, Invent. Math. 228 (2022) no. 3, p. 1075-1143 | DOI | MR | Zbl
[Ngô10] - “Le lemme fondamental pour les algèbres de Lie”, Publ. Math. Inst. Hautes Études Sci. (2010) no. 111, p. 1-169 | DOI | Numdam | Zbl
[Oki23] - “On the connected components of Shimura varieties for CM unitary groups in odd variables”, J. Number Theory 245 (2023), p. 1-64 | DOI | MR | Zbl
[Oor19] - “Appendix 1: Some questions in algebraic geometry”, in Open problems in arithmetic algebraic geometry, Adv. Lect. Math. (ALM), vol. 46, International Press, Somerville, MA, 2019, p. 263-283 | MR | Zbl
[PR94] - Algebraic groups and number theory, Pure and Applied Math., vol. 139, Academic Press, Inc., Boston, MA, 1994
[Pra82] - “Elementary proof of a theorem of Bruhat-Tits-Rousseau and of a theorem of Tits”, Bull. Soc. math. France 110 (1982) no. 2, p. 197-202 | DOI | Numdam | MR | Zbl
[PST21] - “Canonical Heights on Shimura Varieties and the André-Oort Conjecture”, 2021 | arXiv
[Rie70] - “The norm group of a -adic division algebra”, Amer. J. Math. 92 (1970), p. 499-523 | DOI | MR
[Rog83] - “Representations of and division algebras over a -adic field”, Duke Math. J. 50 (1983) no. 1, p. 161-196 | MR | Zbl
[RR96] - “On the classification and specialization of -isocrystals with additional structure”, Compositio Math. 103 (1996) no. 2, p. 153-181 | Numdam | MR | Zbl
[RZ96] - Period spaces for -divisible groups, Annals of Math. Studies, vol. 141, Princeton University Press, Princeton, NJ, 1996 | DOI
[Ser96] - “Two letters on quaternions and modular forms (mod )”, Israel J. Math. 95 (1996), p. 281-299, With introduction, appendix and references by R. Livné | DOI | MR
[SGA4-3] - Théorie des topos et cohomologie étale des schémas. Tome 3, Lect. Notes in Math., vol. 305, Springer-Verlag, Berlin-New York, 1972–1973, Séminaire de Géométrie Algébrique du Bois–Marie 1963–64 (SGA 4)
[Shi09] - “Counting points on Igusa varieties”, Duke Math. J. 146 (2009) no. 3, p. 509-568 | DOI | MR | Zbl
[Shi10] - “A stable trace formula for Igusa varieties”, J. Inst. Math. Jussieu 9 (2010) no. 4, p. 847-895 | DOI | MR | Zbl
[Shi11] - “Galois representations arising from some compact Shimura varieties”, Ann. of Math. (2) 173 (2011) no. 3, p. 1645-1741 | DOI | MR | Zbl
[Shi12] - “On the cohomology of Rapoport-Zink spaces of EL-type”, Amer. J. Math. 134 (2012) no. 2, p. 407-452 | DOI | MR | Zbl
[Sta21] - “The Stacks project”, https://stacks.math.columbia.edu, 2021
[Ste65] - “Regular elements of semisimple algebraic groups”, Publ. Math. Inst. Hautes Études Sci. (1965) no. 25, p. 49-80 | DOI | MR
[SZ22] - “Stratifications in good reductions of Shimura varieties of abelian type”, Asian J. Math. 26 (2022) no. 2, p. 167-226 | DOI | MR | Zbl
[Tsi18] - “The André-Oort conjecture for ”, Ann. of Math. (2) 187 (2018) no. 2, p. 379-390 | DOI | Zbl
[vD72] - “Computation of certain induced characters of -adic groups”, Math. Ann. 199 (1972), p. 229-240 | DOI | MR | Zbl
[vH10] - “Mod points on Shimura varieties of parahoric level”, 2010 | arXiv
[vHX21] - “Monodromy and irreducibility of Igusa varieties”, 2021 | arXiv
[Wal97] - “Le lemme fondamental implique le transfert”, Compositio Math. 105 (1997) no. 2, p. 153-236 | DOI | MR | Zbl
[Wal06] - “Endoscopie et changement de caractéristique”, J. Inst. Math. Jussieu 5 (2006) no. 3, p. 423-525 | DOI | Zbl
[Wal08] - L’endoscopie tordue n’est pas si tordue, Mem. Amer. Math. Soc., vol. 194, no. 908, American Mathematical Society, Providence, RI, 2008 | DOI
[Wor13] - “The -ordinary locus for Shimura varieties of Hodge type”, 2013 | arXiv
[Xia20] - “On the Hecke orbit conjecture for PEL type Shimura varieties”, 2020 | arXiv
[Xu16] - “On a lifting problem of L-packets”, Compositio Math. 152 (2016) no. 9, p. 1800-1850 | DOI | MR | Zbl
[Xu17] - “On the cuspidal support of discrete series for -adic quasisplit and ”, Manuscripta Math. 154 (2017) no. 3-4, p. 441-502 | DOI | MR | Zbl
[YCO20] - “Stratifying Lie strata of Hilbert modular varieties”, Taiwanese J. Math. 24 (2020) no. 6, p. 1307-1352 | DOI | MR | Zbl
[Zha15] - “Stratifications and foliations for good reductions of Shimura varieties of Hodge type”, 2015 | arXiv
[Zho19] - “Motivic cohomology of quaternionic Shimura varieties and level raising”, 2019 | arXiv
[Zho20] - “Coherent sheaves on the stack of Langlands parameters”, 2020 | arXiv
[Zhu17] - “Affine Grassmannians and the geometric Satake in mixed characteristic”, Ann. of Math. (2) 185 (2017) no. 2, p. 403-492 | DOI | MR | Zbl
[ZZ20] - “Twisted orbital integrals and irreducible components of affine Deligne-Lusztig varieties”, Camb. J. Math. 8 (2020) no. 1, p. 149-241 | DOI | MR | Zbl
Cited by Sources: