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THE TWISTED RUELLE ZETA FUNCTION ON

COMPACT HYPERBOLIC ORBISURFACES AND

REIDEMEISTER–TURAEV TORSION

by Léo Bénard, Jan Frahm & Polyxeni Spilioti

Abstract. — Let X be a compact hyperbolic surface with finite order singularities, X1 its unit
tangent bundle. We consider the Ruelle zeta function R(s; ρ) associated to a representation
ρ : π1(X1) → GL(Vρ). If ρ does not factor through π1(X), we show that the value at 0 of the
Ruelle zeta function equals the sign-refined Reidemeister–Turaev torsion of (X1, ρ) with respect
to the Euler structure induced by the geodesic flow and to the natural homology orientation
of X1. It generalizes Fried’s conjecture to non-unitary representations, and solves the phase
and sign ambiguity in the unitary case. We also compute the vanishing order and the leading
coefficient of the Ruelle zeta function at s = 0 when ρ factors through π1(X).

Résumé (Fonction zêta de Ruelle pour les orbifolds hyperboliques de dimension 2 et torsion de
Reidemeister-Turaev)

Soit X un orbifold hyperbolique de dimension 2, et X1 son fibré unitaire tangent. Étant
donnée une représentation ρ : π1(X1) → GL(Vρ), nous étudions dans cet article une fonction
zêta dynamique introduite par Ruelle, notée R(s, ρ), associée à la paire (X1, ρ). Nous mon-
trons que sa valeur en s = 0 est un invariant topologique, la torsion de Reidemeister-Turaev
tor(X1, ρ), si la représentation ρ ne factorise pas par π1(X). Cela généralise des résultats de
Fried, qui avait prouvé |tor(X1, ρ)| = |R(0, ρ)| pour ρ unitaire et classique. Nous levons donc les
restrictions sur le choix de ρ, et les indéterminations de phase pour la torsion. Pour cela, nous
utilisons la structure d’Euler associée au flot géodésique sur X1. Quand la représentation ρ est
un relevé d’une représentation de π1(X), nous déterminons son ordre d’annulation en s = 0,
ainsi que son coefficient dominant.
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Introduction

Given a compact Riemannian manifold M , a representation ρ : π1(M) → GL(Vρ)

and a vector field X on M , the Ruelle zeta function is, under certain assumptions on ρ

and X, defined as
R(s; ρ) =

∏
γ prime

det
(
Id−ρ(γ)e−sℓ(γ)

)
,

where γ runs through the prime periodic orbits of X and ℓ(γ) denotes the length of
the orbit γ.

In this work we are interested in the case where M = X1 is the unit tangent bundle
of a compact hyperbolic surface X with finitely many singular points x1, . . . , xr of
finite order. The generator X of the geodesic flow acts on X1 and its (prime) periodic
orbits are lifts of (prime) closed geodesics on the surface. For each singular point xj

on X there is a class of loops cj encircling xj , which has finite order νj ∈ Z>0 in the
orbifold fundamental group of X. Their lifts (still denoted by cj) to π1(X1) satisfy
c
νj

j = u, where u is the class of the generic fiber. The latter represents a loop in X1

of a unit vector which makes a full positive rotation along the fiber around the base
point.

Let ρ : π1(X1) → GL(Vρ) be a representation with dimVρ = n. For any j = 1, . . . , r

we denote by nj = dimFix ρ(cj), so that ρ(cj) = Inj
⊕ Tj .

The main result of this article is the computation of the behavior at zero of the
Ruelle zeta function associated to ρ.

Theorem A (Theorem 2.3.1 and Theorem 4.3.2). — For any irreducible representation
ρ : π1(X1) → GL(Vρ), the Ruelle zeta function R(s; ρ) converges on some right half
plane in C and extends meromorphically to the whole complex plane. Moreover:

(1) If ρ(u) = IdVρ
, then R(s; ρ) vanishes at s = 0 with order and leading coefficient

prescribed by:

R
( s

2π
, ρ
)

∼
s→0

± sn(2g−2+r)−
∑r

j=1 nj∏r
j=1 |det(In−nj − Tj)| (−νj)−nj

.

(2) If ρ(u) ̸= IdVρ
, then the representation ρ is acyclic. Let egeod be the Euler

structure induced by the geodesic flow on X1. Then

R(0; ρ) = ± tor(X1, ρ, egeod, ω
1),

where tor(X1, ρ, egeod, ω
1) ∈ C× denotes the Reidemeister–Turaev torsion of X1 in the

representation Vρ, the Euler structure egeod and the natural homology orientation ω1

(see below for details).
The sign is in both cases equal to (−1)mult(0;∆♯

τ,ρ), where mult(0;∆♯
τ,ρ) is the mul-

tiplicity of the eigenvalue 0 of the twisted Bochner–Laplacian ∆♯
τ,ρ acting on sections

of a certain orbifold bundle over X1 (see Section 3.2 for details).

When the representation ρ satisfies ρ(u) ̸= IdVρ
we prove that the twisted homology

groups H∗(X1, Vρ) are trivial (see Section 2) and one can define a combinatorial
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On Fried’s conjecture for unit tangent bundles of hyperbolic surfaces 1393

invariant, the Reidemeister–Turaev torsion. A theorem of Chapman (see [6, Th. 1])
states that it is indeed a topological invariant, although it depends in general on
the choice of an Euler structure (see [32]), that is, a choice of a lift of each cell of
a cell decomposition of X1 to its universal cover X̃1. To determine the sign of the
torsion, one needs an additional data: a homology orientation. For the unit tangent
bundle X1, there is a natural choice of an Euler structure egeod induced by the geodesic
flow, and a natural homology orientation ω1 (see Section 2.2). We compute explicitly
in Section 2.3 the Reidemeister–Turaev torsion tor(X1, ρ, egeod, ω

1) ∈ C for this Euler
structure and homology orientation. Theorem A(2) says that it coincides with the
value at zero of the Ruelle zeta function.

In the case where the representation ρ is unitary, the absolute value of the Rei-
demeister torsion is well-defined, independently from additional data. In this setting
Theorem A generalizes [14, Th. 2 & 3], where Fried proved a similar statement for
unitary and classical representation. He claimed without a proof that his results still
hold true for general (non-classical) unitary representation. Note that in this paper we
use the inverse convention for the torsion, so that our tor(X1, ρ) is Fried’s τρ(X1)

−1,
see Remark 2.1.3.

Our work fills the previous gap and extends Fried’s results to non-unitary repre-
sentations. For ρ(u) = IdVρ

, we also determine the sign of the coefficient governing
the vanishing of the Ruelle zeta function at zero. For ρ(u) ̸= IdVρ

, even in the unitary
case, we drop the phase and sign ambiguity for the torsion using the accurate Euler
structure and homology orientation. We show that it equals the value of the Ruelle
zeta function at zero, up to a sign which we explicitly compute.

Note that the value s = 0 is not in the convergence domain of the infinite product
R(s; ρ), but as we mentioned above the Ruelle zeta function extends meromorphically.
On the other hand, this function strongly depends on the metric we fixed on the orb-
ifold X and on the vector field acting on X1. A striking consequence of Theorem A(2)
is that, for a given hyperbolic metric on X and for the associated geodesic flow, the
value at zero of the Ruelle zeta function is independent of these choices.

In the case the surface has no elliptic points, Theorem A(1) recovers [12, Cor. C].
Note that Theorem A(2) implies that both the Ruelle at 0 and the torsion are locally
constant on the representation variety, and invariant under the action of the mapping
class group.

Relation to previous results. — In a more general setting, metric independence of the
value of Ruelle zeta functions at 0, and its relation with Reidemeister torsion, has
been widely studied in the past almost 40 years. For ρ unitary, it is known as Fried’s
conjecture and has been settled as a theorem for compact, hyperbolic odd-dimensional
manifolds by Fried in [13], using the Selberg trace formula. Bunke and Olbrich in [4]
unified the treatment for the twisted dynamical zeta functions with unitary repre-
sentations, for all locally symmetric spaces of real rank one, using the Selberg trace
formula and tools for harmonic analysis on locally symmetric spaces. The higher
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1394 L. Bénard, J. Frahm & P. Spilioti

rank case was treated by Moscovici and Stanton in [20], and Shen in [26]. A simi-
lar result, but in variable curvature for 3-dimensional manifolds, has been proved by
Dang–Guillarmou–Rivière–Shen in [8], using completely different techniques.

In the untwisted case (without representation ρ), Fried showed in [14] that the
vanishing order of the Ruelle zeta function at zero was given by the Euler characteristic
of the surface. Hence he recovered the fact that the length spectrum of a hyperbolic
surface determines its topology, which can be obtained as an easy consequence of
the Selberg trace formula. Notably, this has recently been extended using microlocal
analysis methods to the case of variable negative curvature by Dyatlov–Zworski in
[9]. On the other hand, Cekic–Delarue–Dyatlov–Paternain [5] studied the value of the
untwisted Ruelle zeta function at zero for conformal metric deformations of hyperbolic
3-manifolds. They showed that even under small perturbations the vanishing order
will jump.

In the case of non-unitary representations ρ, less is currently known, despite that
it is what occurs in many interesting cases, such as holonomy representations of hy-
perbolic manifolds. If ρ is obtained as the restriction of a representation of a Lie
group G, then Fried’s conjecture has been established for G = SL2(C) by Müller [22]
(using the PhD work of Wotzke [35]) and generalized to arbitrary G such that G/K

is odd-dimensional by Shen [27]. Moreover, Müller ([23]), Shen ([28]) and the third
author ([30]) proved Fried’s conjecture for more general non-unitary representations,
with the additional assumption that they are close to a unitary and acyclic repre-
sentation in the representation variety. In a completely general setting, Chaubet–
Dang established in [7] a variational formula relating some dynamical torsion to the
Reidemeister–Turaev torsion. Under some analytic hypothesis on the vector field X,
for acyclic ρ, this dynamical torsion coincides with the value at zero of the Ruelle zeta
function under study here. Namely, the operator given by the ρ-twisted Lie derivative
of X should not have 0 as a Ruelle resonance. As was pointed out to us by the referee,
this is known to be true in the case ρ is unitary, for any flow close enough to the
geodesic flow of a hyperbolic metric, see [8, Lem. 7.4].

As a consequence of their work together with our Theorem A we have the following
corollary:

Corollary B. — The statements in Theorem A still hold true for (ρ,X) in an
open neighborhood of (ρ0,Xgeod) in Hom(π1(X1),GL(Vρ0

)) × C∞(X1, TX1) , for
ρ0 : π1(X1) → GL(Vρ0

) a unitary acyclic representation and Xgeod the geodesic flow
of any hyperbolic metric on X.

Proof. — Starting with ρ0 : π1(X1) → GL(Vρ0
) a unitary acyclic representation and

Xgeod the geodesic flow of any hyperbolic metric on X, since 0 is not a Ruelle reso-
nance, using [8, Th. 2] one can vary the vector field X in a neighborhood of X0, such
that the identity RX(0, ρ0) = ± tor(X1, ρ0, eX) remains true. Still, 0 is not a Ruelle res-
onance, and then using [7, Th. 4] we can vary the representation ρ in a neighborhood
of ρ0. □
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In the present paper, the representation ρ is neither required to be unitary, nor
does it have to be close to a unitary acyclic representation. We even allow representa-
tions for which the non self-adjoint Bochner–Laplacian might have some generalized
0-eigenvalues. This is because we do not use the relation between the Selberg zeta
function and the refined analytic torsion. Indeed, we compute directly the value of
the Ruelle zeta function at zero, and identify it with the Reidemeister torsion.

Recently, Yamaguchi [36] was able to show Theorem A(2) in the special case where
ρ = ρ2N is the restriction of the irreducible 2N -dimensional representation of SL(2,R)
to π1(X1). His proof uses the relation

R(s; ρ2N ) =
Z(s−N + 1/2)

Z(s+N + 1/2)

between the twisted Ruelle zeta function R(s; ρ2N ) and the non-twisted Selberg zeta
function Z(s) (associated with the trivial representation of π1(X1)) and hence does
not generalize to arbitrary representations ρ of π1(X1).

Outline of the proof. — Our proof uses the intimate relation between the twisted
Ruelle zeta function R(s; ρ) and the twisted Selberg zeta function Z(s; ρ) (see Sec-
tion 4.1):

R(s; ρ) =
Z(s; ρ)

Z(s+ 1; ρ)
.

The behavior of Z(s; ρ) at s = 0 and s = 1 can be studied through its functional
equation relating Z(s; ρ) and Z(1− s; ρ) which we derive in Theorem 4.2.1. Both the
meromorphic continuation and the functional equation of Z(s; ρ) are obtained from
a twisted Selberg trace formula (see Theorem 3.7.1). This trace formula arises from
the trace of the heat operator of Müller’s twisted Bochner–Laplacian ∆♯

τ,ρ acting on
sections of a certain vector bundle Eτ,ρ over X (see Müller [21, §4] for the definition of
the twisted Bochner–Laplace operator). The vector bundle Eτ,ρ over X is associated
with the representation ρ of π1(X1) and a character τ of the universal covering group
of PSO(2). The twist by the character τ is necessary in order to obtain a vector
bundle over X (see Section 3.1 for details). We note that τ can only be trivial in the
case where ρ factors through π1(X) and hence this twisted construction is crucial for
Theorem A(2).

One of the technical parts of the proof consists of a detailed analysis of the identity,
hyperbolic and elliptic contribution to the geometric side of the trace formula. This
generalizes Hejhal’s trace formula [16, Ch. 9, Th. 6.2] to the case of non-unitary rep-
resentations ρ and uses Hoffmann’s computations of orbital integrals for the universal
covering group of PSL(2,R). The main difference is the use of the non self-adjoint oper-
ator ∆♯

τ,ρ. This operator is not necessarily diagonalizable and we have to work with
generalized eigenspaces. Moreover, the eigenvalues of this operator are not necessarily
positive real numbers but complex (see Section 3.2 for further details). We remark
that the generalized eigenfunctions of ∆♯

τ,ρ can be viewed as automorphic forms on H2
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of a certain weight with values in the non-unitary representation ρ (see [16, Ch. 9],
and [17] for the unitary case).

On the torsion side, the simple combinatorial nature of the unit tangent bundle
allows to compute explicitly the Euler structure egeod induced by the geodesic flow,
and the Reidemeister–Turaev torsion in this Euler structure. It relies on Turaev’s
correspondence between combinatorial Euler structures, which yield a choice of lifts
of a cell decomposition of X1 to its universal cover necessary to compute the torsion,
and smooth Euler structures, given by non-vanishing vector fields on X1. To our best
knowledge, it is the only case this computation has been performed explicitly, since
this correspondence is not very explicit in the direction we use. Namely, given a non-
vanishing vector field on a 3-manifold M , it looks in general like a difficult task to
find the corresponding combinatorial Euler structure.

Finally, the last part of the proof consists of an explicit computation of the Ruelle
zeta function at s = 0. It follows the ideas of [14, §3], where Fried computed the
modulus of each term contributing to R(0; ρ) from the functional equation of the
Selberg zeta function, in the case ρ was unitary. In his case the Ruelle zeta function
is real for s real, hence he argued that he could forget the arguments of the terms
occurring in the computation. Of course, in our case where ρ is no longer unitary, these
are exactly what we have to compute, and it turns out that after tedious computations
(Section 4.3) they kind of miraculously cancel out with each other.

Let us finally comment that some arguments of the proofs (such as the trace formula
(Theorem 3.7.1) and the functional equation (Theorem 4.2.1)) might be deduced from
an analytic continuation argument from the known unitary case, if one knew that the
unitary representations were Zariski dense in the representation variety of the unit
tangent bundle X1. This kind of argument has been already used by several authors
in various contexts, see Anantharaman [1] and Braverman–Kappeler [3].

Organization of the paper. — The paper is organized as follows. In Section 1, we in-
troduce our geometric setting, recall some facts from the representation theory of
˜PSL(2,R) and fix notation. In Section 2, we define and compute the Reidemeister–

Turaev torsion of the unit tangent bundle X1 of the hyperbolic orbifold X in the
Euler structure induced by the geodesic flow. In Section 3, we establish the Selberg
trace formula for the twisted, non self-adjoint Bochner–Laplacian on X, which will
be the key point to prove Theorem A. In Section 4, we introduce the twisted Ruelle
and Selberg zeta functions and prove their meromorphic continuation to the whole
complex plane. Finally, we compute the value of the Ruelle zeta function at zero and
prove Theorem A.

Acknowledgements. — The authors would like to thank Adrien Boulanger, François
Costantino, Nguyen Viet Dang, Pierre Dehornoy, Werner Müller, Joan Porti and
Louis-Hadrien Robert for helpful discussions and comments. We also thank the anony-
mous referees for their comments which led to a significant improvement of the paper.
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On Fried’s conjecture for unit tangent bundles of hyperbolic surfaces 1397

1. Preliminaries

We collect some basic information about compact hyperbolic orbisurfaces X (Sec-
tion 1.1), their unit tangent bundles X1 and their fundamental groups π1(X1) (Sec-
tion 1.2), and recall some representation theory of the universal cover of PSL(2,R)
(Section 1.3).

1.1. Compact hyperbolic orbisurfaces. — We consider the upper half plane

H2 := {z = x+ iy : y > 0}.

The group G = PSL(2,R) acts on H2 by fractional linear transformations. This action
is transitive and the stabilizer of i ∈ H2 is the maximal compact subgroup K =

PSO(2), hence
H2 ∼= G/K.

Let g = sl(2,R) be the Lie algebra of G and let g = k⊕p be the Cartan decomposition
of g with respect to the maximal compact subgroup K. The restriction of the Killing
form on g to p induces a G-invariant metric on H2 which is a multiple of the Poincaré
metric

ds2 =
dx2 + dy2

y2
.

Let Γ ⊆ G be a cocompact Fuchsian group, i.e., a discrete subgroup of G such that the
quotient X = Γ\H2 = Γ\G/K is compact. Then, the Poincaré metric on H2 induces
a metric on X that turns it into a compact hyperbolic orbisurface. Note that in this
case, every non-trivial element in Γ is either hyperbolic or elliptic.

Let G̃ denote the universal cover of G and write H̃ for the preimage of a subgroup
H ⊆ G under the universal covering map. Consider the following one-parameter
families in G (modulo ±I2):

kθ =

(
cos θ sin θ

− sin θ cos θ

)
, at =

(
et/2 0

0 e−t/2

)
, nx =

(
1 x

0 1

)
,

where θ, t, x ∈ R. Denote by k̃θ, ãt and ñx the unique lifts to the universal cover G̃,
turning

K̃ = {k̃θ : θ ∈ R}, Ã = {ãt : t ∈ R} and Ñ = {ñx : x ∈ R}

into connected one-parameter subgroups of G̃. Then the Iwasawa decomposition

G̃ = ÑÃK̃

holds. Note that the center Z̃ of G̃ is given by

Z̃ = {k̃θ : θ ∈ Zπ}.

Finally, we define two vector fields on X1 = Γ\G:
(1) The (generator of the) geodesic flow X, which is induced by the infinitesimal

action of the group (at)t∈R.
(2) The rotation in the fiber vector field Xrot, generated by the infinitesimal action

of the group (kθ)θ∈R.

J.É.P. — M., 2023, tome 10
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1.2. The relation between π1(X1) and π1(X). — The aim of this section is to shed
light on the relations between the fundamental group of the orbifold surface X and
the fundamental group of its unit tangent bundle X1. For this, we follow [14, §2].

We first note that the unit tangent bundle of H2 naturally identifies with G =

PSL(2,R). Indeed the map

G −→ H2

g 7−→ g · i

is a fibration, whose fiber is a circle S1 of directions of unit tangent vectors.
It follows from the preceding discussion that the quotient Γ\G is a compact

3-manifold X1, which we will (somewhat abusively) call the unit tangent bundle
of X. It is a Seifert fibered 3-dimensional manifold, and this fibration induces an
exact sequence

1 −→ Z = π1(PSO(2)) −→ π1(X1) −→ Γ = π1(X) −→ 1,

where π1(X) denotes the orbifold fundamental group of X.
In fact, a compact orbisurface X must have finitely many conical points x1, . . . , xr.

Removing small disc neighborhoods D1, . . . , Dr of those points, one gets a compact
surface X with boundary ∂X = {∂D1, . . . , ∂Dr} a union of disjoints circles, and with
fundamental group

π1(X) =
〈
a1, b1, . . . , ag, bg, c1, . . . , cr |

∏
i[ai, bi]

∏
j cj = 1

〉
.

Capping off the boundary components ∂Di by orbidiscs, one gets the following pre-
sentation for the fundamental group of the orbisurface:

π1(X) =
〈
a1, b1, . . . , ag, bg, c1, . . . , cr |

∏
i[ai, bi]

∏
j cj = 1, c

νj

j = 1
〉
,

for some non-zero natural integers νj , j = 1, . . . , r. Those integers are the order of
the elliptic conjugacy classes in Γ corresponding to the singular points xj .

To compute the fundamental group of the unitary tangent bundle X1 of X, let us
denote by ⟨u⟩ the fundamental group of the fiber PSO(2) which identifies with the
center of G̃. The generator u = k̃π identifies with a loop in X1 corresponding to a
complete clockwise rotation of unit vectors around the base point in X. It is proved
in [14, §2] that one gets the presentation

(1.1) π1(X1) =
〈
a1, b1, . . . , ag, bg, c1, . . . , cr, u |

[u, ai] = 1, [u, bi] = 1, [u, cj ] = 1,
∏
i

[ai, bi]
∏
j

cj = u2g−2+r, c
νj

j = u
〉
.

Now, let ρ : π1(X1) → GL(Vρ) be a finite-dimensional complex representation of
π1(X1). Since u ∈ π1(X1) is central, ρ(u) commutes with ρ(γ) for all γ ∈ π1(X1).
If ρ is irreducible, ρ(u) must be a scalar multiple of the identity by Schur’s Lemma,
say ρ(u) = λ In. We show that λ is in fact a root of unity. For this, let N =

J.É.P. — M., 2023, tome 10



On Fried’s conjecture for unit tangent bundles of hyperbolic surfaces 1399

lcm(1, ν1, . . . , νr) be the least common multiple of 1 and the orders of the elliptic con-
jugacy classes. By definition, the orbifold Euler characteristic χ(X) of X is given by

χ(X) = 2− 2g +

r∑
j=1

( 1

νj
− 1

)
∈ Q.

Lemma 1.2.1. — Let ρ : π1(X1) → GL(V ) be an irreducible representation of dimen-
sion n. Then, ρ(u) = λ In with λNnχ(X) = 1

Proof. — Since c
νj

j = u we find ρ(cj)
νj = λ In, in particular

r∏
j=1

ρ(cj)
N =

r∏
j=1

λN/νj In.

On the other hand,
r∏

j=1

ρ(cj) = λ2g−2+r

( g∏
i=1

[ρ(ai), ρ(bi)]

)−1

.

Since det(
∏g

i=1[ρ(ai), ρ(bi)]) = 1, we deduce λNn(
∑r

j=1 1/νj−(2g−2+r)) = 1 and the
lemma follows. □

1.3. Representation theory of ˜PSL(2,R). — We briefly recall the principal series
and the (relative) discrete series of the universal covering group of PSL(2,R), following
[17, §1].

Let M̃ = Z̃ denote the center of G̃, then ÑÃM̃ is a parabolic subgroup of G̃. The
unitary dual of K̃ ≃ R is comprised of the unitary characters τm, m ∈ R, defined by

(1.2) τm(k̃θ) = eimθ (θ ∈ R).

The restriction σε of τm to M̃ only depends on ε = m+ 2Z ∈ R/2Z, and the unitary
dual of M̃ is given by all σε, ε ∈ R/2Z.

For σ = σε, ε ∈ R/2Z, and s ∈ C we form the principal series representation πσ,s

of ˜PSL(2,R) on

Iσ,s = {f ∈ C∞(G̃) : f(natmg) = σ(m)estf(g)},

acting by right translation. The K̃-types in Iσ,s are spanned by the functions ϕm with
m+ 2Z = ε, where

ϕm(natk) = estτm(k) (n ∈ Ñ , t ∈ R, k ∈ K̃).

Note that the Casimir element Ω = 1
4 (H

2 + 2EF + 2FE) with

H =

(
1 0

0 −1

)
, E =

(
0 1

0 0

)
, F =

(
0 0

1 0

)
acts in πσ,s by s(s− 1) Id.
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Unitary principal series. — For s = 1/2 + iλ, λ ∈ R, the representation πσ,s extends
to a unitary representation on the Hilbert space{

f : G̃ → C : f(natmg) = σ(m)e(iλ+1/2)tf(g),

∫
M̃\K̃

|f(k)|2 dk < ∞
}
,

the unitary principal series. We denote the distribution character of this representa-
tion by Θσ,λ.

(Relative) discrete series. — For m > 0, the K̃-types ϕm′ , m′ ∈ ±{m,m+2,m+4, . . . },
span an sl(2,C)-invariant subspace of Iσε,m/2 where ε = ±m + 2Z ∈ R/2Z, which
can be completed to a Hilbert space of a unitary representation of G̃, the (relative)
discrete series. We write Θ±m for the distribution character of this representation.
Details about the invariant inner product on the (relative) discrete series can be found
in [17, §1].

2. Reidemeister torsion

In this section, we compute the Reidemeister–Turaev torsion of the unit tangent
bundle X1 of a hyperbolic orbisurface X for the Euler structure given by the geo-
desic flow. In Section 2.1, we define the Reidemeister–Turaev torsion. In Section 2.2,
we describe the two equivalent notions of Euler structures introduced by Turaev,
we introduce the sign-refinement of the torsion induced by a homology orientation,
and we discuss thoroughly the example of the solid torus. We compute explicitly the
Reidemeister-Turaev torsion of X1 in the Euler structure given by the geodesic flow
in Section 2.3, and determine its sign.

2.1. Twisted homology, Reidemeister–Turaev torsion and Euler structures

In this section, we define the twisted homology and Reidemeister torsion of a finite
CW-complex W with a finite dimensional representation ρ : π1(W ) → GL(Vρ) and an
Euler structure e. References include [25, 31, 32].

2.1.1. Twisted homology. — We will denote the fundamental group π1(W ) by π.
Let W̃ be the universal cover of W . It has the structure of an (infinite) CW-complex,
whose cells can be listed as follows: if {ci1, . . . , ciki

} are the i-dimensional cells of W ,
then {π · c̃i1, . . . , π · c̃iki

} is the list of the i-dimensional cells of W̃ , where π · c̃ij denotes
the set {γ · c̃ij | γ ∈ π}, see an example in Figure 1.

Wc0

c1

c0
u2 · c̃0u · c̃0c̃0u−1 · c̃0

c̃1u−1 · c̃1 u · c̃1

W̃

Figure 1. In this example, the CW complex W is a circle, with one
0-cell c0 and one 1-cell c1. Its universal cover W̃ is the real line, with
the action of the fundamental group π1(W ) = ⟨u⟩.
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It endows C∗(W̃ ) with the structure of a complex of Z[π]-modules of finite rank,
with a basis given by a choice of a lift c̃ij for each cell cij ∈ C∗(W ). Define the complex

C∗(W,Vρ) = Vρ ⊗Z[π] C∗(W̃ ).

Given {v1, . . . , vn} a basis of Vρ, the set {v1 ⊗ c̃i1, v2 ⊗ c̃i1, . . . , vn−1 ⊗ c̃iki
, vn ⊗ c̃iki

}
gives a basis of the vector space Ci(W,Vρ) for each i, and the boundary operator is
given by id ⊗ ∂.

Example 2.1.1. — In the example of Figure 1, given a representation ρ : π1(S1) →
GL(Vρ), the complex is just

C1(S1, Vρ) ≃ Vρ −→ Vρ ≃ C0(S1, Vρ)

and the boundary map is ∂(v ⊗ c̃1) = v ⊗ (u− 1) · c̃0 = (ρ(u)− In)v ⊗ c̃0. In the case
det(ρ(u)− In) ̸= 0, the boundary map ∂ : C1(S1, Vρ) → C0(S1, Vρ) is an isomorphism.
The twisted homology vector spaces H∗(S1, Vρ) are then trivial.

Remark 2.1.2. — In Example 2.1.1, the identification Ci(S1, Vρ) ≃ Vρ is not canonical,
it depends on the choice of a lift of the cell ci. Different choices would modify the
boundary map ∂ by a factor ρ(um), for some m ∈ Z. On the other hand, the homology
of this complex does not depend on the choices.

For a complex C∗, with boundary maps ∂∗, we denote by Zi = ker ∂i, by Bi =

Im ∂i+1. The homology vector spaces of the complex are the spaces Hi = Zi/Bi.
When all the spaces Hi are trivial, as in Example 2.1.1, we say that the complex C∗
is acyclic.

2.1.2. Reidemeister torsion of an acyclic based complex. — Given an acyclic based com-
plex (C∗, c

∗) of vector spaces over a field K, where for each i, the set ci is a basis
of the vector space Ci, the Reidemeister torsion is defined as follows. The boundary
maps yield exact sequences

0 −→ Zi −→ Ci
∂i−−−→ Bi−1 −→ 0.

Because the complex is acyclic, one has Bi = Zi for each i. If one picks arbitrary
bases bi of the spaces Bi and arbitrary lifts bi−1 in Ci satisfying ∂i(b

i−1) = bi−1, one
obtains new bases bi ⊔ bi−1 of Ci for each i.

Let bi ⊔ bi−1 : ci be the matrix which maps the basis ci onto the basis bi ⊔ bi−1.
We denote by [bi⊔bi−1 : ci] the determinant of the change of basis matrix bi⊔bi−1 : ci,
the Reidemeister torsion is defined as the alternating product

tor(C∗, c
∗) =

∏
i

[bi ⊔ bi−1 : ci](−1)i ∈ K∗/{±1}.

It is defined up to sign, it does depend on the basis c∗, but not on the choices b∗ nor
on the lifts b∗.
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Remark 2.1.3. — There is no standard convention regarding the choice of the torsion
or its inverse. Namely, some authors use as a definition for the torsion the alternating
product ∏

i

[bi ⊔ bi−1 : ci](−1)i+1

.

At the end one arrives with the inverse of the quantity we defined here. It is the case
in [14], for instance.

2.1.3. Reidemeister torsion of a CW complex. — In the case of a CW-complex W with
a representation ρ : π1(W ) → GL(Vρ), if the complex C∗(W,Vρ) is acyclic, we will say
that ρ is acyclic. One can compute the Reidemeister torsion as follows.

First, one needs to make a choice of lift for each cell of W in W̃ . Then take an
arbitrary basis of the vector space Vρ, all this together yields a basis c∗ of the complex
C∗(W,Vρ). Then the Reidemeister torsion

tor(W,ρ, c∗)

depends on the choice of the lifts, as emphasized in the notation. This dependency
restricts in a dependency of an Euler structure, which we will explain now.

2.2. Combinatorial and smooth Euler structures

2.2.1. Combinatorial Euler structure. — In [31], Turaev investigated the concept of
Euler structure. The main achievement is to show that Euler structures can be equiv-
alently defined in two different ways.

An Euler chain in a CW complex W is a singular one-chain c in W , whose boundary
is of the form

∂c =
∑
σ∈W

(−1)dimσ[wσ],

where wσ is a point in σ. Note that Euler chains exist if and only if χ(W ) = 0, since
the singular 0-chain

∑
σ∈W (−1)dimσ[wσ] is then in the kernel of the augmentation

map.
Take c′ another Euler chain with ∂c′ =

∑
σ(−1)dimσ[w′

σ], and some arbitrary
paths γσ in each cell σ linking w′

σ to wσ. Then note that the element

β = c− c′ −
∑
σ

(−1)dimσγσ

is a singular 1-chain with ∂β = 0 and we say that c and c′ are equivalent if we have
[β] = 0 ∈ H1(W,Z) (the first singular homology group). There is a natural (free
transitive) action of H1(W ) on the set of combinatorial Euler structures.

Remark 2.2.1. — If one fixes a 0-cell x in W , there is a special kind of Euler chains
called spider by Turaev. These are star-shaped 1-chains, with x as a center and paths
from x to any cell σ, oriented accordingly: from x to wσ if dimσ is even, from wσ

to x if dimσ is odd. It is not difficult to see that any Euler chain is homologous to a
spider.
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A spider gives a path from x to any cell σ in W . In turn, it defines a lift σ̃ of
each cell σ to the universal cover W̃ of W , and allows to define unambiguously the
Reidemeister–Turaev torsion as in Section 2.1. Note that two homologous spiders will
not necessarily define the same lifts in W̃ , nevertheless the value of the torsion will not
be affected, since it is multiplied by the determinant of an element of the commutator
subgroup ker(π1(W ) → H1(W )). In fact, an Euler structure defines unambiguously a
lift of each cell of W to its maximal abelian cover W .

Example 2.2.2. — For the circle, with the choice of lifts c̃0 and c̃1 we made in Fig-
ure 1, the torsion equals ±1/det(ρ(u)− In). But if one moves the lift c̃1 to um · c̃1,
then the torsion will be multiplied by det ρ(um). On the other hand, if one translates
simultaneously c̃0 and c̃1, the torsion is not affected. What we computed is a natural
choice of torsion, for a natural induced Euler structure: one chooses any lift c̃0 of the
base point, and then take c̃1 as on Figure 1, taking the edge that goes out of c̃0 fol-
lowing the orientation. Any such choice induces the same Euler structure. We denote
this Euler structure on the circle by e◦.

2.2.2. Smooth Euler structure. — On the other hand, a smooth Euler structure is a
homology class of nowhere vanishing vector fields. Two nowhere vanishing vector
fields X and X′ on a 3-manifold X are homologous if there exists a ball D ⊂ X such
that X and X′ are homotopic in X ∖D as nowhere vanishing vector fields. There is a
natural action of H1(X) on the set of smooth Euler structures by Reeb surgery, see
[33, §I.4.2].

The obstruction for two vector fields X and X′ of being homologous is the Chern–
Simons class cs(X,X′)∈H1(X). It can be defined as follows: denote by p:X×[0, 1]→X

the projection, and choose X a smooth section of the bundle p∗TX → X× [0, 1] which
provides a homotopy between X = X|X×{0} and X′ = X|X×{1} and which is transverse
to the zero section. The intersection of X with the zero section projects onto a one-
dimensional submanifold in X, whose homology class is cs(X,X′). It can be shown
that it only depends on the homology classes of X and X′.

It turns out that both sets of combinatorial and smooth Euler structures are affine
sets on H1(X), and Turaev shows in [31, §6] that there is an H1(X)-equivariant
isomorphism from one to the other. The map from the set of combinatorial Euler
structures into the set of smooth Euler structures is constructed as follows (more
details in Section 2.3.2): first there is a “Stiefel” vector field X associated to a CW
complex. Singularities of this vector field are (a choice of) points in the interior of each
cell, and the vector field pushes each higher dimensional cell onto lower dimensional
ones.

Then given a combinatorial Euler structure, one can modify the Stiefel vector field
along an associated Euler chain, so that the resulting vector field is non-singular, and
yields a smooth Euler structure. In fact the Euler structure can be chosen to be a
spider, and a neighborhood of this spider is homeomorphic to a ball D ⊂ X. One
can see that there is an essentially unique way to extend the non-singular vector field
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given by X on X ∖D. Indeed, the Euler structure induced by X depends only on X

on X ∖D.
Turaev shows equivariance of this map under the action of H1(M), which implies

its bijectivity.

2.2.3. Reidemeister–Turaev torsion. — For a CW complex W with an acyclic repre-
sentation ρ : π1(X) → GL(Vρ) and an Euler structure e, we define the Reidemeister–
Turaev torsion

tor(W,ρ, e) ∈ C/{±1}

as the torsion of the complex C∗(W,Vρ) in the basis c∗ given by the choice of lifts
of cells induced by any spider in the class e. For a compact manifold M , the torsion
is a well-defined topological invariant, defined up to sign: it does not depend on the
choice of a cell decomposition.

2.2.4. Sign-refined torsion. — The fact that the torsion defined in Section 2.2.3 is
independent of the given choices is not too difficult to see. For example, the choice
of the basis of Vρ does not affect it, since changing a basis v for a new basis v′ of Vρ

would change the torsion by a factor [v′ : v]χ(W ), but the Euler characteristic of W
must vanish from the acyclicity assumption.

A problem that one cannot avoid facing is the sign: the basis c∗ given by a choice
of lift of the cells comes ordered, and a change of the order of the cells will result
into a change of sign, at least if dimVρ is odd. More precisely, if one permutes two
k-cells cki and ckj , then the Euler structure e will give a new basis d∗, and the torsion
tor(W,ρ,d∗, e) will differ from tor(W,ρ, c∗, e) by a sign (−1)|i−j| dimVρ . This is why
so far we have only defined the torsion up to sign.

To remedy this sign ambiguity, following Turaev ([32, Ch. III, §18]), we introduce
a correcting term τ̌(W,ω) where ω is a homology orientation of W , namely an orien-
tation of the vector space H∗(W,R) =

⊕
i Hi(W,R).

To define this correcting term, we chose a basis h of H∗(W,R) which is positively
oriented with respect to ω. We already have bases ci of Ci(W,R), and we chose
arbitrary bases bi of Bi(W,R). Then define

τ̌(W,ω) = (−1)N(C) τ(W,h) = (−1)N(C)
∏
i

[bi ⊔ hi ⊔ bi−1 : ci](−1)i ,

where N(C) =
∑3

i=0

(∑i
r=0 dimCi(W,R)

)(∑i
r=0 dimHi(W,R)

)
. Finally, define the

sign refined Reidemeister-Turaev torsion as

tor(W,ρ, e, ω) = sign(τ̌(W,ω))dimVρ tor(W,ρ, e).

One can now see that changing the order of the cells of W does not affect the torsion,
since the sign change will also appear in sign(τ̌(W,ω))dimVρ . Let us comment that the
additional sign refinement (−1)N(C) is needed in order to make the formula for the
torsion invariant by elementary expansions and collapses, what we will explain in the
next subsection.
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Remark 2.2.3. — In classical textbooks such as [32, 33], Turaev deals with one-
dimensional representations when defining the sign-refined torsion, hence there is no
dimVρ as an exponent for the sign of the correcting term. As we already mentioned,
the sign determination of the torsion only poses problem when dimVρ is odd, and in
this case all the arguments of Turaev extend in a straightforward way. When dimVρ

is even, there is nothing to do.

2.2.5. Elementary collapse, elementary expansion. — For any pair (ck, ck+1) of cells of
dimensions (k, k+1) in a CW complex W , such that ck appears only in the boundary of
ck+1, and the boundary map ∂k+1 restricts to a homeomorphism ∂k+1: ∂

−1
k+1{ck}

∼−→ck,
one can remove the pair (ck, ck+1) and reduce the complexity of W . This induces
a deformation retract W → W ′ = W ∖ {ck, ck+1}, which is called an elementary
collapse. An Euler structure e on W obviously induces an Euler structure e′ on W ′.
The reverse operation is called elementary expansion. Now we describe how elementary
collapses and elementary expansions act on the Reidemeister–Turaev torsion.

Lemma 2.2.4. — Let W be a CW complex with an acyclic representation ρ : π1(X) →
GL(Vρ), fix an Euler structure e and a homology orientation ω. Denoting by ck+1, ck

the lifts of the cells ck+1, ck in the maximal abelian cover W of W induced by e, let h
be the unique element in H1(W ) such that hck appears in the boundary of ck+1. Then
the following holds:

tor(W,ρ, e, ω) = (det ρ(h))(−1)k tor(W ′, ρ, e′, ω).

Proof. — Let {v1, . . . , vn} be basis of Vρ. Pick bases bi of the spaces Bi(W,Vρ) such
that c̃k+1 ⊗ v1, . . . c̃

k+1 ⊗ vn are basis vectors given by some lift bk of bk. Since these
are also basis vectors of Ck+1(W,Vρ), up to some permutation the change of basis
matrix bk+1 ⊔ bk : ck+1 has the form

bk+1 ⊔ bk : ck+1 =

(
In 0

0 ∗

)
.

In particular its determinant remains unchanged after the elementary collapse W→W ′.
Now the change of basis matrix bk ⊔ bk−1 : ck has the form, up to permutation,

bk ⊔ bk−1 : ck =

(
ρ(hγ) ∗
0 ∗

)
for some element γ in the commutator subgroup [π1W,π1W ]. In particular its determi-
nant changes by a factor (det ρ(h))(−1)k . Since no other determinants are affected by
the elementary collapse, the lemma is proved, up to sign. The fact that the elementary
collapse does not affect the sign of the refined torsion is proved in [32, Lem. 18.4]. □

2.2.6. Example of the solid torus. — Let N = D2×S1 be a 3-manifold homeomorphic
to a solid torus. We choose a generator h of H1(N) ≃ Z (note that it induces a
homology orientation on N). Let X be the vector field on N everywhere tangent to
the circles {x} × S1, directed positively with respect to h.
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In this subsection we will compute the torsion of N with respect to the Euler
structure e+ induced by X.

A CW structure on N . — To start we choose a CW-decomposition for N . Take the
obvious CW-decomposition of D2 with one 0-cell, one 1-cell and one 2-cell. Then we
take the product with the S1 factor (seen as a CW-complex with one 0-cell and one
1-cell). We obtain (see also Figure 2):

– One 0-cell e0,
– Two 1-cells: e11 which is the product of the 1-cell of D2 with the 0-cell of S1,

and e21, product of the 0-cell of D2 with the 1-cell of S1,
– Two 2-cells: e12 which is the product of the 2-cell of D2 with the 0-cell of S1,

and e22, product of the 1-cell of D2 with the 1-cell of S1,
– One 3-cell e3, product of the 2-cell of D2 with the 1-cell of S1.

e0

e11

e21

e12

e22

e3

X

Figure 2. The solid torus N , with a cell decomposition. The 0-cell
e0 is below. The two 1-cells e11 and e21 are blue and red respectively.
Then the two 2-cells are e12 (the light blue internal disk) and e22 (the
disk given by the complement of e11 ∪ e21 in the toral boundary ∂N

of N). The 3-cell e3 (light red) is the complement of the disk e12 in the
interior of N . In green, a spider inducing the same Euler structure
as the vector field X (in purple).

Euler structure on N . — As explained by Turaev in [33, §VI.2.4], there are two nat-
ural Euler structures e±. They are uniquely determined by the fact that e+ = he−.
We claim that the Euler structure induced by X is e+. It can be seen as follows:
first one needs to make X transverse to the boundary ∂N , pointing outward, by a
homotopy. Then one can also make −X transverse, outward pointing. Then the claim
follows since it can be checked that performing a Reeb surgery as in [33, §I.4.2] on −X

along h yields X.
Now we describe the combinatorial Euler structure corresponding to e+ in terms of

a spider, which we have also drawn in Figure 2. This spider can be described as follows:
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it is centered at e0, and there is a path (oriented toward e0 if its other extremity has
odd dimension, and out of e0 if its other extremity has even dimension) joining e0 to
a chosen point in any other cells of the decomposition of N . We go

– from e11 to e0 following e11 in the opposite orientation,
– from e21 to e0 following e21 in the opposite orientation,
– from e0 to e12 in e12,
– from e0 to e22 in e12, going in the direction given by h,
– from e3 to e0 in e3, going in the opposite of the direction given by h.

Lemma 2.2.5. — The spider described above induces the Euler structure e+.

Proof. — To see that this spider induces the Euler structure e+, we use the fact that
there is an involution on the set of combinatorial Euler structure, defined as follows:
take e a combinatorial Euler structure, and realize it as a spider centered at e0. Draw
this spider in the maximal abelian cover N ≃ D2 × R, and then reflects N along
the disk D2 × {0}. It results a new spider, hence a new Euler structure −e. This
involution corresponds to X 7→ −X through the H1(N) equivariant bijection between
combinatorial and smooth Euler structures, because reversing the component of X

tangent to the D2×{∗} disks yields a homotopic vector field, and this last procedure
is precisely what is needed for −X being also transverse, outward pointing, to the
boundary.

We are reduced to prove that the spider described above induces an Euler struc-
ture e satisfying e = h · (−e). Now −e differs from e by the following modifications:
the three paths linking e0 to e21, e

2
2 and e3 go now symmetrically along the direction

induced by the reversed orientation of the circle S1. The difference between e and −e

is hence h− h+ h = h, and it proves the lemma. □

The Reidemeister–Turaev torsion of (N, ρ, e+, ω). — Now we compute the torsion of N ,
given a representation ρ : π1(N) → GL(Vρ) (in other word, a matrix H associated to
the element h ∈ H1(N)). Recall that ω is the homology orientation associated with
the choice of a generator h of H1(N).

We won’t proceed by computing directly the torsion of the CW complex described
above, because this strategy would become intractable later, when we will deal with
manifolds of the form Σ×S1 for more complicated surfaces Σ. Instead, we will proceed
by elementary collapse.

Consider the cells {e3, e22}. The new CW-complex W ′ = W ∖{e3, e22} is an elemen-
tary collapse of W . Now W ′ → W ′′ = W ′ ∖ {e12, e11} is also an elementary collapse,
and we can compute the torsion on the CW-complex {e0, e21}, which is topologically
a circle. Note that for the Euler structure e+, one has ∂3ẽ3 = ẽ22 + (1 − h)ẽ12, and
∂2ẽ

1
2 = ẽ11. Hence applying Lemma 2.2.4, one can compute tor(N, ρ, e, ω) as the tor-

sion tor(W ′′, ρ, e′′+, ω) of the core circle of N , as in Example 2.2.2. Noticing that the
induced Euler structure e′′+ is nothing but what we had denoted by e◦ there, we have
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shown:
tor(N, ρ, e+) = ± 1

det(H − In)
.

Now let us compute the sign. Note that H∗(W
′′,R) ≃ C∗(W

′′,R) generated by e0
and e21. Moreover one has ∂e21 = 0. Hence

τ̌(W ′′, ω) = (−1)(1
2+22) [b0 ⊔ h0 : c0]

[b1 ⊔ h1 ⊔ b0 : c1]
= − [e0 : e0]

[e1 : e1]
= −1.

Inserting the correction (−1)dimVρ in the torsion, we get

Proposition 2.2.6. — We have

tor(N, ρ, e+, ω) =
1

det(In −H)
.

2.3. The torsion of the unit tangent bundle. — Let X be a surface of genus g

with r orbifold singularities, such that 2g − 2 + r > 0. Let X1 be the unit tangent
bundle of the orbisurface X. We denote by c1, . . . , cr ∈ π1(X1) the elliptic elements
given by loops in X around the singularities.

The aim of this section is to prove the following theorem.

Theorem 2.3.1. — Let ρ : π1(X1)→GL(Vρ) be an irreducible representation of dimen-
sion n, with ρ(u) ̸= In. Then ρ is acyclic. For any hyperbolic metric on X, the geodesic
flow on X1 induces an Euler structure egeod for which

tor(X1, ρ, egeod, ω
1) =

det(In − ρ(u))2g+r−2∏r
j=1 det(In − ρ(cj))

.

The proof of this theorem will occupy the rest of this section. It is subdivided
into three parts: first in Section 2.3.1, we decompose the unit tangent bundle X1 into
simpler pieces and exhibit a cell decomposition of each piece together with a natural
choice of lifts of the cells in the universal cover. We prove Theorem 2.3.1 for this choice,
up to sign. In Section 2.3.2, we show that this natural choice of lifts corresponds to
the Euler structure induced by the geodesic flow induced by any hyperbolic metric.
In Section 2.3.3 we compute the sign.

2.3.1. Computation of the torsion

Decomposition of X1. — The 3-manifold X1 can be cut along tori into pieces

(2.1) X1 = X0 ∪N0 ∪N1 ∪ · · · ∪Nr,

where
– X0 ≃ (X∖D0)×S1 is the product of a surface with r+1 boundary components

with a circle;
– N0 is a solid torus D0 × S1;
– Ni are solid tori containing the exceptional fibers which correspond to the elliptic

elements cj .
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We will use the following cell decomposition of X0: the surface X∖D0 retracts
on a bouquet of 2g + r circles, each of which can be identified with one of
a1, . . . , bg, c1, . . . , cr. We denote the circles by A1, B1, . . . , Ag, Bg, C1, . . . , Cr, each
corresponding to the element of the fundamental group of X ∖ D0 denoted by the
same tiny letter. Now the product cell structure on X0 is given by

– One 0-cell e0, the product of the 0-cell of the surface with the 0-cell of the
circle S1;

– 2g + r + 1 one-cells: A1, B1, . . . , Ag, Bg, C1, . . . , Cr which are products of the
1-cells of the surface with the 0-cell of S1 and U , the product of the 0-cell of the
surface with the 1-cell of S1;

– 2g + r two-cells EA1 , . . . , EBg , EC1 , . . . , ECr , products of 1-cells in the surface
with the 1-cell of S1. Note that ∂Eγ = γUγ−1U−1 for any γ ∈ {A1, . . . , Cr}.

The retraction of the surface X ∖D0 onto the bouquet of circle induces a retraction
of the product X0 onto this CW complex, which is topologically a union of 2g + r

tori, all of them glued along the circle denoted by U .
As we will see, this retraction can be realized by elementary collapses, in particular

we can compute the torsion on the 2-dimensional complex described above.

Natural lift of the cell structure. — We pick an arbitrary basis {v1, . . . , vn} of Vρ, then
the complex C∗(X0, Vρ) can be computed explicitly, as in [18, §4], but we need to fix
lifts of the cells of X0 in the universal cover X̃0. Such a choice of lifts will induce a
homology class of spider, hence an Euler structure, that we will denote by e0.

Since X0 has the structure of a bouquet of circles times a circle, its universal cover
has the structure of a union of lattices glued along a line, a portion of one of them is
drawn in Figure 3.

ẽ0

Ũ
ẼA1

Ã1

a1 · Ũ

a1u
−1 · Ũu−1 · ẼA1

u−1 · Ũ

Figure 3. A sample of the universal cover of X0. Here we draw part
of a lattice corresponding to the universal cover of the two-cell EA1 .
The Euler structure e0 is induced by the lifts ẽ0, Ũ , Ã1 and ẼA1

for
each such two-dimensional cell.
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We start with an arbitrary lift ẽ0 of the unique one-cell e ∈ C0(X0). Then we choose
the lifts Ã1, Ũ and ẼA1

as in Figure 3. Similarly, we take the lifts of B1, A2, . . . , Cr

and of the corresponding two-cells as above.
We denote by e0 the Euler structure induced by this choice of lifts on the CW

complex W representing X0. On the peripheral tori Ni, i = 0, . . . , r, we take the
Euler structure e+ as in Section 2.2.6.

There is a natural gluing procedure for Euler structures ([33, §VI.3.1]). On the com-
binatorial side, if one glues (Y1, e1) to (Y2, e2) along Y , such that the Euler structure
induced by e1 and e2 coincide on Y as e, then the glued Euler structure is e1 + e2 − e

as a formal sum of homology classes of singular chains.
We denote by e the Euler structure on X1 obtained by gluing e0 with the union of

the e+ on each Ni. We prove the following:

Proposition 2.3.2. — We have

tor(X1, ρ, e) = ±det(In − ρ(u))2g+r−2∏r
j=1 det(In − ρ(cj))

.

Note that Theorem 2.3.1 will follow from this proposition after we will have shown
that the Euler structure e coincides with the Euler structure egeod on X1, and after
determining the sign. This will be done in the next subsections.

Before we prove Proposition 2.3.2, let us describe the matrices of the boundary
maps of the complex C∗(X0, Vρ) given by our choice of bases.

The set {vi ⊗ Ẽγ | i = 1, . . . , n, γ = A1, . . . , Cr} is now a basis of C2(X1, Vρ).
Similarly, {vi ⊗ γ | i = 1, . . . , n, γ = Ã1, . . . , C̃r, Ũ} is a basis of C1(X1, Vρ) and
{vi ⊗ ẽ0 | i = 1, . . . , n} is a basis of C0(X1, Vρ).

The boundary operator ∂2 : C2(X1, Vρ) → C1(X1, Vρ) reads

∂2(vi ⊗ EA1) = vi ⊗
(
(1− u) · Ã1 + (a1 − 1) · Ũ

)
,

and similarly for other two-cells. Further, ∂1(vi ⊗ Ã1) = vi ⊗ (a1 − 1)ẽ0 and similarly
for the other one-cells. Hence, in the given bases, the boundary maps are given by the
following matrices

∂2 =


In − ρ(u) 0 · · · · · · 0

0 In − ρ(u) 0 · · · 0
...

...
...

...
...

0 0 · · · · · · In − ρ(u)

ρ(a1)− In · · · · · · · · · ρ(cr)− In

 ,

∂1 =
(
ρ(a1)− In · · · · · · · · · ρ(cr)− In ρ(u)− In

)
.

We start with the following two preparatory lemmas:

Lemma 2.3.3. — Let T = S1×S1 be a torus, ρ : π1(T ) → GL(Vρ) a representation such
that det(ρ(γ)− In) ̸= 0 for some γ. Let e be the Euler structure on T induced by the
choice of lifts described in Figure 3. Then C∗(T, Vρ) is acyclic and tor(T, ρ, e) = ±1.
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Proof. — Take γ being the homotopy class of one of the two S1 factors, and denote
by µ the class of the other factor. Then the complex C∗(T, Vρ) is

C2(T, Vρ) ≃ Vρ
∂2−−−→ C1(T, Vρ) ≃ V 2

ρ

∂1−−−→ C0(T, Vρ) ≃ Vρ,

where

∂2 =

(
ρ(γ)− In
In − ρ(µ)

)
, ∂1 =

(
ρ(γ)− In ρ(µ)− In

)
.

Since det(ρ(γ)− In) ̸= 0, one has ∂2 is injective, ∂1 is surjective and since χ(T ) = 0,
one deduces that the complex C∗(Y, Vρ) is acyclic. If one chooses bases bi of the spaces
Bi(T, Vρ) such that the change of basis matrices b1 : c2 = b0 : c0 = In, then one has

b1 ⊔ b0 : c1 =

(
ρ(γ)− In 0

0 (ρ(γ)− In)
−1

)
and the lemma follows. □

Lemma 2.3.4. — Let ρ : π1(X1) → GL(Vρ) be an n-dimensional irreducible represen-
tation. If det(ρ(u)− In) ̸= 0, then the complex C∗(X1, Vρ) is acyclic.

Proof. — For i = 0, . . . , r, the solid torus Ni has the homotopy type of a circle, hence
the complex C∗(Ni, Vρ) is just

C1(Ni, Vρ) ≃ Vρ

ρ(ci)− In−−−−−−−−−→ Vρ ≃ C0(Ni, Vρ),

where ρ(c0) is understood as being ρ(u). Since ρ(ci)
νi = ρ(u), the assumption

det(ρ(u) − In) ̸= 0 implies det(ρ(ci) − In) ̸= 0 for any i. Hence, we showed that
C∗(Ni, Vρ) is acyclic when det(ρ(u) − In) ̸= 0. Also C∗(∂Ni, Vρ) is acyclic for any i,
see Lemma 2.3.3.

Now we prove that C∗(X0, Vρ) is acyclic. First, the map ∂1 is surjective since
det(ρ(u) − In) ̸= 0, hence H0(X0, Vρ) = {0}. Moreover, the n(2g + r) × n(2g + r)

diagonal submatrix

∂′
2 =


In − ρ(u) 0 · · · · · · 0

0 In − ρ(u) 0 · · · 0
...

...
...

...
...

0 0 · · · · · · In − ρ(u)


of ∂2 has determinant equal to det(In − ρ(u))2g+r, in particular it is non-zero and ∂2
is injective, i.e., H2(X0, Vρ) = {0}. Since the Euler characteristic of X0 vanishes,
we conclude that H1(X0, Vρ) = {0} and the acyclicity follows. By a Mayer–Vietoris
argument one deduces that C∗(X1, Vρ) is acyclic. □

Proof of Proposition 2.3.2. — First, because ρ(u) ̸= In is central, det(In − ρ(u)) ̸= 0.
Now we use again a Mayer–Vietoris argument. For any solid torus Ni in the decom-
position given in Equation (2.1), we compute the torsion as in Proposition 2.2.6 in
the Euler structure e◦ = e+. Denote by ℓi the core of the solid torus Ni. Since cνi

i u−1

is a meridian of Ni, the curve ℓi is given by ℓi = cni
i umi with miνi + ni = 1. Writing
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u = cνi
i , one sees that ℓi = ci is the core of the solid torus Ni. For the torsion we

obtain
tor(Ni, ρ, e◦) = ± 1

det(In − ρ(ci))
,

where c0 is understood as being u. On the other hand, using [32, Th. 2.2], one computes
the torsion of X0 in the Euler structure e0:

(2.2) tor(X0, ρ, e0) = ± det(∂′
2)

det(ρ(u)− In)

and it follows

(2.3) tor(X0, ρ, e0) = ± det(In − ρ(u))2g+r−1.

Finally, we use the multiplicativity of the torsion to compute the torsion of X1

from the torsions of the pieces X0, Ni and the Mayer–Vietoris sequence. Note that
the Euler structure induced by e0 on ∂X0 coincides with the Euler structure induced
by the Euler structure e+ (see Section 2.2.6) on each toral boundary ∂Ni. We use the
exact sequence of complexes

0 −→ C∗(∂X0, ρ, e0) −→ C∗(
∐

i Ni, ρ, e+)⊕ C∗(X0, ρ, e0) −→ C∗(X1, ρ, e) −→ 0

We have then from [32, Th. 1.5] the formula:

tor(X1, ρ, e) = ±
tor(X0, ρ, e0)

∏r
i=0 tor(Ni, ρ, e◦)∏r

i=0 tor(∂Ni, ρ, e0)
.

For the boundary tori ∂Ni, Lemma 2.3.3 gives tor(∂Ni, ρ, e0) = 1. We deduce

tor(X1, ρ, e) = ±det(In − ρ(u))2g+r−2∏r
j=1 det(In − ρ(cj))

. □

2.3.2. Computation of the Euler structure. — Now we prove that the Euler structure e

on X1 that we have chosen in Section 2.3.1 corresponds to the geodesic flow through
Turaev’s isomorphism between combinatorial and smooth Euler structure.

First, note that the geodesic flow Xgeod on X1 is homotopic to the vector field
Xrot obtained by “rotation in the fiber” defined at the end of Section 1.1. A nowhere
vanishing homotopy can be realized as tXrot+(1− t)Xgeod on X0, since they generate
a 2-dimensional plan everywhere.

In particular it follows from Section 2.2.6 that the Euler structure induced by X1

coincides with the Euler structure e+ on each peripheral solid tori Ni.
For X0, by elementary expansion we can turn the CW decomposition of Sec-

tion 2.3.1 into a product cell structure, with one 3-cell: first add a 1-cell C0 (cor-
responding to c0) and a 2-cell E0 to the bouquet of circle which was the cell decom-
position for the surface X ∖ D0, such that the boundary of the two cell E0 yields
the relation

∏
[ai, bi]

∏
cj = c0. Now taking the product with the circle S1 turns into

adding one more 2-cell EC0 and a 3-cell B0 to the CW complex W that we described
for X0. We call the new CW complex W ′. We extend the Euler structure e0 on W

into an Euler structure e′0 on W ′ in the same way we defined the Euler structure for
the solid torus: we take
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– a path from an inner point in C0 to e0 following C0 opposite to its orientation,
– a path from e0 to an inner point in E0, staying in the interior of E0,
– a path from e0 to an inner point in EC0 , staying in the interior of EC0 , and going

in the direction given by the circle factor,
– a path from an inner point in B0 to e0, staying in the interior of B0, going in

the direction opposite to the circle.
Applying Lemma 2.2.4, we have

tor(W ′, ρ, e′0) = tor(W,ρ, e0),

hence we are led to show that the Euler structure e′0 is the same as erot, the one
induced by the rotation flow Xrot on W ′. We recap this here as a proposition:

Proposition 2.3.5. — The Euler structures e′0 and erot coincide.

Proof. — As a first step, let us prove the following claim:

Claim. — The difference e′0 − erot is represented by a multiple of the homology class
of u in H1(X0).

To see this, consider the action of the group of diffeomorphisms of the surface
X ∖D0 on the manifold X0 = (X ∖D0)× S1, acting on each slice. This induces an
action on the set of Euler structure, and on the other hand it acts on the fundamental
group in the obvious way, and on the homology H1(X ∖ D0) ⊂ H1(X0). Now note
that this action fixes e′0 (since tor(X0, ρ, e

′
0) computed in Equation (2.3) is invariant

for any ρ), and obvious fixes erot (since it fixes Xrot). Writing h = e′0 − erot ∈ H1(X0),
it follows that h is fixed by the action of any diffeomorphism of the surface, and the
claim follows.

Let us denote by X the Stiefel vector field on the CW complex W ′. After fixing
one point in the interior of each cell of W ′, X is a vector field that “pushes” each cell
on the lower dimensional skeleton, and which singularities are precisely these points,
one in each cell. As we mentioned, given an Euler chain c representing the Euler
structure e′0, after assuming that we picked points in each cells which are precisely
the endpoints of the paths in c, there is an essentially unique way to desingularize X

into a nowhere vanishing vector field X0, which represents the Euler structure e′0.
Let us decompose the 2-cell E0 into three parts: taking a radial coordinate R

on E0 (which is homeomorphic to a 2-dimensional disk), we cut it into {R ⩽ 1/3},
{1/3<R<2/3} and {2/3⩽R⩽1}. It also gives a decomposition of B0=E0×S1∖E0.
As Turaev explains in [31, §5.2], since e′0 − erot is a multiple of u, the obstruction
of X0 and Xgeod being homologous can be computed in a tubular neighborhood of
a representative of u in X0, which we realize as {R ⩽ 1/3} × S1, the inner part on
Figure 4.

In other words, the homology class of the vector field X0 can be represented by a
vector field equal to Xrot on the outer part {2/3 ⩽ R ⩽ 1} × S1. On the inner part
{R ⩽ 1/3}×S1, we remove a tubular neighborhood of an Euler chain representing e′0:
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a1

b1

a−1
1

b−1
1

c0

E0

Figure 4. On the right, we describe the 2-cell E0. Note that all
the boundary part, and the gluing between the edges representing
the ai and bi, lie in the outer annulus {2/3 ⩽ R ⩽ 1}. On the left we
draw the 3-cell B0, the light blue two cell schematically represents E0

(where we omit the identifications in the boundary, and the 1-cells
attached). The Euler chain representing e′0 also lies in this outer an-
nulus, except for the part that we drawn in green. In purple, we draw
a vector field representing the same homology class as X0.

a path from e0 to the center of E0 in E0, and then a path from the center of B0 to
the center of E0, that we take in the interior of {R ⩽ 1/3}×S1 (in green in Figure 4).
Outside of this ball neighborhood, so from the center of B0 to the other copies of E0

(note B0 touches E0 from both sides), X0 also equals Xrot, by definition of the Stiefel
vector field. In the intermediate part {1/3 < R < 2/3}× S1, we just interpolated the
two by a homotopy near the two boundary parts. Now we see that the two vector
fields are homotopic, outside of a ball neighborhood of the Euler chain, and it proves
that the induced Euler structures coincide. □

Remark 2.3.6. — Unlike the manifold X1, the pieces X0 and Ni are manifolds with
boundary. In this case, Turaev introduces a thickening of the boundary so that the vec-
tor fields representing Euler structures are transverse to the boundary. Here, we deal
with vector fields tangent everywhere to the boundary. It makes the description much
simpler, and we can recover the setting of Turaev by taking a thickening of the bound-
aries of X0 and of each N0 and by extending the vector fields so that

– Each vector field is tangent to the slice ∂Θ× {0} for Θ ∈ {X0, N0, . . . , Nr}.
– The vector field is pointing outward on ∂X0 × {1}.
– The vector field are pointing inward on ∂Ni × {1}, i = 0, . . . , r.

2.3.3. Sign-refined torsion

Homology orientation. — First we need to fix a homology orientation on X1. Like for
any closed 3-manifold, there is a canonical choice of homology orientation ω1: take
any base of H0(X1,R) ⊕ H1(X1,R), and the dual base of H2(X1,R) ⊕ H3(X1,R).
We fix the following homology bases: H0(X1,R) has a natural base, and take the base
given by {A1, B1, . . . , Ag, Bg, U} of H1(X1,R) ≃ R2g+1 of H1(X1,R).
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Let us make clear that the dual basis of H2(X1,R) is represented by the cells
{EB1 , EA1 , . . . , EBg , EAg , E0} in this order.

To compute the sign of the torsion, we use the gluing formula ([33, Th. VII.1.4]):

(2.4) tor(X1, ρ, e, ω
1) =

tor(X0, ρ, e0, ω
0)∏r

j=0 det(In − ρ(ci))
,

where 1/det(In − ρ(ci)) is the torsion of the solid torus Ni with its natural homology
orientation, see Proposition 2.2.6.

The homology orientation ω0 is defined in [33, §V.2]: there is a homology orientation

ω̃ = (−1)(r+1)b3(X1)+(b1(X0)+1)(b1(X1)+r+1)ω1 = −ω1

of X1 such that for the homology orientations ω̃ of X1, ω0 of X0 and the natural
homology orientation ω(X1,X0) of the pair (X1, X0), the torsion of the long exact
sequence of the pair (X1, X0) in real homology has positive sign.

Lemma 2.3.7. — The homology orientation ω0 of X0 is induced by the bases:

– −e0 of H0(X0,R),
– {A1, B1, . . . , Ag, Bg, C1, . . . , Cr, U} of H1(X0,R) ≃ R2g+r+1,
– {EB1

, EA1
, . . . , EBg

, EAg
, EC1

, . . . , ECr
} of H2(X0,R) ≃ R2g+r.

Proof. — Let us compute the long exact sequence of the pair (X1, X0) in homology
with real coefficients:

(2.5) 0 −→ H3(X0)
i3−−−→ H3(X1)

r3−−−→ H3(X1, X0)
δ3−−−→

H2(X0)
i2−−−→ H2(X1)

r2−−−→ H2(X1, X0)
δ2−−−→

H1(X0)
i1−−−→ H1(X1)

r1−−−→ H1(X1, X0)
δ1−−−→

H0(X0)
i0−−−→ H0(X1)

r0−−−→ H0(X1, X0) −→ 0.

We need to show that the torsion of this long exact sequence with respect to the
orientations ω̃, ω0, ω(X1,X0) has positive sign. We compute the sign of the torsion with
the orientations ω1 = −ω̃,−ω0, ω(X1,X0), and show it is positive.

Clearly H3(X0) = {0} since it is a 3-manifold with boundary, and also

H1(X1, X0) = H0(X1, X0) = {0}.

We already specified bases of H∗(X1) and of H∗(X0). As we alluded before, there
is a natural basis of H∗(X1, X0) ([33, V.2.2]) supported in the peripheral tori:
each torus Ni contributes a class [Ni, ∂Ni] in H3(X1, X0), and a class [Di, ∂Di] in
H2(X1, X0), where Ni = S1 ×Di.

Let us write down the matrices of the linear maps involved in Equation (2.5) in
these bases. The notations 0n×m and In stand for the (n×m) matrix with all entries
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zero, and for the (n× n) identity matrix:

r3 =

1
...
1

 , δ3 =


02g×(1+r)

0

Ir
...
0

 , i2 =

( I2g 02g×r

0 . . . 0 . . . 0

)
,

r2 =


1

0

0(1+r)×2g

...

0

 , δ2 =



0
... 02g×r

0
... Ir
0 . . . 0


,

i1 =

 I2g 02g×(r+1)

0 . . . . . . 0 1

 , i3 = r1 = δ1 = r0 = 0, i0 =
(
1
)
.

To compute the sign of the torsion if this long exact sequence, one needs to compare
the bases of the homology vector spaces involved, with the new bases given by the
matrices above. As it turns out, the sign is given by the determinant of some permu-
tation matrices. A careful examination of the matrices involved shows that the sign
is one. We leave the verification to the reader, we just mention that the only cases
where the determinant is not trivially equal to 1 occur when there is a permutation
matrix with a bloc I2g. Since it has even size, the all the determinants involved are
indeed equal to 1. □

Determination of the sign. — Now we compute the sign of tor(X1, ρ, e, ω
1). We use

Equation (2.4), hence we need to carefully follow the sign in the computation of
tor(X1, ρ, e0) performed in Section 2.3.1, with respect to the homology orientation ω0

of X0. The equation to examine is Equation (2.2). First note that the denominator
±(ρ(u) − In), which is given by the boundary map ∂1, comes with a sign: it is now
In − ρ(u) since the basis of C0(X0, ρ) fitting with the homology orientation ω0 is
{−v1 ⊗ ẽ0, . . . ,−vn ⊗ ẽ0}. Now in the numerator, one needs to be careful that the
matrix ∂′

2, which was a diagonal matrix, is now the product of ±(In−ρ(u)) with a per-
mutation matrix, since the basis of C2(X0, ρ) fitting with the homology representation
exchanges the vi ⊗ ẼAj

with vi ⊗ ẼBj
. To determine the sign, one needs to determine

the orientation of the 2-cells ẼAj
and ẼBj

. Recall that they are dual to B̃j , Ãj , and
the duality is given by the triple of tangent vectors to Aj , Bj , U determining the pos-
itive orientation in X0. Hence one has ∂ṽi ⊗ EAj

= (In − ρ(aj))Ũ + (ρ(u) − In)Ãj ,
but ∂ṽi ⊗ EBj

= (In − ρ(u))B̃j + (ρ(bj) − In)Ũ . So the sign (−1)g coming from the
orientation discrepancy between the 2-cells Ãj and B̃j compensates with the sign
(−1)g coming from the permutation.
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Hence we have

tor(X0, ρ, e0, ω
0) = det(In − ρ(u))2g+r−1.

Using Equation (2.4) we deduce

(2.6) tor(X1, ρ, e, ω
1) =

det(In − ρ(u))2g+r−2∏r
j=1 det(In − ρ(ci))

and this achieves the proof of Theorem 2.3.1.

3. A Selberg trace formula for non-unitary twists

We introduce the twisted Bochner–Laplacian on sections of vector bundles over X

and use it to derive a trace formula for the corresponding heat operator. In Sec-
tion 3.1, we define the orbifold vector bundles we will make use of, and in Section 3.2,
the corresponding twisted Bochner–Laplace operators. Then, in Section 3.3, we write
the pre-trace formula for the corresponding heat operator, and we compute the con-
tribution of the identity (Section 3.4), the hyperbolic (Section 3.5) and elliptic (Sec-
tion 3.6) contributions. We gather all this in Section 3.7 to write down the Selberg
trace formula for (a shift of) the twisted Laplacian. Finally, in Section 3.8, we prove
a technical result on multiplicities of the eigenvalues of the Laplacians that will be
used in Section 4 to prove the meromorphicity of the twisted Ruelle zeta function.

3.1. Orbifold vector bundles over X. — Recall that Γ̃ denotes the preimage of
Γ ⊆ G in G̃ and Γ̃ ≃ π1(X1). Consider a finite-dimensional, complex representation
ρ : Γ̃ → GL(Vρ). Let

Eρ = Vρ ×Γ̃ G̃ −→ Γ̃\G̃ = X1

denote the associated flat vector bundle over X1, i.e.,

Eρ = (Vρ × G̃)/(ρ(γ)v,g)∼(v,γ−1g), v∈Vρ,γ∈Γ̃,g∈G̃.

We equip Eρ with a flat connection ∇Eχ . In general, this vector bundle does not
define a vector bundle over X = X1/K̃, because both Γ̃ and K̃ contain the center Z̃

of G̃ and ρ is not necessarily trivial on Z̃. In order to obtain a vector bundle on X,
we have to twist this construction by a character of K̃ which is compatible with ρ

on Z̃. We therefore assume that ρ(u) = e−imπ · Id for some m ∈ Q. Note that this is
automatically satisfied if ρ is irreducible by Lemma 1.2.1.

Let τ = τm : K̃ → U(Vτ ) = U(1) denote the character of K̃ defined in Equa-
tion (1.2), then ρ(u) = τ(u)−1 · IdVρ

. We consider the homogeneous vector bundle

Eτ = G̃×K̃ Vτ −→ H = G̃/K̃,

i.e.,
Eτ = (G̃× Vτ )/(gk,v)∼(g,τ(k)v), g∈G̃,k∈K̃,v∈Vτ

.

The invariant inner product on Vτ induces a Hermitian metric and a metric connection
∇Eτ on Eτ . By the same reason as above, the bundle Eτ does not factor through
X = Γ̃\G̃/K̃.
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In order to obtain an orbifold vector bundle on X associated with ρ, we consider
the tensor product representation Vτ ⊗ Vρ of K̃ × Γ̃ and let

Eτ,ρ = G̃×K̃×Γ̃ (Vτ ⊗ Vρ) −→ Γ̃\G̃/K̃,

where K̃ × Γ̃ acts on G̃ by g · (k, γ) = γ−1gk, so that

Eτ,ρ = (G̃× (Vτ ⊗ Vρ))/(g·(k,γ),w)∼(g,(τ(k)⊗ρ(γ))w), g∈G̃,k∈K̃,γ∈Γ̃,w∈Vτ⊗Vρ
.

Note that this action is not faithful, but the elements in K̃ × Γ̃ acting trivially on G̃

are of the form (z, z), z ∈ Z̃, and hence also act trivially on Vτ ⊗ Vρ by construction.
We further remark that this does not define a topological vector bundle in the usual
sense but only an orbifold vector bundle, because the fiber over a singular point is
not a vector space but rather a quotient of a vector space by a finite group action.
However, the orbisurface X has a finite cover which is a manifold, and the orbifold
vector bundle is induced by a topological vector bundle (in the usual sense) on the
cover. We therefore abuse notation and talk about connections, metrics and differential
operators on the bundle, meaning the corresponding objects on the finite cover acting
on sections invariant under the finite group of deck transformations. A more thorough
discussion of orbifold vector bundles can be found in the work of Shen and Yu [29].

Smooth sections of the bundle Eτ,ρ can be identified with smooth functions f :

G̃ → Vτ ⊗ Vρ, such that

f(γgk) =
[
τ(k)−1 ⊗ ρ(γ)

]
f(g) (g ∈ G̃, k ∈ K̃, γ ∈ Γ̃).

Note that if ρ is trivial and X has no singularities, the bundle Eτm,1 → X for
m ∈ 2Z is the bundle of Fourier modes of degree m, whose sections are identified with
smooth functions f : X1 → C such that

f(x, v) = f(x,Rθv)e
iπmθ for all x ∈ X, v ∈ TxX, |v| = 1,

where Rθ is the rotation of angle θ in TxX.
We now define a connection ∇Eτ,ρ on Eτ,ρ in terms of its associated covariant

derivative. For this we identify vector fields X ∈ C∞(X,TX) on X with smooth
functions X : G̃ → p such that X(γgk) = Ad(k)|−1

p X(g). Then,

∇Eτ,ρ

X f(g) =
d

dt

∣∣∣∣
t=0

f(g exp(tX(g))) (f ∈ C∞(X,Eτ,ρ),X ∈ C∞(X,TX))

defines a covariant derivative and hence a connection on Eτ,ρ. Note that in general
there is no Hermitian metric on Eτ,ρ compatible with the connection, since the rep-
resentation ρ is not necessarily unitary.

3.2. The twisted Bochner–Laplacian. — For a complex vector bundle E → X with
covariant derivative ∇E , the second covariant derivative (∇E)2 is defined by

(∇E)2X,X′ = ∇E
X∇E

X′ −∇E
∇LC

X X′ (X,X′ ∈ C∞(X,TX)),
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where ∇LC is the Levi–Civita connection on TX. The negative of the trace of the
second covariant derivative is the corresponding Bochner–Laplacian:

∆E = − tr
(
(∇E)2

)
.

For ρ and τ as in the previous section, the twisted Bochner–Laplacian ∆♯
τ,ρ is

defined as the Bochner–Laplacian of the bundle Eτ,ρ:

∆♯
τ,ρ = ∆Eτ,ρ = − tr

(
(∇Eτ,ρ)2

)
.

Note that the orbisurface X has a finite cover, which is a manifold. Therefore, the
spectral theory of ∆♯

τ,ρ on X is the same as the spectral theory of its lift to the
finite cover, acting on sections invariants under the action of the finite group of deck
transformations. Hence, by [19, Th. 4.3], we have the following properties (see also
for the manifold case the work of Müller [21], and for the orbifold case the work of
Fedosova [10] and Shen [28, §7]):

(1) If we choose a Hermitian metric on Eτ,ρ, then ∆♯
τ,ρ acts in L2(X,Eτ,ρ) with

domain C∞(X,Eτ,ρ). However, it is not a formally self-adjoint operator in general.
Note that while the inner product on L2(X,Eτ,ρ) depends on the chosen inner product
on Vρ, the space L2(X,Eτ,ρ) as a topological vector space does not, thanks to the
compactness of X.

(2) ∆♯
τ,ρ is an elliptic second order differential operator with purely discrete spec-

trum spec(∆♯
τ,ρ) ⊆ C, consisting of generalized eigenvalues. The spectrum is contained

in a translate of a positive cone in C. (Here, a positive cone is a cone whose closure
is contained in {z ∈ C : Re z > 0} ∪ {0}.) The generalized eigenspaces

{f ∈ L2(X,Eτ,ρ) : (∆
♯
τ,ρ − µ Id)Nf = 0 for some N}

are finite-dimensional, contained in C∞(X,Eτ,ρ), and their direct sum, as µ runs
through spec(∆♯

τ,ρ), is dense in L2(X,Eτ,ρ).

3.3. The pre-trace formula. — The heat operator e−t∆♯
τm,ρ corresponding to the

twisted Laplacian ∆♯
τm,ρ is of trace class (follows e.g. from the Weyl Law in [21,

Lem. 2.2]) and by [21, Eq. (5.6)] its integral kernel is the smooth function

Hτm,ρ
t (g1, g2) =

∑
[γ]⊆Γ̃/Z̃

ρ(γ)⊗Hτm
t (g−1

2 γg1) (g1, g2 ∈ G̃),

where the summation is over the conjugacy classes of Γ̃/Z̃ ≃ Γ and the heat kernel of
the Bochner–Laplace operator on Eτm → H is written as (g1, g2) 7→ Hτm

t (g−1
2 g1) with

Hτm
t ∈ (C∞(G̃)⊗ End(Vτm))K̃×K̃ .

Here, K̃ × K̃ acts on C∞(G̃) by left and right translation, on End(Vτm) by left and
right composition with τm, and on their tensor product by the tensor product of these
actions. Note that the center Z̃ of G̃ lies in K̃, hence each summand is independent
on the choice of γ relatively to Z̃. The trace of e−t∆♯

τm,ρ can be computed in two
different ways, by summing over the generalized eigenvalues of ∆♯

τm,ρ (the spectral
side) and by integrating the heat kernel along the diagonal in Γ̃\G̃ (the geometric
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side). For the spectral side we denote for an eigenvalue µ ∈ spec(∆♯
τm,ρ) its algebraic

multiplicity by

mult(µ; ∆♯
τm,ρ) = dim{f ∈ L2(X,Eτm,ρ) : (∆

♯
τm,ρ − µ Id)Nf = 0 for some N}.

Note that mult(µ; ∆♯
τm,ρ) is independent of the chosen metric on Eρ. For the geometric

side, we use the standard arguments grouping conjugacy classes in Γ̃/Z̃ (see e.g.,
[34, §2]). This leads to the following pre-trace formula which was made rigorous by
Müller [21, Prop. 5.1] for manifolds and generalized to orbifolds by Shen [28, Th. 7.1]:

(3.1)
∑

µ∈spec(∆♯
τm,ρ)

mult(µ; ∆♯
τm,ρ)e

−tµ

=
∑

[γ]⊆Γ̃/Z̃

Vol(Γ̃γ\G̃γ) tr ρ(γ)

∫
G̃γ\G̃

trHτm
t (g−1γg) dġ,

where G̃γ resp. Γ̃γ denotes the centralizer of γ ∈ Γ in G̃ resp. Γ̃, and the summation
on the right hand side is over all conjugacy classes [γ] of elements in Γ̃/Z̃ ≃ Γ.

Since Γ̃/Z̃ ≃ Γ consists of the identity element e, hyperbolic and elliptic elements,
we can compute the three contributions to the right-hand side in Equation (3.1)
separately.

Remark 3.3.1. — Since m ∈ Q we could just as well formulate everything in terms of a
finite covering group G1 of G which is a connected, semisimple group with finite center.
This formulation allows us to use the Harish-Chandra Lq-Schwartz space Cq(G1) (see
e.g. [2, p. 161–162] for its definition). By [2, Lem. 2.3 and Prop. 2.4], the heat kernel
Hτm

t is contained in Cq(G1)⊗ End(Vτm) for any q > 0, and hence it is an admissible
function in the sense of Gangolli [15, p. 407]. We can therefore apply the distribution
character of a unitary representation of G1 to Hτm

t in Section 3.4, Section 3.5 and
Section 3.6.

3.4. The identity contribution. — The contribution of γ = e to the right-hand side
of Equation (3.1) is

Vol(X) dim(Vρ)H
τm
t (e).

We can employ the Plancherel formula for L2(H, Eτm) from [17, Lem. 5]. (Note that
although [17, Lem. 5] requires |m| ⩽ 1, the formula only depends on m + 2Z, so it
holds for arbitrary m ∈ Z.) This gives

Hτm
t (e) =

1

4π

[ ∫
R
Θσ,λ(H

τm
t )

λ sinh(2πλ)

cosh(2πλ) + cos(πm)
dλ

+
∑

n≡m+1 mod 2

|n|Θn+sign(n)(H
τm
t )

]
,

where σ is the restriction of τm to M̃ . By [24, p. 2634] we find that

(3.2) Θσ,λ(H
τm
t ) = e−t(λ2+1/4)

J.É.P. — M., 2023, tome 10



On Fried’s conjecture for unit tangent bundles of hyperbolic surfaces 1421

and

(3.3) Θm′(Hτm
t ) =

{
e−(|m′|/2)(1−|m′|/2)t for m = m′ + 2 sign(m′)ℓ, ℓ ∈ Z⩾0,
0 else.

Note that, in contrast to the case of for instance higher-dimensional hyperbolic man-
ifolds, the expression for Θσ,λ(H

τm
t ) is independent of σ since M̃ is discrete. Write

n+ sign(n) = sign(m)(|m| − (ℓ− 1)), 1 ⩽ ℓ < |m| odd, then the identity contribution
becomes

Vol(X) dim(Vρ)

4π

[∫
R
e−t(λ2+1/4) λ sinh(2πλ)

cosh(2πλ) + cos(πm)
dλ

+
∑

1⩽ℓ<|m|
ℓ odd

(|m| − ℓ)e(|m|−ℓ+1)(|m|−ℓ−1)t/4

]
.

3.5. The hyperbolic contribution. — For a conjugacy class [γ] ⊆ Γ̃/Z̃ of hyperbolic
elements we choose a representative γ ∈ Γ̃ which is conjugate in G̃ to ãℓ(γ), instead
of zãℓ(γ), z ∈ Z̃. Here, ℓ(γ) > 0 is the length of the geodesic corresponding to [γ].
Then, by [17, Lem. 2] and [34, §6], the contribution of [γ] to the right-hand side of
Equation (3.1) is given by

tr ρ(γ)
ℓ(γ)

nΓ(γ)D(γ)

1

2π

∫
R
Θσ,λ(H

τm
t )e−iℓ(γ)λ dλ,

where σ is the restriction of τm to M̃ , nΓ(γ) is the multiplicity of the (not necessarily
prime) geodesic [γ] and D(γ) = 2 sinh(ℓ(γ)/2) is the Weyl denominator. By Equa-
tion (3.2), the total hyperbolic contribution becomes∑

[γ] hyp.

tr ρ(γ)
ℓ(γ)

nΓ(γ)D(γ)

1

2π

∫
R
e−t(λ2+1/4)e−iℓ(γ)λ dλ.

Computing the integral, we obtain

e−t/4

2
√
4πt

∑
[γ] hyp.

ℓ(γ) tr ρ(γ)

nΓ(γ) sinh(ℓ(γ)/2)
e−ℓ(γ)2/4t.

We remark that this sum converges absolutely by the same arguments as in [12,
Prop. 4.1.1].

3.6. The elliptic contribution. — For a conjugacy class [γ] ⊆ Γ̃/Z̃ of elliptic ele-
ments, we choose a representative γ ∈ Γ̃ which is conjugate in G̃ to k̃θ(γ) with θ(γ) ∈
(0, π). Let M(γ) denote the order of the stabilizer Γ̃γ/Z̃ of γ in Γ̃/Z̃, then

Vol(Γ̃γ\G̃γ) = Vol(Γγ\Gγ) = Vol(⟨kθ(γ)⟩\PSO(2)) =
1

M(γ)

and hence, by [17, Lem. 4] (which again holds for all m ∈ Z since the formula only
depends on m + 2Z), the contribution of [γ] to the pre-trace formula Equation (3.1)
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is given by

tr ρ(γ)

M(γ)
· 1

2i sin(θ(γ))

[
i

2

∫
R
Θσ,λ(H

τm
t )

cosh(2(π − θ(γ))λ) + eiπm cosh(2θ(γ)λ)

cosh 2πλ+ cosπm
dλ

−δ(|m|−1) mod 2
Θ1(H

τm
t )−Θ−1(H

τm
t )

2
−

∑
n≡m+1 mod 2

n ̸=0

sign(n)einθ(γ)Θn+sign(n)(H
τm
t )

]
,

where δ(|m|−1) mod 2 is meant to be 1 for |m| − 1 ≡ 0 mod 2 and 0 otherwise. Using
Equation (3.2) and Equation (3.3), the elliptic contribution becomes∑
[γ] ell.

tr ρ(γ)

4M(γ) sin(θ(γ))

[ ∫
R
e−t(λ2+1/4) cosh(2(π − θ(γ))λ) + eiπm cosh(2θ(γ)λ)

cosh(2πλ) + cos(πm)
dλ

+ 2i sign(m)
∑

1⩽ℓ<|m|
ℓ odd

ei sign(m)(|m|−ℓ)θ(γ)e(|m|−ℓ+1)(|m|−ℓ−1)t/4

]
.

Note that this sum is always finite since Γ only contains finitely many conjugacy
classes of elliptic elements.

3.7. The trace formula. — Adding the identity, the hyperbolic and the elliptic con-
tribution finally shows the trace formula. For the statement let

A♯
τm,ρ = ∆♯

τm,ρ −
1

4
.

Theorem 3.7.1 (Selberg trace formula with non-unitary twist). — Let ρ : Γ̃ → GL(Vρ)

be a finite-dimensional complex representation with ρ(u) = e−imπ, m ∈ R. Then, for
every t > 0 we have

Tr(e−tA♯
τm,ρ)

=
Vol(X) dim(Vρ)

4π

[ ∫
R
e−tλ2 λ sinh(2πλ)

cosh(2πλ) + cos(πm)
dλ

+
∑

1⩽ℓ<|m|
ℓ odd

(|m| − ℓ)e((|m|−ℓ)/2)2t

]

+
1

2
√
4πt

∑
[γ] hyp.

ℓ(γ) tr ρ(γ)

nΓ(γ) sinh(ℓ(γ)/2)
e−ℓ(γ)2/4t

+
∑

[γ] ell.

tr ρ(γ)

4M(γ) sin(θ(γ))

[ ∫
R
e−tλ2 cosh(2(π − θ(γ))λ) + eiπm cosh(2θ(γ)λ)

cosh(2πλ) + cos(πm)
dλ

+ 2i sign(m)
∑

1⩽ℓ<|m|
ℓ odd

ei sign(m)(|m|−ℓ)θ(γ)e((|m|−ℓ)/2)2t

]
.

Here, the summation is over the conjugacy classes [γ] of hyperbolic, resp. elliptic,
elements in Γ̃/Z̃ ≃ Γ and the representative γ ∈ Γ̃ is chosen such that it is conjugate
in G̃ to ãℓ(γ) (ℓ(γ) > 0), resp. k̃θ(γ) (θ(γ) ∈ (0, π)).
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3.8. An application to the determination of multiplicities. — In order to conclude
that the residues of the logarithmic derivative of the Selberg zeta function are inte-
gers, we now deduce from the trace formula an expression for the difference of the
multiplicities mult(µ; ∆♯

τm,ρ) for m and m+2. For this, it is more convenient to work
with A♯

τm,ρ. For µ ∈ C we let

L2(X,Eτm,ρ)µ = {f ∈ L2(X,Eτm,ρ) : (A
♯
τm,ρ − µ Id)Nf = 0 for some N}

denote the corresponding generalized eigenspace of A♯
τm,ρ and

mult(µ;A♯
τm,ρ) = dimL2(X,Eτm,ρ)µ

its multiplicity.
Define κ, x± ∈ sl(2,C) by

κ = E − F, x± =
1

2
(H ± i(E + F )),

then
[κ, x±] = ±2ix±, [x+, x−] = −iκ.

We remark that the complexification sl(2,C) of the Lie algebra sl(2,R) of G has to be
used here since the adjoint action of κ on sl(2,R) is not diagonalizable. The Casimir
element Ω for sl(2,C) can be expressed in terms of the two bases H,E, F and κ, x+, x−
as

Ω =
1

4
(H2 + 2EF + 2FE) = −1

4
(κ2 − 2x+x− − 2x−x+).

Moreover, we can write

(3.4) Ω = −1

4
κ2 − 1

2
iκ+ x−x+ = −1

4
κ2 +

1

2
iκ+ x+x−.

For u ∈ C∞(H, Eτm) = (C∞(G)⊗ Vτm)K we define ∂±u(g) = dπR(x±)u(g), where
dπR denotes the Lie algebra representation corresponding to the right regular repre-
sentation πR of G on C∞(G). Then [κ, x±] = ±2ix± implies

∂± : C∞(H, Eτm) −→ C∞(H, Eτm∓2
).

Further, by Equation (3.4) we find that for u ∈ C∞(H, Eτm):

∂+∂−u = dπR(Ω) +
1

4
dπR(κ)

2 − 1

2
idπR(κ) = dπL(Ω)−

m2

4
− m

2
,

∂−∂+u = dπR(Ω) +
1

4
dπR(κ)

2 +
1

2
idπR(κ) = dπL(Ω)−

m2

4
+

m

2
,

where dπL is the Lie algebra representation corresponding to the left regular repre-
sentation πL. Note that dπL(Ω) = −∆̃♯

τm,ρ = −Ã♯
τm,ρ − 1

4 , where ∆̃♯
τm,ρ resp. Ã♯

τm,ρ

denotes the lift of ∆♯
τm,ρ resp. A♯

τm,ρ to H. Since ∂+ and ∂− are left-invariant, they
induce operators on C∞(X,Eτm,ρ) which, by the previous considerations, satisfy

(3.5) ∂+∂−u = −A♯
τm,ρ −

(m+ 1)2

4
, ∂−∂+u = −A♯

τm,ρ −
(m− 1)2

4
.

Lemma 3.8.1. — For µ ̸= −(m+ 1)2/4, we have:

mult(µ;A♯
τm,ρ) = mult(µ;A♯

τm+2,ρ).
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Proof. — Since ∂± is defined in terms of the right regular representation and A♯
τm,ρ

in terms of the left regular representation, we have

∂± ◦A♯
τm,ρ = A♯

τm∓2,ρ ◦ ∂±.

This implies
∂± : L2(X,Eτm,ρ)µ −→ L2(X,Eτm∓2,ρ)µ.

By Equation (3.5), the map

∂+ : L2(X,Eτm,ρ)µ −→ L2(X,Eτm−2,ρ)µ

is an isomorphism whenever µ ̸= −(m− 1)2/4, and the map

∂− : L2(X,Eτm,ρ)µ −→ L2(X,Eτm+2,ρ)µ

is an isomorphism whenever µ ̸= −(m+ 1)2/4. □

Theorem 3.8.2. — For all m ∈ R with ρ(u) = e−imπ · IdVρ
, we have

mult(− (m+1)2

4 ;A♯
τm+2,ρ)−mult(− (m+1)2

4 ;A♯
τm,ρ)

=
Vol(X) dim(Vρ)

4π
(m+ 1) +

∑
[γ] ell.

i tr ρ(γ)

2M(γ) sin(θ(γ))
ei(m+1)θ(γ).

In particular, the right-hand side is an integer.

Proof. — We subtract the trace formula in Theorem 3.7.1 for m from the one for
m+ 2. By Lemma 3.8.1, the left-hand side becomes

e(m+1)2t/4
(
mult(− (m+1)2

4 ;A♯
τm+2,ρ)−mult(− (m+1)2

4 ;A♯
τm,ρ)

)
.

Carefully comparing terms on the right-hand side for m and m+ 2, we find
Vol(X) dim(Vρ)

4π
(m+ 1)e(m+1)2t/4 +

∑
[γ] ell.

i tr ρ(γ)

2M(γ) sin(θ(γ))
ei(m+1)θ(γ)e(m+1)2t/4. □

4. Twisted Ruelle and Selberg zeta functions

We establish the meromorphic continuation for the Selberg zeta function in Sec-
tion 4.1, and a functional equation in Section 4.2. Then, we compute the behavior of
the Ruelle zeta function at zero in Section 4.3, and prove Theorem A.

4.1. Meromorphic continuation. — Every closed oriented geodesic γ on X lifts
canonically to a homotopy class in Γ̃ = π1(X1), still denoted by γ. The conjugacy
class [γ] in Γ̃/Z̃ ≃ Γ = π1(X) consists of hyperbolic elements and conversely every
such conjugacy class of hyperbolic elements contains exactly one representative of a
closed geodesic.

A closed geodesic γ on X is called prime if it cannot be written as a multiple of a
shorter geodesic.
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Let ρ : Γ̃ = π1(X1) → GL(Vρ) be a finite-dimensional, complex representation. For
s ∈ C, we define the twisted Selberg zeta function

Z(s; ρ) =
∏

γ prime

∞∏
k=0

det
(
Id−ρ(γ)e−(s+k)ℓ(γ)

)
and the twisted Ruelle zeta function

R(s; ρ) =
∏

γ prime
det

(
Id−ρ(γ)e−sℓ(γ)

)
,

where the products run over the prime closed geodesics in X.
It is shown in [11, Th. 3.1] that Z(s; ρ), and hence R(s; ρ), converges for s in some

right half plane of C and defines a holomorphic function on this half plane (see also
[35, §1.2] for the torsion-free case). We note that the logarithmic derivative L(s; ρ) of
Z(s; ρ) is given by

L(s; ρ) :=
d

ds
logZ(s; ρ) =

∑
γ

ℓ(γ) tr(ρ(γ))

2nΓ(γ) sinh(ℓ(γ)/2)
e−(s−1/2)ℓ(γ),

where the summation is over all closed geodesics.
Moreover, we have

(4.1) R(s; ρ) =
Z(s; ρ)

Z(s+ 1; ρ)
.

To show meromorphic continuation of Z(s; ρ) and R(s; ρ) to s ∈ C, we let
s1 = s ∈ C and s2 ∈ C with Re

(
(s1 − 1/2)2

)
,Re

(
(s2 − 1/2)2

)
sufficiently large and

insert the trace formula from Theorem 3.7.1 into the resolvent identity

tr
((

A♯
τm,ρ + (s1 − 1

2 )
2
)−1 −

(
A♯

τm,ρ + (s2 − 1
2 )

2
)−1

)
=

∫ ∞

0

(
e−t(s1−1/2)2 − e−t(s2−1/2)2

)
tr(e−tA♯

τm,ρ) dt,

which holds by the same arguments as in [12, §4.2] (especially the proof of [12,
Lem. 4.2.2] is identical). Note that the individual resolvents on the left hand side
are not of trace class, but their difference is (see [12, p. 51] for details). In this way,
we obtain

(4.2) tr
((

A♯
τm,ρ + (s1 − 1

2 )
2
)−1 −

(
A♯

τm,ρ + (s2 − 1
2 )

2
)−1

)
= I(s1, s2; ρ) +H(s1, s2; ρ) + E(s1, s2; ρ),

with the obvious meaning of the identity contribution I(s1, s2; ρ), the hyperbolic con-
tribution H(s1, s2; ρ) and the elliptic contribution E(s1, s2; ρ). For the computation
of these three terms we choose |m| ⩽ 1 which is possible since m is determined by
ρ(u) = e−imπ and hence only determined by ρ modulo 2Z. Then, all contributions
from the (relative) discrete series vanish.
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We first compute the identity contribution

(4.3) I(s1, s2; ρ) =
Vol(X) dim(Vρ)

4π

∫ ∞

0

(
e−t(s1−1/2)2 − e−t(s2−1/2)2

)
×

∫
R
e−tλ2 λ sinh(2πλ)

cosh(2πλ) + cos(πm)
dλ dt.

Interchanging the integrals shows that

=
Vol(X) dim(Vρ)

4π

∫
R

λ sinh(2πλ)

cosh(2πλ) + cos(πm)

(
1

λ2 + (s1 − 1
2 )

2
− 1

λ2 + (s2 − 1
2 )

2

)
dλ.

This integral is computed in [16, Ch. 10, Lem. 2.4]:

(4.4) =
Vol(X) dim(Vρ)

4π

×
∞∑

n=0

[
1

n+ m
2 + s1

+
1

n− m
2 + s1

− 1

n+ m
2 + s2

− 1

n− m
2 + s2

]
.

The hyperbolic contribution

H(s1, s2; ρ) =

∫ ∞

0

(
e−t(s1−1/2)2 − e−t(s2−1/2)2

)
× 1

2
√
4πt

∑
[γ] hyp.

ℓ(γ) tr(ρ(γ))

nΓ(γ) sinh(ℓ(γ)/2)
e−ℓ(γ)2/4t dt

was calculated in [12, Prop. 4.2.4 & 4.2.5] to be

=
L(s1; ρ)

2(s1 − 1
2 )

− L(s2; ρ)

2(s2 − 1
2 )

.

Finally, the elliptic contribution is given by

E(s1, s2; ρ) =
∑

[γ] ell.

tr ρ(γ)

4M(γ) sin(θ(γ))

∫ ∞

0

(
e−t(s1−1/2)2 − e−t(s2−1/2)2

)
×
∫
R
e−tλ2 cosh(2(π − θ(γ))λ) + eiπm cosh(2θ(γ)λ)

cosh(2πλ) + cos(πm)
dλ dt.

Note that summation and integration can be interchanged since the sum is finite.
Interchanging the two integrals and computing the integral over t gives

=
∑

[γ] ell.

tr ρ(γ)

4M(γ) sin(θ(γ))

∫
R

(
1

λ2 + (s1 − 1
2 )

2
− 1

λ2 + (s2 − 1
2 )

2

)

× cosh(2(π − θ(γ))λ) + eiπm cosh(2θ(γ)λ)

cosh(2πλ) + cos(πm)
dλ.

The integral over λ is computed in [16, Ch. 10, Lem. 2.7]:

(4.5) =
∑

[γ] ell.

tr ρ(γ)

4M(γ) sin(θ(γ))

[
i

s1 − 1
2

∞∑
n=0

(
e−2iθ(γ)(n−m

2 + 1
2 )

n− m
2 + s1

− e2iθ(γ)(n+
m
2 + 1

2 )

n+ m
2 + s1

)

− i

s2 − 1
2

∞∑
n=0

(
e−2iθ(γ)(n−m

2 + 1
2 )

n− m
2 + s2

− e2iθ(γ)(n+
m
2 + 1

2 )

n+ m
2 + s2

)]
.
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Proposition 4.1.1. — The logarithmic derivative L(s; ρ) of the twisted Selberg zeta
function Z(s; ρ) has a meromorphic extension to the whole complex plane C. Its poles
are simple and given by the following formal expression:
∞∑
j=0

[
1

s− 1
2 − iµj

+
1

s− 1
2 + iµj

]

+
Vol(X) dim(Vρ)

4π

∞∑
n=0

[
1− 2s

s+ m
2 + n

+
1− 2s

s− m
2 + n

]

+ i
∑

[γ] ell.

tr ρ(γ)

2M(γ) sin(θ(γ))

∞∑
n=0

[
e2iθ(γ)(n+

m
2 + 1

2 )

s+ m
2 + n

− e−2iθ(γ)(n−m
2 + 1

2 )

s− m
2 + n

]
,

where ( 14 + µ2
j )j∈Z⩾0

⊆ C are the eigenvalues of ∆♯
τm,ρ, counted with algebraic multi-

plicity.

Proof. — Fix s2 ∈ C with Re
(
(s2 − 1

2 )
2
)

sufficiently large and let s = s1 ∈ C.
Multiplying Equation (4.2) by 2(s1 − 1

2 ) gives

L(s; ρ) = 2(s− 1
2 ) tr

((
A♯

ρ + (s− 1
2 )

2
)−1 −

(
A♯

ρ + (s2 − 1
2 )

2
)−1

)
− 2(s− 1

2 )I(s, s2; ρ)− 2(s− 1
2 )E(s, s2; ρ) +

s− 1
2

s2 − 1
2

L(s2; ρ).

Together with Equation (4.4) and Equation (4.5), this shows that L(s; ρ) extends
meromorphically to all s ∈ C. The contribution of the first two terms to the poles of
L(s; ρ) was obtained in [12, Prop. 4.2.5]. The last term is holomorphic in s, and for
the term E(s, s2; ρ) one can use Equation (4.5). □

Theorem 4.1.2 (Meromorphic continuation of the Selberg zeta function)
The twisted Selberg zeta function Z(s; ρ) has a meromorphic extension to the whole

complex plane C with poles and zeros given by the formal product
∞∏
j=0

(
s− 1

2
− iµj

)(
s− 1

2
+ iµj

) ∞∏
n=0

(
s+

m

2
+ n

)N+(m,n)(
s− m

2
+ n

)N−(m,n)

,

where ( 14 + µ2
j )j∈Z⩾0

⊆ C are the eigenvalues of ∆♯
τm,ρ, counted with algebraic multi-

plicity, and

N±(m,n) =
Vol(X) dim(Vρ)

4π
(±m+2n+1)± i

∑
[γ] ell.

tr ρ(γ)

2M(γ) sin(θ(γ))
e±2iθ(γ)(n±m

2 + 1
2 ).

Proof. — In view of Proposition 4.1.1 it suffices to show that the residues of L(s; ρ)
are integers. For the poles at s = 1

2 ± iµj the residue is the algebraic multiplicity
of µj . For s = ∓m

2 −n the residue is N±(m,n) which is an integer by Theorem 3.8.2.
If these two poles coincide, one has to add up the two residues. □

Remark 4.1.3. — Since ∆♯
τm,ρ is in general not self-adjoint, its eigenvalues might be

complex, although contained in a positive cone in C. It may therefore happen that

J.É.P. — M., 2023, tome 10



1428 L. Bénard, J. Frahm & P. Spilioti

finitely many of the singularities 1
2 ± iµj of L(s; ρ) coincide with finitely many of the

singularities ±m
2 −n. In particular, we are not able to decide more precisely what the

poles and zeros of the Selberg zeta function in Theorem 4.1.2 are.

Corollary 4.1.4. — The order of vanishing of the Selberg zeta function Z(s; ρ) at
s = 0 is

mult(0;∆♯
τm,ρ) +

{
(2g − 2 + r) dim(Vρ) for m = 0,
0 for m ̸= 0.

Proof. — By Theorem 4.1.2 the order of vanishing equals the multiplicity of the
eigenvalue 0 of ∆♯

τm,ρ plus additionally N+(0, 0) +N−(0, 0) in the case m = 0. Note
that

N+(0, 0) +N−(0, 0) =
Vol(X) dim(Vρ)

2π
−

∑
[γ] ell.

tr ρ(γ)

M(γ)
.

To compute the sum, we group the elliptic elements into the subsets {cj , c2j , . . . , c
νj−1
j }

for j = 1, . . . , r. Fix j = 1, . . . , r and let α be an eigenvalue of ρ(cj), then the
contribution of α to the sum

∑
tr ρ(γ) is

νj−1∑
i=1

αi =
α− ανj

1− α
= −1,

because ρ(cj)
νj = ρ(c

νj

j ) = ρ(u) = Id. It follows that
νj−1∑
i=1

tr(cij)

M(cij)
= −dim(Vρ)

νj

and hence

N+(0, 0) +N−(0, 0) =
Vol(X) dim(Vρ)

2π
+ dim(Vρ)

r∑
j=1

1

νj
.

The claim now follows from the Gauss–Bonnet theorem for X which asserts that

□(4.6) Vol(X)

2π
= −χ(X) = 2g − 2 + r −

r∑
j=1

1

νj
.

4.2. The functional equation. — From the trace formula we further conclude:

Theorem 4.2.1 (Functional equation). — The twisted Selberg zeta function Z(s; ρ)

satisfies the following functional equation:

(4.7) η(s; ρ) =
Z(s; ρ)

Z(1− s; ρ)
= exp

(∫ s−1/2

0

dim(Vρ)Vol(X)
ξ sin(2πξ)

cos(2πξ) + cos(πm)

−
∑

[γ] ell.

π tr ρ(γ)

M(γ) sin(θ(γ))

cos(2(π − θ(γ))ξ) + eiπm cos(2θ(γ)ξ)

cos(2πξ) + cos(πm)
dξ

)
,

where the integral is along any contour from 0 to s−1/2 in the complex plane avoiding
the zeros of the denominator.
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Remark 4.2.2. — Note that the residues of the integrand in Equation (4.7) are inte-
gers and therefore it does not matter which contour from 0 to s − 1

2 is used for the
integral. In fact, the integrand has poles at ξ ∈ 1

2 ± m
2 + Z, and using the identity

Res
(f ′(ξ)

f(ξ)
, ξ0

)
= ordξ0(f)

for f(ξ) = cos(2πξ) + cos(πm), it can be shown that the residue at ξ = 1
2 ± m

2 + n

equals ordξ0(f) times

−Vol(X) dim(Vρ)

4π
(±m+ 2n+ 1)∓ i

∑
[γ] ell.

tr ρ(γ)

2M(γ) sin(θ(γ))
e±2iθ(γ)(n±m

2 + 1
2 )

which is an integer by Theorem 3.8.2.

Proof. — After having computed the right hand side of Equation (4.2) explicitly, it is
obviously meromorphic in s1, s2 ∈ C. We can therefore plug in s1 = s and s2 = 1− s

to obtain

0 = I(s, 1− s; ρ) + E(s, 1− s; ρ) +H(s, 1− s; ρ).

The identity contribution equals

I(s, 1− s; ρ) = −dim(Vρ)Vol(X)

4

(
tan(π(s− 1

2 + m
2 )) + tan(π(s− 1

2 − m
2 ))

)
,

by [12, proof of Th. 4.2.8]. Using

tan(x+ y) + tan(x− y) =
2 sin(2x)

cos(2x) + cos(2y)
,

this becomes

I(s, 1− s; ρ) = −dim(Vρ)Vol(X)

2

sin(2π(s− 1
2 ))

cos(2π(s− 1
2 )) + cos(πm)

.

The hyperbolic contribution becomes

H(s, 1− s; ρ) =
L(s; ρ) + L(1− s; ρ)

2(s− 1
2 )

and the elliptic contribution is

E(s, 1− s; ρ)

=
∑

[γ] ell.

tr ρ(γ)

4M(γ) sin(θ(γ))

[
i

s− 1
2

∑
n∈Z

(
e2iθ(γ)(n+

m
2 + 1

2 )

s− m
2 − n− 1

− e2iθ(γ)(n+
m
2 + 1

2 )

s+ m
2 + n

)]

=
∑

[γ] ell.

π tr ρ(γ)

2M(γ)(s− 1
2 ) sin(θ(γ))

cos(2(π − θ(γ))(s− 1
2 )) + eiπm cos(2θ(γ)(s− 1

2 ))

cos(2π(s− 1
2 )) + cos(πm)
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by [16, Eq. (**) on p. 444]. This implies

(4.8) d

ds
log

Z(s; ρ)

Z(1− s; ρ)
= L(s; ρ) + L(1− s; ρ)

= dim(Vρ)Vol(X)
(s− 1

2 ) sin(2π(s−
1
2 ))

cos(2π(s− 1
2 )) + cos(πm)

−
∑

[γ] ell.

π tr ρ(γ)

M(γ) sin(θ(γ))

cos(2(π − θ(γ))(s− 1
2 )) + eiπm cos(2θ(γ)(s− 1

2 ))

cos(2π(s− 1
2 )) + cos(πm)

and the claim follows by integration and exponentiation. □

4.3. Fried’s conjecture. — We compute the behavior of the Ruelle zeta function at
s = 0, and we prove Theorem A.

We start with the following proposition:

Proposition 4.3.1. — The Ruelle zeta function extends meromorphically to the whole
complex plane. Moreover,

R(s; ρ) ∼
s→0

η(s+ 1; ρ)−1 ×

{
(−1)mult(0;∆♯

τm,ρ)+(2g−2+r) dim(Vρ) for m = 0,
(−1)mult(0;∆♯

τm,ρ) for m ̸= 0,

with η(s; ρ) as in Theorem 4.2.1.

We remark that a proof of the fact that R(s; ρ) extends meromorphically is already
sketched in [14, Th. 1]. However, Fried’s proof is quite general and does not provide
any information about the location and nature of poles and zeros of R(s; ρ).

Proof. — Using Equation (4.1) and Theorem 4.1.2 we directly deduce that R(s; ρ)

extends meromorphically. Together with the functional equation for the Selberg zeta
function established in Theorem 4.2.1, we get

R(s; ρ) =
Z(s; ρ)

Z(s+ 1; ρ)
=

Z(s; ρ)

η(s+ 1; ρ)Z(−s; ρ)

and the result follows from Corollary 4.1.4. □

Now, we are led to compute the value of η(s + 1; ρ) at s = 0. The rest of this
section is devoted to this computation. We summarize the result in the following
theorem. Recall that each singular point in the orbisurface X is represented by a loop
cj ∈ π1(X1) such that c

νj

j = u. For any j = 1, . . . , r we denote by nj = dimFix ρ(cj),
so that ρ(cj) = Inj

⊕ Tj .

Theorem 4.3.2. — For ρ : π1(X1) → GL(Vρ) an irreducible representation:
(1) If ρ(u) = IdVρ , then

R
( s

2π
; ρ
)

∼
s→0

(−1)mult(0;∆♯
τm,ρ)

sn(2g−2+r)−
∑r

j=1 nj∏r
j=1 |det(In−nj

− Tj)| (−νj)−nj
.
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(2) Otherwise,

R(0; ρ) = (−1)mult(0;∆♯
τm,ρ)

det(ρ(u)− In)
2g+r−2∏r

j=1 det(ρ(cj)− In)
.

Remark 4.3.3. — It is possible to remove in Theorem 4.3.2 Item 1 the absolute value
from det(In−nj − Tj) at the cost of a sign which we are only able to express in terms
of the eigenvalues of the operators ρ(cj). More precisely, we claim that

(4.9)
r∏

j=1

|det(In−nj
− Tj)| = ±

r∏
j=1

in−nj det(In−nj
− Tj),

where the sign can be determined as follows: For every j we let det(Tj)
1/2 =

det(ρ(cj))
1/2 denote the square root of det(Tj) = det(ρ(cj)) which is the product of

eiθ/2, where eiθ, θ ∈ (0, 2π), runs through the eigenvalues of Tj . Since
∏r

j=1 ρ(cj) =

ρ(u) = In, we have
∏r

j=1 det(Tj) = 1 and therefore
∏r

j=1 det(Tj)
1/2 = ±1. This is

the sign in Equation (4.9).
To prove this claim, we let {eiθα}α, θα ∈ (0, 2π), denote the set of eigenvalues of

the operators Tj with multiplicities. Then
r∏

j=1

det(In−nj
− Tj) =

∏
α

(1− eiθα) = exp
(
i
∑
α

arg(1− eiθα)
)∏

α

|1− eiθα |

= exp
(
i
∑
α

arg(1− eiθα)
) r∏

j=1

|det(In−nj − Tj)|.

Using the formula

(4.10) arg(1− eiθ) =
θ − π

2
for all θ ∈ (0, 2π),

we find ∑
α

arg(1− eiθα) =
∑
α

θα − π

2
=

∑
α

θα
2

− π

2

r∑
j=1

(n− nj)

and hence

exp
(
i
∑
α

arg(1− eiθα)
)
= i−

∑r
j=1(n−nj)

∏
α

eiθα/2

= i−
∑r

j=1(n−nj)
r∏

j=1

det(Tj)
1/2,

as claimed.

Now we prove Theorem 4.3.2 by computing the behavior of η(1 + s; ρ) near s = 0.
We start with the following observation:

Lemma 4.3.4. — We have

(4.11) η(1 + s; ρ) = exp

∫ s+1/2

0

η′(ξ + 1
2 ; ρ)

η(ξ + 1
2 ; ρ)

dξ.
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Remark 4.3.5. — Note that the previous expression is independent of the chosen
path between 0 and s + 1/2, since the residues of the logarithmic derivative of the
meromorphic function η are integers.

Proof. — Note that the equality holds true at s = −1/2, where indeed both side
are equal to 1. Let s ∈ C such that η(1 + s; ρ) is neither 0 nor ∞. Then, taking a
determination of the logarithm and differentiating both sides, we find that both sides
of the equation locally coincide, up to a multiplicative constant. Since both sides
define a meromorphic function, the constant should be global. Considering s = −1/2,
we conclude that it is equal to 1. □

Let m ∈ [−1, 1] such that ρ(u) = e−iπm, so that m = 0 corresponds to Case 1 of
Theorem 4.3.2, and m ̸= 0 corresponds to Case 2. In order to compute the integral
in Equation (4.11), we group the terms as in Equation (4.8):

(4.12)
η′(ξ + 1

2 ; ρ)

η(ξ + 1
2 ; ρ)

=
−dim(Vρ)Vol(X)

2π

−2πξ sin(2πξ)

cos(2πξ) + cos(πm)
+

∑
j

Ej(ξ),

where

(4.13) Ej(ξ) = −
νj−1∑
k=1

π tr ρ(ckj )

νj sin(kπ/νj)

cos (2(π − kπ/νj)ξ) + eiπm cos(2kπξ/νj)

cos(2πξ) + cos(πm)

groups all the summands corresponding to the elliptic element cj and its powers.
In view of Remark 4.3.5, one needs to make a choice of an integration path avoiding

the poles of the integrand in Equation (4.11). The integrand has a unique pole in [0, 1
2 ],

and it is given by ξ0 = (1− |m|)/2. We choose a path from 0 to 1/2 which avoids ξ0
along a small half-circle in the lower-half plane and we denote this path by C−,
oriented following the increasing real part. We take C+ = C− the mirror image of the
path C− after a reflection through the real line, then C = C− − C+ is a small circle
encircling ξ0 counterclockwise.

First, we compute the contribution of the identity, namely the integral of the first
summand in the right-hand side of Equation (4.12).

Lemma 4.3.6. — We have

exp

(∫
C−

−2πξ sin(2πξ) dξ

cos(2πξ) + cos(πm)

)
= 1− e−iπ|m| for m ̸= 0,(4.14)

exp

(∫ 1/2+s

0

−2πξ sin(2πξ) dξ

cos(2πξ) + 1

)
∼

s→0
−2πs+ o(s) for m = 0.

Proof. — The asymptotic case (for m = 0) was already proved in [14, Lem. 3], so we
just show Equation (4.14) (for m ̸= 0). Assume m ̸= ±1, the case m = ±1 only needs
minor modification. By [14, Lem. 2], we know that

Re

(∫
C−

−2πξ sin(2πξ) dξ

cos(2πξ) + cos(πm)

)
= log |1− eiπm| = log |1− e−iπm|.
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Hence, we only need to show that

Im
(∫

C−

−2πξ sin(2πξ) dξ

cos(2πξ) + cos(πm)

)
= arg(1− e−iπ|m|).

Let f(ξ) = cos(2πξ) + cos(πm). We want to compute the imaginary part of the
integral ∫

C−

ξ
f ′(ξ)

f(ξ)
dξ.

Note that the function ξ 7→ ξf ′(ξ)/f(ξ) sends the real axis to itself, hence we have∫
C+

ξ
f ′(ξ)

f(ξ)
dξ =

∫
C−

ξ
f ′(ξ)

f(ξ)
dξ and Im

(∫
C+

ξ
f ′(ξ)

f(ξ)
dξ

)
= −Im

(∫
C−

ξ
f ′(ξ)

f(ξ)
dξ

)
.

We deduce that

Im
(∫

C−

ξ
f ′(ξ)

f(ξ)
dξ

)
=

1

2
Im

(∫
C

ξ
f ′(ξ)

f(ξ)
dξ

)
= πRes

(
ξ
f ′(ξ)

f(ξ)
, ξ0

)
= πξ0.

A simple trigonometric computation shows arg(1 − e−iπ|m|) = πξ0, hence Equa-
tion (4.14) follows. □

Now, we compute the terms coming from the elliptic elements. For this we first
introduce some notation. Let

log : C∖ (−∞, 0] −→ {z ∈ C : | Im z| < π}

denote the principal branch of the logarithm. For any θ ∈ R we introduce the branch

logθ : C∖ {−reiθ : r ⩾ 0} −→ {z ∈ C : | Im z − θ| < π}, logθ(w) = log(e−iθw) + iθ.

Writing logθ(z) = log |z| + i argθ(z) and log(z) = log |z| + i arg(z), the functional
equation for the logarithm holds under a certain assumption on the arguments:

(4.15) logθ(z)− logθ(w) = log (z/w) whenever argθ(z)− argθ(w) ∈ (−π, π).

We first treat the case m ̸= 0, which generalizes [14, Lem. 5]:

Lemma 4.3.7. — For m ̸= 0 we have

exp

∫
C−

Ej =
det(In − ρ(cj)

sign(m))

det(In − ρ(u)sign(m))1/νj
.(4.16)

Proof. — We follow the lines of [14, proof of Lem. 5], keeping track of the arguments of
the terms involved. For each j, recall that the contribution Ej of the elliptic element cj
and its powers is given in Equation (4.13). The term Tr ρ(cj)

k is
∑

α αk, for α running
through the eigenvalues of ρ(cj). In particular αM = e−iπm, where M = νj is the order
of cj (recall that ρ(u) = e−iπm). We compute the contribution of each α to

∫
C−

Ej
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as follows: we set z0 = eiπ/M and z = e2iπξ/M and get that α contributes
∫
C−

P (z)
Q(z)dz,

where

P (z) = − 1

2iz

M−1∑
k=1

αk

sin(kπ/M)
(zM−k + zk−M + eiπm(zk + z−k))zM ,

Q(z) = (zM + eiπm)(zM + e−iπm)

are polynomials in z, and C− is the image of the path C−, by the map ξ 7→ e2iπξ/M .
It is a small deformation of an arc of the unit circle, avoiding the pole occurring at
e2iπξ0/M by moving around it outside of the unit circle.

Indeed, one can rearrange P by grouping the terms corresponding to k and M − k

in the sum, factorizing (zk + z−k) and re-expanding:

P (z) = − 1

2iz

M−1∑
k=1

αkeiπm + α−ke−iπm

sin(kπ/M)
(zk + z−k)zM .

Let us assume that m ̸= ±1, so that the polynomial Q splits as the product Q(z) =∏2M
ℓ=1(z − zℓ) with simple roots z1, . . . , z2M . Hence, we can decompose the rational

fraction P/Q as
P (z)

Q(z)
=

2M∑
ℓ=1

P (zℓ)/Q
′(zℓ)

z − zℓ
.

To integrate (z−zℓ)
−1, we choose the branch logθ of the logarithm with θ = 2πξ0/M .

It is easy to see that z − zℓ is in the domain of logθ for all z ∈ C− and all ℓ. Since
m /∈ Z, one can integrate to obtain

(4.17)
∫
C−

P (z)

Q(z)
dz =

2M∑
ℓ=1

P (zℓ)

Q′(zℓ)

(
logθ(z0 − zℓ)− logθ(1− zℓ)

)
.

Now
P (zℓ)

Q′(zℓ)
=

M−1∑
k=1

(αkeiπm + α−ke−iπm)(zkℓ + z−k
ℓ )

2iMε(e−iπm − eiπm) sin(kπ/M)
,

where ε = ±1 depending on zMℓ + e−εiπm = 0. In particular, this term is real, and the
term for z−1

ℓ is equal to the negative of the term for zℓ. Hence, the contribution of zℓ
and z−1

ℓ together to Equation (4.17) equals P (zℓ)/Q
′(zℓ) times

(4.18) logθ(z0 − zℓ)− logθ(1− zℓ)− logθ(z0 − z−1
ℓ ) + logθ(1− z−1

ℓ ).

First note that by Equation (4.15), we have

logθ(1− zℓ)− logθ(1− z−1
ℓ ) = log

( 1− zℓ

1− z−1
ℓ

)
= log(−zℓ).

Moreover, again by Equation (4.15):

logθ(z0−zℓ) = logθ(z0)+log(1−zℓ/z0) and logθ(z0−z−1
ℓ ) = logθ(z0)+log(1−1/z0zℓ),

so that Equation (4.18) becomes

logθ(1− zℓ/z0)− logθ(1− 1/z0zℓ)− log(−zℓ).
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Finally, using Equation (4.15) once more:

logθ(1− 1/z0zℓ) = logθ(1− z0zℓ)+ log
(1− 1/z0zℓ

1− z0zℓ

)
= logθ(1− z0zℓ)+ log(−z−1

0 z−1
ℓ ).

Since both 1− zℓ/z0 and 1− z0zℓ are contained in the right half plane and the branch
cut of logθ is in the left half plane, logθ = log in this case. Summing up, we obtain
the following expression for Equation (4.18):

log(1− zℓ/z0)− log(1− z0zℓ)− log(−zℓ)− log(−z−1
0 z−1

ℓ ).

It remains to determine

log(−zℓ) + log(−z−1
0 z−1

ℓ ) = log(−zℓ)− log(−z0zℓ)

for each ℓ. For this purpose we choose ε = sign(m), so zMℓ + e−iπ|m| = 0. This implies
that arg(−zℓ) ̸∈ (π − π/M, π), so −zℓ and −z0zℓ lie on the same side of the branch
locus of log and hence

log(−zℓ)− log(−z0zℓ) = − log(z0) = − iπ

M
.

In total, the contribution of zℓ and z−1
ℓ to Equation (4.17) equals P (zℓ)/Q

′(zℓ) times

(4.19) iπ

M
+ log(1− zℓ/z0)− log(1− zℓz0).

We first note that the contribution of iπ/M is trivial. In fact, its contribution to∫
C+

P (z)
Q(z)dz equals

iπ

M

∑
zM
ℓ =−e−iπm

M−1∑
k=1

(αkeiπm + α−ke−iπm)(zkℓ + z−k
ℓ )

2iMε(e−iπm − eiπm) sin(kπ/M)
,

and interchanging the sums and using that∑
zM
ℓ =−e−iπm

zkℓ =
∑

zM
ℓ =−e−iπm

z−k
ℓ = 0

shows that this term indeed vanishes. To express the contribution of the second and
third term in Equation (4.19), we set ω = zℓ/z0 in the second term and ω = zℓz0 in
the third term. Then, summation is over ωM = e−iπ|m| and we obtain:∫

C−

P (z)

Q(z)
dz =

∑
ωM=e−iπ|m|

log(1− ω)

M−1∑
k=1

(αkeiπm + α−ke−iπm)

2iMε(e−iπm − eiπm) sin(kπ/M)

× (zk0ω
k + z−k

0 ω−k − z−k
0 ωk − zk0ω

−k)

=
∑

ωM=e−iπ|m|

log(1− ω)

M−1∑
k=1

(αkeiπm + α−ke−iπm)

Mε(e−iπm − eiπm)
(ωk − ω−k).
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Note that ω = ζαε, with ζM = 1. In the sum over k above, the term for k simplifies
with the term for M − k and the remaining terms equal

1

Mε(e−iπm − eiπm)

M−1∑
k=1

(
α−εkωke−iπ|m| − αεkω−keiπ|m|)

=
1

M(e−iπm − eiπm)

M−1∑
k=1

(
e−iπmζk − eiπmζ−k

)
=

{
−1/M if ζ ̸= 1,

(M − 1)/M if ζ = 1.

Hence, we obtain∫
C−

P (z)

Q(z)
dz = log(1− αε)− 1

M

∑
ωM=e−iπ|m|

log(1− ω).

We claim that the last sum above is just log(1− e−iπ|m|):

Claim. — For any z ∈ C, |z| = 1, z ̸= 1, and M ⩾ 1 the following identity holds:

(4.20)
∑

ωM=z

log(1− ω) = log(1− z).

Proof of the claim. — Since log(z) + log(w) − log(zw) ∈ 2πiZ for all z, w ∈ C with
z, w, zw ̸∈ (−∞, 0], we find∑

ωM=z

log(1− ω) ≡ log
( ∏

ωM=z

(1− ω)
)
= log(1− z) mod 2πiZ.

It remains to show that the imaginary parts of both sides are actually equal. Since
the argument of 1− z is contained in (−π

2 ,
π
2 ), it suffices to show that∑

ωM=z

arg(1− ω) ∈
(
−π

2
,
π

2

)
.

The M -th roots of z can be written as eiθ with θ = ϕ+ 2πk/M for k = 0, . . . ,M − 1

and some ϕ ∈ (0, 2π/M). Hence, by Equation (4.10):∑
ωM=z

arg(1− ω) =

M−1∑
k=0

ϕ+ 2πk/M − π

2
=

Mϕ

2
− π

2
∈
(
−π

2
,
π

2

)
. □

Adding all this for every α and taking the exponential, we obtain Equation (4.16).
For m = ±1, one needs to be a bit more careful when decomposing Q(z). However,

the computation goes through, combining what we have just done and [14, §3]. Hence,
we omit this case. □

Now we generalize [14, Lem. 6], which computes the elliptic contribution in the case
m = 0:

Lemma 4.3.8. — For m = 0 we have

exp

∫ 1/2−ε

0

Ej ∼
ε→0

∣∣det(In−nj − Tj)
∣∣ (2πε)−n/νj+nj ν

−nj

j .(4.21)
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Proof. — Using that ρ(c
νj

j ) = ρ(u) = In, it is easy to see by substituting k for νj − k

in Equation (4.13) that Ej(ξ) is real for ξ ∈ R. Therefore, exp
∫ 1/2−ε

0
Ej is positive

for sufficiently small ε > 0. The statement now follows by the same computations as
in [14, proof of Lem. 6]. □

Proof of Theorem 4.3.2. — First we assume m = 0. Then ρ(u) = In, and Theo-
rem 4.3.2(1) reads

R
( s

2π
; ρ
)

∼
s→0

(−1)mult(0;∆♯
τm,ρ)+

∑r
j=1 nj

sn(2g−2+r)−
∑r

j=1 nj∏r
j=1 |det(In−nj

− Tj)| ν
−nj

j

+ o(s).

Now combining the second statement of Lemma 4.3.6 with Lemma 4.3.8 yields

η
(
1 +

s

2π
; ρ
)

∼
s→0

(−s)−dim(Vρ) Vol(X)/2π

×
r∏

j=1

|det(In−nj
− Tj)| (−s)− dim(Vρ)/νj+nj ν

−nj

j + o(s).

By the Gauss–Bonnet Theorem (see Equation (4.6)) this can be written as

(−s)−n(2g−2+r)+
∑r

j=1 nj

r∏
j=1

|det(In−nj
− Tj)| ν

−nj

j + o(s),

so the claim follows with Proposition 4.3.1.
Now if m ̸= 0, we deduce from Proposition 4.3.1, the first statement in Lemma 4.3.6

and Lemma 4.3.7, using ρ(u) = e−iπmIn:

R(0; ρ) = (−1)mult(0;∆♯
τm,ρ)

det(In − ρ(u)ε)2g−2+r∏r
j=1 det(In − ρ(cj)ε)

with ε = sign(m). For ε = 1 we immediately obtain Theorem 4.3.2(2), and for ε = −1

we can use
det(In − ρ(u)−1) = (−1)n det(ρ(u))−1 det(In − ρ(u))

and the analogous identity for cj together with the fact that
∏r

j=1 det(ρ(cj)) =

det(ρ(u))2g−2+r (see the proof of Lemma 1.2.1). □

Now, Theorem A is a consequence of Theorem 2.3.1 and Theorem 4.3.2.
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