Cantor sets with absolutely continuous harmonic measure
Journal de l’École polytechnique — Mathématiques, Volume 10 (2023), pp. 1277-1298.

We construct Ahlfors regular Cantor sets K of small dimension in the plane, such that the Hausdorff measure on K is equivalent to the harmonic measure associated to its complement. In particular Green’s function in 2 K satisfies G p (x)dist(x,K) δ whenever dist(x,K)1 and p is far from K.

Nous construisons des ensembles de Cantor K, Ahlfors-réguliers de petite dimension dans le plan, tels que la mesure de Hausdorff sur K est équivalente à la mesure harmonique associée à son complémentaire. En particulier, la fonction de Green dans 2 K satisfait G p (x)dist(x,K) δ lorsque dist(x,K)1 et p est loin de K.

Received:
Accepted:
Published online:
DOI: 10.5802/jep.245
Classification: 31A15, 35J15
Keywords: Harmonic measure, Cantor set, Hausdorff measure
Mot clés : Mesure harmonique, Ensemble de Cantor, mesure de Hausdorff

Guy David 1; Cole Jeznach 2; Antoine Julia 1

1 Université Paris-Saclay, CNRS, Laboratoire de mathématiques d’Orsay 91405 Orsay, France
2 School of Mathematics, University of Minnesota Minneapolis, MN, 55455, USA
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{JEP_2023__10__1277_0,
     author = {Guy David and Cole Jeznach and Antoine Julia},
     title = {Cantor sets with absolutely continuous harmonic measure},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {1277--1298},
     publisher = {\'Ecole polytechnique},
     volume = {10},
     year = {2023},
     doi = {10.5802/jep.245},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.245/}
}
TY  - JOUR
AU  - Guy David
AU  - Cole Jeznach
AU  - Antoine Julia
TI  - Cantor sets with absolutely continuous harmonic measure
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2023
SP  - 1277
EP  - 1298
VL  - 10
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.245/
DO  - 10.5802/jep.245
LA  - en
ID  - JEP_2023__10__1277_0
ER  - 
%0 Journal Article
%A Guy David
%A Cole Jeznach
%A Antoine Julia
%T Cantor sets with absolutely continuous harmonic measure
%J Journal de l’École polytechnique — Mathématiques
%D 2023
%P 1277-1298
%V 10
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.245/
%R 10.5802/jep.245
%G en
%F JEP_2023__10__1277_0
Guy David; Cole Jeznach; Antoine Julia. Cantor sets with absolutely continuous harmonic measure. Journal de l’École polytechnique — Mathématiques, Volume 10 (2023), pp. 1277-1298. doi : 10.5802/jep.245. https://jep.centre-mersenne.org/articles/10.5802/jep.245/

[ABHM19] M. Akman, S. Bortz, S. Hofmann & J. M. Martell - “Rectifiability, interior approximation and harmonic measure”, Ark. Mat. 57 (2019) no. 1, p. 1-22 | DOI | MR | Zbl

[AHM + 16] J. Azzam, S. Hofmann, J. M. Martell, S. Mayboroda, M. Mourgoglou, X. Tolsa & A. L. Volberg - “Rectifiability of harmonic measure”, Geom. Funct. Anal. 26 (2016) no. 3, p. 703-728 | DOI | MR | Zbl

[AHM + 20] J. Azzam, S. Hofmann, J. M. Martell, M. Mourgoglou & X. Tolsa - “Harmonic measure and quantitative connectivity: geometric characterization of the L p -solvability of the Dirichlet problem”, Invent. Math. 222 (2020) no. 3, p. 881-993 | DOI | MR | Zbl

[Aik01] H. Aikawa - “Boundary Harnack principle and Martin boundary for a uniform domain”, J. Math. Soc. Japan 53 (2001) no. 1, p. 119-145 | DOI | MR | Zbl

[Anc86] A. Ancona - “On strong barriers and an inequality of Hardy for domains in R n , J. London Math. Soc. (2) 34 (1986) no. 2, p. 274-290 | DOI | MR | Zbl

[Azz20] J. Azzam - “Dimension drop for harmonic measure on Ahlfors regular boundaries”, Potential Anal. 53 (2020) no. 3, p. 1025-1041 | DOI | MR | Zbl

[Azz21] J. Azzam - “Semi-uniform domains and the A property for harmonic measure”, Internat. Math. Res. Notices (2021) no. 9, p. 6717-6771 | DOI | MR | Zbl

[Bat96] A. Batakis - “Harmonic measure of some Cantor type sets”, Ann. Acad. Sci. Fenn. Math. 21 (1996) no. 2, p. 255-270 | MR | Zbl

[BZ15] A. Batakis & A. Zdunik - “Hausdorff and harmonic measures on non-homogeneous Cantor sets”, Ann. Acad. Sci. Fenn. Math. 40 (2015) no. 1, p. 279-303 | DOI | MR | Zbl

[Car85] L. Carleson - “On the support of harmonic measure for sets of Cantor type”, Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985), p. 113-123 | DOI | MR | Zbl

[Dah77] B. E. J. Dahlberg - “Estimates of harmonic measure”, Arch. Rational Mech. Anal. 65 (1977) no. 3, p. 275-288 | DOI | MR | Zbl

[DEM21] G. David, M. Engelstein & S. Mayboroda - “Square functions, nontangential limits, and harmonic measure in codimension larger than 1”, Duke Math. J. 170 (2021) no. 3, p. 455-501 | DOI | MR | Zbl

[DFM21] G. David, J. Feneuil & S. Mayboroda - Elliptic theory for sets with higher co-dimensional boundaries, Mem. Amer. Math. Soc., vol. 274, no. 1346, American Mathematical Society, Providence, RI, 2021 | DOI

[DFM23] G. David, J. Feneuil & S. Mayboroda - Elliptic theory in domains with boundaries of mixed dimension, Astérisque, vol. 442, Société Mathématique de France, Paris, 2023

[DJ90] G. David & D. Jerison - “Lipschitz approximation to hypersurfaces, harmonic measure, and singular integrals”, Indiana Univ. Math. J. 39 (1990) no. 3, p. 831-845 | DOI | MR | Zbl

[DM21] G. David & S. Mayboroda - “Good elliptic operators on Cantor sets”, Adv. Math. 383 (2021), article ID 107687, 21 pages | DOI | MR | Zbl

[DM22] G. David & S. Mayboroda - “Approximation of Green functions and domains with uniformly rectifiable boundaries of all dimensions”, Adv. Math. 410 (2022), article ID 108717, 52 pages | DOI | MR | Zbl

[GM05] J. B. Garnett & D. E. Marshall - Harmonic measure, New Math. Monogr., vol. 2, Cambridge University Press, Cambridge, 2005 | DOI

[JW88] P. W. Jones & T. H. Wolff - “Hausdorff dimension of harmonic measures in the plane”, Acta Math. 161 (1988) no. 1-2, p. 131-144 | DOI | MR | Zbl

[MV86] N. Makarov & A. L. Volberg - “On the harmonic measure of discontinuous fractals”, 1986, LOMI preprints

[Tol23] X. Tolsa - “The dimension of harmonic measure on some AD-regular flat sets of fractional dimension”, 2023 | arXiv

[Vol92] A. L. Volberg - “On the harmonic measure of self-similar sets on the plane”, in Harmonic analysis and discrete potential theory (Frascati, 1991), Plenum, New York, 1992, p. 267-280 | DOI | MR

[Vol93] A. L. Volberg - “On the dimension of harmonic measure of Cantor repellers”, Michigan Math. J. 40 (1993) no. 2, p. 239-258 | DOI | MR | Zbl

[Vol22] A. L. Volberg - “One phase problem for two positive harmonic functions: below the codimension 1 threshold”, 2022 | arXiv

[Zdu97] A. Zdunik - “Harmonic measure on the Julia set for polynomial-like maps”, Invent. Math. 128 (1997) no. 2, p. 303-327 | DOI | MR | Zbl

Cited by Sources: