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H? OF IGUSA VARIETIES VIA AUTOMORPHIC FORMS

BY ArNo Krer & Suc Woo SHin

ABsTrACT. — Our main theorem describes the degree 0 cohomology of non-basic Igusa varieties
in terms of one-dimensional automorphic representations in the setup of mod p Hodge-type
Shimura varieties with hyperspecial level at p. As an application we obtain a completely new
approach to two geometric questions. Firstly, we deduce irreducibility of Igusa towers and its
generalization to non-basic Igusa varieties in the same generality, extending previous results
by Igusa, Ribet, Faltings—Chai, Hida, and others. Secondly, we verify the discrete part of the
Hecke orbit conjecture, which amounts to the assertion that the irreducible components of a
non-basic central leaf belong to a single prime-to-p Hecke orbit, generalizing preceding works by
Chai, Oort, Yu, et al. We also show purely local criteria for irreducibility of central leaves. Our
proof is based on a Langlands—Kottwitz type formula for Igusa varieties due to Mack-Crane, an
asymptotic study of the trace formula, and an estimate for unitary representations and their
Jacquet modules in representation theory of p-adic groups due to Howe-Moore and Casselman.

Riésumi (HO des variétés d’Igusa via les formes automorphes). — Notre théoréme principal dé-
crit la cohomologie en degré 0 des variétés d’Igusa non basiques en termes de représentations
automorphes de dimension 1 dans le cadre des réductions modulo p des variétés de Shimura de
type Hodge avec niveau hyper-spécial en p. Nous obtenons comme application une approche
compléetement nouvelle de deux questions géométriques. Premiérement, nous déduisons l'irré-
ductibilité de la tour d’Igusa et sa généralisation aux variétés d’Igusa non basiques dans la méme
généralité, ce qui étend des résultats d’Igusa, Ribet, Falting-Chai, Hida, et d’autres. Deuxie-
mement, nous vérifions la partie discréte de la conjecture des orbites de Hecke, qui revient &
lassertion que les composantes irréductibles d’une feuille centrale non basique appartiennent
a une unique orbite sous l'action de ’algébre de Hecke premiére & p, ce qui généralise des
travaux de Chai, Oort, Yu, entre autres. Nous démontrons aussi des critéres purement locaux
d’irréductibilité de la feuille centrale. Notre preuve est basée sur une formule de type Langlands-
Kottwitz pour les variétés d’Igusa due & Mack-Crane, sur une étude asymptotique de la formule
des traces, et sur une estimée pour les représentations unitaires et leurs modules de Jacquet en
théorie des représentations des groupes p-adiques due & Howe-Moore et & Casselman.
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1. INTRODUCTION

Igusa varieties were studied by Igusa [Igu68] and Katz—Mazur [KMS85] in the case
of modular curves. Harris-Taylor and Mantovan [HT01, Man05] have generalized
the construction to PEL-type Shimura varieties. Recently Caraiani-Scholze [CS17]
gave a slightly different definition in the PEL case which gives the same cohomol-
ogy. Hamacher, Zhang, and Hamacher-Kim went further to define Igusa varieties for
Hodge-type Shimura varieties [Haml17, Zhal5, HK19]. In the (u-)ordinary setting,
Igusa varieties are also referred to as Igusa towers. (Often the definitions differ in a
minor way.) There are versions of Igusa varieties as p-adic formal schemes or adic
spaces over p-adic fields, but we concentrate on the characteristic p varieties in this
paper. We mention that function-field analogues of Igusa varieties are studied in a
forthcoming paper by Sempliner; see also [Zho20, Ex. 4.7.15].

The ¢-adic cohomology of Igusa varieties (with ¢ # p) has several arithmetic ap-
plications. In [HT01, Man05, HK19], the authors prove a formula computing the
cohomology of Shimura varieties in terms of that of Igusa varieties and Rapoport—
Zink spaces. This means that, if we understand the cohomology of Igusa varieties
well enough, then our knowledge of cohomology can be propagated from Rapoport—
Zink spaces to Shimura varieties or the other way around. This is the basic principle
underlying [Shill, Shil2] on the global Langlands correspondence and the Kottwitz
conjecture. For another application, a description of ¢-adic cohomology of Igusa vari-
eties was one of the main ingredients in [CS17, CS19] to prove vanishing of cohomology
of certain Shimura varieties with ¢-torsion coefficients, which in turn supplied a crit-
ical input for a recent breakthrough on the Ramanujan and Sato—Tate conjecture for
cuspidal automorphic representations of GLg of “weight 2” over CM fields [ACCT23].

Thus an important long-term goal is to compute the ¢-adic cohomology of Igusa
varieties with a natural group action. A major first step is a Langlands—Kottwitz style
trace formula for Igusa varieties, which has been obtained for Shimura varieties of
Hodge type at hyperspecial level in [Shi09, Shil0, MC22] building upon [HT01, Ch. 5]
in analogy with [LR87, Kot92b, KSZ]. One wishes to turn that into an expression
of the cohomology via automorphic forms, but this requires a solution of various
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HO OoF [GUSA VARIETIES 1301

complicated problems; some are tractable but others are out of reach in general, most
notably an endoscopic classification and Arthur’s multiplicity formula for the relevant
groups.

The main objective of this paper is twofold. Firstly, we describe H® of Igusa vari-
eties via one-dimensional automorphic representations over non-basic Newton strata
of Hodge-type Shimura varieties at hyperspecial level.(!) This mirrors the well-known
fact that H? of complex Shimura varieties is governed by one-dimensional automor-
phic representations. Secondly, to achieve this, we develop a method and obtain var-
ious technical results with a view towards the entire cohomology of Igusa varieties
(as an alternating sum over all degrees). Our method, partly inspired by Laumon
[Lau05] and also by Flicker-Kazhdan [FK88], should prove useful for studying ¢-adic
cohomology of Shimura varieties as well.

Our result on H® not only sets a milestone in its own right, but also reveals deep
geometric information. Namely, our theorem readily implies the discrete Hecke or-
bit conjecture for Shimura varieties and the irreducibility of Igusa varieties in the
same generality as above. (The irreducibility means that Igusa varieties are no more
reducible than the underlying Shimura varieties in some precise sense.) Our work pro-
vides a completely new approach and perspective to these two problems by means of
automorphic forms and representation theory.

One of our main novelties consists in a careful asymptotic argument via the trace
formula to single out H® (or compactly supported cohomology in the top degree)
without reliance on any classification. This is essential for obtaining an unconditional
result. Since the “variable” for asymptotics is encoded in the test function at p, a good
amount of local harmonic analysis naturally enters the picture. Another feature of our
approach is to allow induction on the semisimple rank of the group; this would make
little sense in a purely geometric argument as endoscopy is hard to realize in the
geometry of Shimura varieties.

Roughly speaking, cohomology of Igusa varieties is closely related to that of Shimu-
ra varieties via the Jacquet module operation at p, relative to a proper parabolic
subgroup in the non-basic case. To show that only one-dimensional automorphic rep-
resentations contribute to HY of Igusa varieties, the key representation-theoretic in-
put is an estimate for the central action on Jacquet modules due to Casselman and
Howe-Moore. Though there is no direct link, it would be interesting to note that
a similar situation occurs in the context of beyond endoscopy (e.g., [FLN10, §5]),
where the leading term in asymptotics is accounted for by the “most non-tempered”
(namely one-dimensional) representations. This is also analogous to the spectral gap,
which plays a crucial role in the Hecke equidistribution theorems in characteristic zero
(cf. Section 1.3 below).

(1In the basic case, Igusa varieties are O-dimensional, and it can be deduced from [MC22] that
their HO is expressed as the space of algebraic automorphic forms on an inner form of G. Such a
description goes back to Serre [Ser96] for modular curves, and Fargues [Far04, Ch.5] in the PEL

case.
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1.1. THE MAIN THEOREM. Let (G, X) be a Shimura datum of Hodge type with reflex
field E C C. Assume that the reductive group G over Q admits a reductive model
over Z,, and take K, := G(Z,). (Namely G is unramified at p, and K, is a hyperspecial
subgroup.) Write G for the adjoint group of G. We do not assume p > 2 as the case
p = 2 is covered in [KSZ, MC22].

Fix field maps Q — Q,, Q, ~ C, and Q, ~ C (which will be mostly implicit).
The resulting embedding E < Q, induces a place p of E/ above p. Let k(p) denote
the residue field of E at p, which embeds into the residue field F, of @p. Thereby
we identify W ~ F,. Let Zk, denote the integral canonical model over O, with
a G(A*P)-action. In the main text, it is sometimes important to pass to finite level
away from p in order to apply a fixed-point formula. However, we will ignore this point
and pretend that we are always at infinite level away from p to simplify exposition.

An embedding of (G, X) into a Siegel Shimura datum determines a G(A®P)-
equivariant map from #f, to a suitable Siegel moduli scheme over O, . Via pullback,
we obtain a universal abelian scheme 7 over ¥, which can be equipped with a fam-
ily of étale and crystalline tensors over geometric points T — .k, x(p)- This assigns
to T the p-divisible group @%[p>°] (with G-structure, encoded by the family of crys-
talline tensors).

Let pp : Gy, — G@p denote the “Hodge” cocharacter arising from (G, X) (via

Q, ~ C). This cuts out a finite subset B(Gq,,u,") in the Kottwitz set B(Gqg,)
of G-isocrystals. Fix an element [b] € B(Gq,,u;,"). (The containment ensures that
the Newton stratum N;, below is nonempty.) Then [b] determines a p-divisible group
with G-structure over E, up to isogeny via Dieudonné theory and the embedding
of Shimura data above. Choose (the isomorphism class of) a p-divisible group with
G-structure Y, in the isogeny class, which amounts to specifying b € G(Qp) (up to
o-conjugation under G(Zp)) whose image in B(Gg,) is [b].

We obtain a Newton cocharacter v, from b, which may be conjugated to be dom-
inant with respect to a suitable Borel subgroup B of Gg, defined over Q,. Write p
for the half sum of all B-positive roots. For simplicity, assume that 3, is defined
over k(p) and that [k(p) : F,]vp is a cocharacter, not just a fractional cocharacter.
(In practice, these assumptions are unnecessary since it is sufficient to have a finite
extension of k(p) in the last sentence.)

Write J;, for the Q,-group of self-quasi-isogenies of ¥, (preserving G-structure)
over FF,,, and Ji" for the subgroup of J,(Q,) consisting of automorphisms. Then Jin*
is an open compact subgroup of J,(Qp). As a general fact, J; is an inner form of a
Qp-rational Levi subgroup My, of Gg,. We say that b is basic if v is a central in Gq,,
or equivalently if Mj, = Gg, (namely if J, is an inner form of G, ). The element b is
Q-non-basic if the image of b in B(G&‘i) is non-basic in every Q-simple factor of G4,
cf. Definition 5.3.2. If G® is Q-simple then this is equivalent to the condition that b
is non-basic.

The central leaf Cy, (resp. Newton stratum NNy) is the locus of z € ./, on which the
geometric fibers of &% [p>] are isomorphic (resp. isogenous) to Xj. Thus N, depends
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HO or [cusa VARIETIES 1303

only on [b]. By construction, Cj and N, are stable under the G(A°*P)-action on .k, .
We also define the Igusa variety Jg, over #f, () to be the parameter space of
isomorphisms between %, and @%[p>]. The obvious action of Jg“t on Jg, naturally
extends to a J,(Q,)-action. Below are some basic facts (Sections 5.3, 6.1, and 6.2).
Put q := #k(p).

Fact 1. Cp is (formally) smooth over k(p) and closed in Ny,

Fact 2. Cp is equidimensional of dimension (2p, v),

Fact 3. Jg, is a pro-étale J™-torsor over the perfection of Cy,

Fact 4. In the completely slope divisible case, the ¢"-th power Frobenius on Jg,
coincides with the action of v4,(¢") € Z;,(Q,) for sufficiently divisible r.

Fact 5. As an Fp-scheme with a G(A*?) x .J,(Q,)-action, Jg, (up to isomorphism)
depends on b only through [b].

In particular, dimJg, = (2p, 1), and every connected component of jgb,?,, (resp.
Cb,?p) is irreducible.

Our main theorem describes the connected components (= irreducible components)
of Igusa varieties over F, together with the G(A>P) x J,(Q,)-action. Let us introduce
some notation. Write G(Q,)2® for the abelianization of G(Q,) as a topological group.
There is a canonical map ¢y : J,(Q,) — G(Q,)?" coming from the fact that J, is an
inner form of a Levi subgroup of Ggq,, cf. Section 6.1 below. Each one-dimensional
smooth representation , of G(Q,) factors through G(Q,)*, giving rise to a one-
dimensional representation m, o ¢ of J,(Qp).

Tucorem A (Theorem 6.1.4). — Assume that b is Q-non-basic with [b] € B(Gq,, u, ).
Then there is a G(A™P) x Jp(Qp)-module isomorphism

H°(3g,, Q) = @77 @ (mp 0 Gb),
s
where the sum runs over one-dimensional automorphic representations

=1 Q Ty ® Moo

of G(A) such that 7o is trivial on the preimage of the neutral component G*(R)°

in G(R).
Before we sketch the idea of proof, let us discuss two geometric applications.

1.2. APPLICATION TO IRREDUCIBILITY OF [GUSA TOWERS AND A GENERALIZATION

In Hida theory of p-adic automorphic forms, an important role is played by Igusa
varieties over the ordinary Newton stratum, namely when the underlying p-divisible
group is ordinary. In this case, Igusa varieties (and their natural extension to p-adic
formal schemes) are usually referred to as Igusa towers. Recently Eischen and Manto-
van [EM21] developed Hida theory in the more general p-ordinary PEL-type situation,
where Howe [How20] (and its sequel) also shed new light on the role of Igusa varieties
(&4 la Caraiani-Scholze). Igusa towers are also featured in Andreatta—Tovita—Pilloni’s
work [AIP16, ATP18] on overconvergent automorphic forms.

JIP — M., 2023, tome 10
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A key property of Igusa towers is irreducibility. This property has an application to
the g-expansion principle for p-adic automorphic forms, which is a basic ingredient for
the construction of p-adic L-functions. See p. 96 in [Hid04] for the relevant remark, and
also refer to Th. 3.3 (Igusa), 4.21 (Ribet), 6.4.3 (Faltings—Chai), and Cor. 8.17 (Hida)
therein for the known cases (elliptic modular, Hilbert, Siegel, and PEL type A /C cases,
respectively, all over the ordinary stratum) and further references. Irreducibility in
the p-ordinary case of PEL type A was proved in [EM21]. Such a result was obtained
for Igusa varieties of a specific PEL type A by Boyer [Boy07] without assuming pu-
ordinariness.

There are various methods to show the irreducibility as explained in [Cha08] and
the introduction of [Hid11], e.g., by using the automorphism group of the function
fields of Shimura varieties in characteristic 0 or by showing that the family of abelian
varieties has large monodromy. As an application of Theorem A, we obtain an entirely
different representation-theoretic proof and also a natural generalization from the
p-ordinary case to the general Q-non-basic case (and from the PEL case to the case
of Hodge type). In the non-p-ordinary case, Igusa varieties lie over a central leaf rather
than an entire Newton stratum, but our method is insensitive to such a distinction.

Write J,(Q,)" = ker(¢p : Jp(Q,) — G(Q,)?P). Our result is as follows.

Tueorem B. — Assume that b is Q-non-basic. The stabilizer subgroup in Jy(Qp) of
each connected component of Jg, is equal to Jy(Qp)".

Roughly speaking, the stabilizer subgroup cannot be larger than J,(Q,)’, and this
should be thought of as saying that Igusa varieties are at least as reducible as Shimura
varieties. The point of the theorem is that, conversely, the stabilizer is as large as
possible under the given constraint; so Igusa varieties are “irreducible” in the sense
that they are no more reducible than Shimura varieties. (This is made precise by
Corollary 8.1.2 below.) The proof is almost immediate from the J,(Q,)-action on H°
described in Theorem A. See Section 8.1 below for further details.

1.3. ArpLicaTiON TO THE DISCRETE HECKE ORBIT congecTURE. — In 1995 [Oorl9, §15]
(also see [EMOO01, Prob. 18]), Oort proposed the Hecke Orbit (HO) conjecture that
the prime-to-p Hecke orbit of a point should be Zariski dense in the central leaf
containing it, if the point lies outside the basic stratum (if G® is simple). The reader
is referred to [CO19] for an excellent survey of the HO conjecture with updates. Oort
drew analogy with the André—QOort conjecture for a Shimura variety in characteristic
zero, which asserts that the irreducible components of the Zariski closure of a set
of special points are special subvarieties. (See [Tsil8, PST21] and references therein
for recent results on the André-Oort conjecture.) A common feature is that a set
of points with an extraordinary structure (being a prime-to-p Hecke orbit or special
points) is Zariski dense in a distinguished class of subvarieties. We can also compare
the HO conjecture with the Hecke equidistribution theorems for locally symmetric
spaces in characteristic zero [COUO1, EO06], stating roughly that the Hecke orbit
of an arbitrary point is equidistributed in the locally symmetric space in a suitable
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sense. (In particular, the Hecke orbit is dense in the entire space even for the analytic
topology, to be contrasted with the phenomenon in characteristic p.) It is also worth
noting works to investigate Hecke orbits for the p-adic topology [GK21, HMRL20].

Chai and Oort verified the HO conjecture for Siegel modular varieties [Cha06,
Th. 3.4] (details to appear in a monograph), in particular the irreducibility of leaves
[Cha05, CO11]. The conjecture is also known for Hilbert modular varieties [Cha06,
Th. 3.5] due to Chai and Yu. (Also see [YCO20].) The HO conjecture has seen several
new results in recent years. Shankar proved the conjecture for Deligne’s “strange
models” (in the sense of [Del71, §6]) in an unpublished preprint. Zhou [Zho19] settled
the HO conjecture in the ordinary locus of some quaternionic Shimura varieties along
the way to realize a geometric level raising between Hilbert modular forms. Maulik—
Shankar-Tang [MST22] proved the HO conjecture in the ordinary locus of GSpin
Shimura varieties. Xiao [Xia20] proved partial results on the HO conjecture in the
case of PEL type A and C.

Chai [Cha05, Cha06] proposed the strategy to divide the HO conjecture into two
parts, that is, the discrete part (HOgisc) and the continuous part (HOgont), corre-
sponding to global and local geometry, respectively. In a nutshell, (HOgjs.) asserts
that the prime-to-p Hecke action is transitive on the set of irreducible components
of each central leaf. Then (HOopnt) is designed to tell us that the closure of each
prime-to-p Hecke orbit has the same dimension as the ambient central leaf, so that
(HOuisc) and (HOcont) together imply the HO conjecture.

We deduce the following result on (HOgjsc) from Theorem A. (See Section 8.2 for
details.)

Turorem C. — For Hodge-type Shimura varieties with hyperspecial level at p, (HOqjsc)
is true for every central leaf contained in a Q-non-basic Newton stratum.

To our knowledge, this is the first general theorem on (HOgis.). Let us remark
on the proof. Since (HOgisc) means transitivity of the G(A°P)-action on m(Cy), it
is equivalent to the multiplicity one property of the trivial G(A®P)-representation
in HY(Cy, Q) = H0(397@4)J;m. To prove Theorem C, it is thus enough to observe
that if 7% is trivial then 7, and 7. must be trivial as well in the formula of
Theorem A. This is an easy consequence of the weak approximation that G(Q) is
dense in G(Q,) x G(R). (The same approximation holds more generally, at least if G
splits over an unramified extension.)

We also consider the following strengthening of (HO4gjsc):

(HOZ,.) The map mo(Cs) — mo(Shg,) induced by the immersion C, — Shg, is a

bijection.

This is known as “irreducibility of central leaves”, as it means that C} is irreducible
in every component of Shg, . Since G(A>?) is known to act transitively on mo(Shg, ),
e.g., by weak approximation, and since mo(Cy) — mo(Shg, ) is G(A*P)-equivariant,
it is clear that (HOZ ) implies (HOgisc)-

disc
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We prove purely local criteria for (HO(‘;‘iSC

of the stabilizers of points on some affine Deligne—Lusztig varieties (Theorem 8.2.9).
Using these criteria, we deduce (HO;QSC) in the p-ordinary case, but obtain a coun-
terexample in general with the help of Rong Zhou. See Section 8.2 below for further
details. (In the earlier version of this paper arXiv:2102.10690v1, we incorrectly
asserted that (HOZ, ) was true in general. The mistake occurred during the initial
reduction in the proof of Lemma 8.1.1, where changing b to a o-conjugate element
cannot be justified; we thank van Hoften for pointing it out to us.)

), either in terms of groups at p or in terms

1.4. SoME DETAILS ON THE PROOF OF THEOREM A. — Changing ¥, by a quasi-isogeny,
as this does not affect Jg, up to isomorphism, we may assume that ¥; is completely
slope divisible and defined over a finite field. Then Jg, can be written, up to perfection,
as the projective limit of smooth varieties of finite type defined over F,- for a suffi-
ciently divisible r € Z~¢. (In the main text, we use Ig, to denote the version without
perfection.) This allows us to apply a Lefschetz trace formula technique to compute
the cohomology of Jg, at a finite level. Via Poincaré duality, Theorem A may be
rephrased in terms of the top degree compact-support cohomology H, c<4p ve) (T, Qy),
which we may access by the Lang—Weil estimate.

Adapting the Langlands—Kottwitz method to Igusa varieties, as worked out in
[Shi09] and Mack-Crane’s thesis [MC22], one obtains a formula of the form

Tr(¢>P ¢, x Frobg,r\Hc(Tng,@g)) = (geometric expansion), J € ZLsa,

where ¢>P¢, € H(G(A®P) x Jy(Qp)) and j € Zs.1. In fact, one can show that
the Frob,r-action on Jg, is represented by the action of a central element of J,(Q,).
Thereby ¢, x Frobf,T in (1.4.1) may be replaced with a translate qb](gj) € H(Jp(Qp))
of ¢, by a central element. The geometric expansion is a linear combination of orbital
integrals of qbo"’p(béj ) on G (A%P) x J,(Q,) over a certain set of conjugacy classes. The
stabilized formula takes the form

(L4.1)  Te(6™76Y)|H.(3g,, Q) = 3 (constant) - STG(f7f5D), € T,

4

where the sum runs over endoscopic data e for G (Section 2.6), and f‘mf;’(j) is a
suitable function on the corresponding endoscopic group G*. By ST}, we mean the
elliptic part of the stable trace formula for G¢. The most nontrivial point in the
stabilization is the “transfer” at p. Indeed, as G*® is not an endoscopic group of Jp,
this requires a special construction as detailed in Section 3.

Ideally we would turn the right hand side of (1.4.1) into a spectral expansion and
determine not only H{*”""(3g,,Q,) but H.(Jg,,Q,) in the Grothendieck group of
G(A>P) x Jy(Qp)-representations. This is the long-term goal stated earlier. On the
analogous problem for Shimura varieties, a road map has been laid out in [Kot90],
which can be mimicked for Igusa varieties to some extent. However there are serious
obstacles: (1) An endoscopic classification for most reductive groups is out of reach;
exactly the same issue occurs for Shimura varieties as well. (2) The geometric side
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(stable elliptic terms) is very difficult to compare with the spectral side. One could
imagine making the comparison more tractable by passing from H,. to intersection
cohomology, following the strategy for Shimura varieties to “fill in” the stable non-
elliptic terms, but no theory of compactification is available for Igusa varieties to
allow it. (Franke’s formula for H. of locally symmetric spaces [Frad8] suggests that
one should expect a similarly complicated answer for H. of Igusa varieties.)

Our goal is to extract spectral information on Hc(4p ’Vb>(§gb,@f) from the leading
terms in (1.4.1) in the variable j via the Lang—Weil estimate. Thus we can get away
with less by proving equalities up to error terms of lower order. To bypass (1) and (2),
a key is to show that (stable) non-elliptic terms as well as endoscopic (a.k.a. unstable)
terms have slower growth in j than the (stable) elliptic terms. This is the technical
heart of our paper taking up Section 4. Let us provide more details.

The basic strategy is an induction on the semisimple rank, based on our observation
that some key property of the function f;’(j ) is replicated after taking an endoscopic
transfer or a constant term. (For instance, we need to pass along the Newton cochar-
acter through the inductive steps.) So we want to prove a bound on the trace formula
for a quasi-split group over QQ, with a test function f? ,Sj ) satisfying such a prop-
erty. The desired bound partly comes from a root-theoretic computation, involving
a curious interaction between p and oo such as “evaluating” the Newton cocharacter
(coming from p) at the infinite place (Lemma 4.1.1). The most interesting component
in this part of the argument is

(%) a spectral expansion of Ty, the elliptic part of the trace formula.

The problem is actually about STS, in (1.4.1), but we can replace ST, with Tep
for G*° once the difference is shown to have lower order of growth. The archimedean
test function is stable cuspidal in our setting, so we have Arthur’s simple trace formula
[Art89] of the following shape:

(14.2) Tue(fPf09) = Tn(for fo0)

+ (geometric terms on proper Levi subgroups).

The proper Levi terms at finite places look similar to the elliptic part of the trace
formula for proper Levi subgroups, but a complicated behavior is seen at the infinite
place due to stable discrete series characters along non-elliptic maximal tori of the
ambient group. On different open Weyl chambers, we have different character for-
mulas in terms of finite dimensional characters of the Levi subgroup, so this quickly
spirals out of control in the induction. Adapting an idea of Laumon [Lau97] from
the non-invariant trace formula, we overcome the difficulty by imposing a regular-
ity condition on the test function at an auxiliary prime ¢ (# p) and show that the
Q-conjugacy classes with nonzero contributions land in a single Weyl chamber. Then
a finite dimensional character of a Levi subgroup is itself a stable discrete series char-
acter of the same Levi subgroup along elliptic maximal tori of the Levi, so that the
inductive argument can continue. (No information is lost by the auxiliary hypothesis
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at g, cf. Section 7.6 below.) This technique should prove useful for investigation of
compactly supported cohomology of Igusa varieties and Shimura varieties alike.
Returning to our problem, the above argument turns (1.4.1) into

Tr(¢ ’p¢(j)|H (391, Qr)) Zm ’pf 7)) + (error terms),

where f*P f, *U) is the test function on the quasi-split inner form G* of G (i.e., when
G* = G*), and the sum runs over discrete automorphic representatlons of G*( ).
At this point, we apply a trace identity. Let ¢’ ‘) denote a transfer of (;Sp from Jj
to its quasi-split inner form M,. For each irreducible smooth representation 7* of
G*(Q,), we have (Lemma 3.1.2)

Temy (f59) = Te d (m) (6,

where J is the normalized Jacquet module relative to the parabolic subgroup deter-
mined by v, whose Levi component is M. Since b is non-basic, M}, is a proper Levi
subgroup. Moreover the translation (j) is given by a central element satisfying a posi-
tivity condition with respect to 4. In these circumstances, we make a crucial use of an
estimate due to Casselman and Howe-Moore (Section 2.1), showing that J(m}) (¢;’(j ))
has the highest growth if and only if dimm, = 1. A strong approximation argu-
ment (Section 2.5) promotes this to the condition that dim7* = 1, under a group-
theoretic condition guaranteed in our setting. Moreover, it is not hard to transfer
one-dimensional representations from M;(Q,) to J,(Q,) compatibly with the transfer
of functions (Section 2.3). We complete the proof of Theorem A by putting this final
piece of the puzzle.

1.5. A REMARK ON THE NON-HYPERSPECIAL CASE. — This paper focuses on the case of
hyperspecial level at p mainly because the trace formula for Igusa varieties [MC22]
is available only in that case. Once the trace formula becomes available for Shimura
varieties with parahoric level at p (cf. Section 1.7 below), the methods and results of
this paper should extend to that case. To avoid group-theoretic subtleties (e.g., Re-
mark 2.3.4 below), assume that G is quasi-split over Q,. Then Theorems A and B are
expected to remain true (with a modified definition of Ji"*). As for Theorem C, a cru-
cial group-theoretic ingredient is that the diagonal embedding G(Q) — G(Q,) x G(R)
has dense image (weak approximation). If G does not split over an unramified exten-
sion of Q,, then the weak approximation can be false, in which case our argument
does not apply. In fact, Oki’s example [Oki23] suggests that the analogue of Theo-
rem C is false in general, since the prime-to-p Hecke action is not even transitive on
the set of connected components of the underlying Shimura variety.

1.6. TuEe Basic case. — We comment on the description of H? in the complementary
case when b is basic, in the setting of Section 1.1. Since it is not the focus of this
paper, we will be brief. In the basic case, Igusa varieties are 0-dimensional by Fact 2
above. It follows from [HZZ21, Prop.5.2.2] and the argument of [MC22, §3.2] that
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there is a G(A™P) x Jp(Qp)-equivariant bijection

(1.6.1) 3g,(Fp) = HQ\G(A®F) x Jy(Qp),

where I is an inner form of G over Q such that I(A*®"?) ~ G(A™P), I(Q,) ~ J4(Q,),
and I(R) is compact modulo center. (This I is the same as in [HZZ21].) Here I(Q)
acts by left multiplication on G(A>P) x J,(Qy) via

Q) — I(A%) = G(A™P) x Jyp(Qp)-

(The embedding is canonical up to G(A>?) x J,(Q,)-conjugacy.) Hence the analogue
of Theorem A in the basic case is that H°(Jg,,Q,) is the space of algebraic auto-
morphic forms on the inner form I. In particular, H° is “much larger” in the basic
case.

Since Cy(F,) is the quotient of Jg,(F,) by an open compact subgroup of J,(Q,)
(Lemma 6.1.1.(1) is still valid when b is basic), we can deduce from (1.6.1) and the
weak approximation for I (applied as in the proof of Lemma 5.2.2) that the full Hecke
orbit conjecture is true; this is equivalent to (HOgjsc) in the case at hand. On the other
hand, we see that (HO. ) is generally false if b is basic.

disc
1.7. Work or van Horren anxp Xiao. — Pol van Hoften and Luciena Xiao Xiao [vH10,
vHX21] prove the irreducibility of Igusa varieties (but not Theorems A and C of our

paper) and give a counterexample to (HO$SC).(2) Their method is more geometric
and totally different from ours in that no use is made of automorphic forms. Further
goals in their work and ours are disparate. For instance, [vH10] proves new results on
the stratification of Shimura varieties and the Langlands—Rapoport conjecture in the
parahoric case, whereas our work is a stepping stone for understanding the cohomology
of Igusa varieties in all degrees. The two threads could have a future intersection
though, as the Langlands—Rapoport conjecture in the parahoric case ought to be
an important ingredient for deriving the analogue for Igusa varieties in that case,

extending [MC22] from the hyperspecial case.

1.8. A GUIDE FOR THE READER. The bare-bones structure of our argument is as
follows.

Jacquet module

estimate (§2.1,§2.5) Th. 6.1.4 irred;lgibility
y Lem. 6.2.2 030 Ty |51 B
trace formula estimate (§4) ks on H°(Jg,, Q) | —— n
+ Th. 7.1.1 via auto. forms §8.2

discrete

stable trace formula (main theorem)

for He(Jg,,Qy) (§7.5)

HO conjecture

(2)The counterexample in [vHX21, §6.3] is about (HO(’;SC), but not (HOgjsc), cf. Section 8.2 of
this paper. Note that the maps in Th. 6.2.1 and Cor. 6.2.2 therein are not asserted to be equivariant
for the prime-to-p Hecke actions. In fact, our Theorem C suggests that those maps should not be

equivariant in general.
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On a first reading, we suggest that all complexities arising from central characters
and z-extensions should be skipped, e.g., by assuming that all central character data
are trivial. In fact this should be the case in many examples. The central character
datum is always trivial on the level of G appearing in the Hodge-type datum, but we
allow it to be nontrivial mainly because we do not know whether 3 in the endoscopic
datum (Section 2.6) can always be chosen to be an L-group. Another good idea is to
start reading in Section 5, especially if one’s main interests lie in geometry, referring
to the earlier sections only as needed and taking the results there for granted.

Sections 2 and 3 consist of mostly background materials in local harmonic analysis
and representation theory. Though we claim little originality, there may be some
novelty in the way we organize and present them. Some statements would be of
independent interest. Section 4 is perhaps the most technical as this is where the
main trace formula estimates are obtained. As such, most readers may want to take
the results in Section 4.2 on faith and proceed, returning to them as needed.

Sections 5 and 6 introduce the main geometric players, namely Shimura varieties,
central leaves, and Igusa varieties. Except for Section 5.1, we are always in the Hodge-
type case with hyperspecial level at p. Our main theorem on Igusa varieties is stated in
Section 6.1. After reduction steps in Sections 6.2—7.1 and some recollection of the trace
formula setup up to Section 7.5, the proof of the theorem is completed in Section 7.6.
Lastly Section 8 is devoted to the main geometric applications on irreducibility of
Igusa varieties and a local criterion for the discrete Hecke orbit conjecture.

1.9. Norarion

— The trivial character (of the group that is clear from the context) is denoted
by 1.

— If T is a torus over a field k with algebraic closure k, X, (T) := Homg (T, G,,) and
X*(T) := Homy(G,,,T). When R is a Z-algebra, we write X, (T)r := X.(T) ®z R
and X*(T)g := X*(T) ®z R.

-D:= @Gm is the protorus (over an arbitrary base), where the transition maps
are the n-th power maps.

- Zp = W(F,), @p := Frac Zp, and o € Aut((@p) is the arithmetic Frobenius.
By Zj" (resp. Q") we mean the subring of elements in 217 (resp. @p) which are alge-
braic over Q,,.

- Z(8) is the power set of a set S.

~ If H is an algebraic group over a field k, we write H° C H for its neutral
component.

Let G be a connected reductive group over a field k of characteristic 0.

— If k is a finite extension of kg, then Resy, /G denotes the restriction of scalars
group.

— If &’ is an extension field of k then Gy := G Xgpeck, Speck’.

— Gger is the derived subgroup, ¢ : Gsc = Gger C G the simply connected cover, Zg
the center (we also write Z(G)), G*! := G//Z¢ the adjoint group, and G* := G/Gger
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the maximal commutative quotient. Write Ag C Zg for the maximal split subtorus
over k.

— G(k)» is the set of semisimple (resp. regular semisimple, resp. strongly regular)
elements in G(k) for ? = ss (resp. reg, resp. sr). We put T'(k), := T'(k) N G(k)- for
? € {reg,sr}.

— If k is a local field and G a reductive group over k, write J(G(k)) and 8(G(k))
for the spaces of invariant and stable distributions on G(k). (For more details, see
Section 2.2). By Irr(G(k)) we mean the set of isomorphism classes of irreducible
admissible representations of G(k).

~ When k = Q,, two elements 6,0’ € G(Q,) are (G(@p),o’)—conjugate (resp.
(G(Zp)m)-conjugate) if there exists a g € G((@p) (resp. g € G(Zp)) such that ¢ =
a(g)dg~"

Let T (resp. S) be a maximal torus (resp. maximal split torus) of G over k with
T O S. Let My be a minimal k-rational Levi subgroup containing 7.

- ®(T,G) is the set of absolute roots, ®(S,G) = ®4(S, G) the set of k-rational
roots.

-0 = Q(T, G) for the Weyl group over k, and QF = Q(S,G) for the k-rational
Weyl group. We often omit k from ®4 (S, G) and QF when it is clear from the context.

- L(G) or Li(G) is the set of all k-rational Levi subgroups of G containing M.
Write £5(G) := L(G)\{G}.

Lemva 1.9.1. If Gaer is simply connected then every k-rational Levi subgroup of G
has simply connected derived subgroup.

Proof. This can be checked after base change to k, so assume k = k. For every
maximal torus T C G, the cocharacter lattice X, (T) modulo the coroot lattice is
torsion free by hypothesis. Thus X, (T") modulo the lattice generated by an arbitrary
subset of simple coroots is torsion free, implying that every Levi subgroup of G has
simply connected derived subgroup. (|

Acknowledgements. — AK and SWS are grateful to Erez Lapid, Gordan Savin, and
Maarten Solleveld for pointing them in the right direction regarding Section 2.1.
We thank Xuhua He, Pol van Hoften, and Rong Zhou for discussions about Section 8.2,
and especially Zhou for providing us with Example 8.2.12 below. We also sincerely
thank the anonymous referee for his/her helpful comments and suggestions.

2. PRELIMINARIES IN REPRESENTATION THEORY AND ENDOSCOPY

2.1. ESTIMATES FOR JACQUET MODULES OF UNITARY REPRESENTATIONS. Here we recall
some facts from work of Howe-Moore [HMT79] and Casselman [Cas95] in order to
bound the absolute value of central characters in the Jacquet modules of unitary
representations of p-adic reductive groups.

We consider the following setup and notation.
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— Let F be a non-archimedean local field of characteristic 0. We write valg, Op,
k, q, w = wp respectively for the normalized valuation of F', the ring of integers
of F', the residue field of F, the cardinality of k£, and an uniformizer of F' so that
valp(wr) =1,

— @ is a connected reductive group over F' with center Z = Zg,

— Rep(G) is the category of smooth representations of G(F),

— P=DMN is a Levi decomposition of an F-rational proper parabolic subgroup of G,

— Ay is the maximal F-split torus in the center of M,

— A is the set of roots of Ay; in IV,

- Ap ={z € Au(F) : |a(z)] <1, Va € A},

- AT ={x € Au(F) : |a(z)| < 1, YVa € A},

—dp : M(F) — RZ, is the modulus character given by

op(m) := |det(Ad(m),Lie N(F))|.

— Jp: Rep(G) — Rep(M) is the normalized Jacquet module functor, so Jp(m)
equals Ty ® 5;1/2 with 7 denoting the N(F')-coinvariants of 7,

— I§: Rep(M) — Rep(G) is the normalized parabolic induction functor, send-
ing mas to the smooth induction of s ® 611,/2 from P(F) to G(F).

— When R € Rep(M) has finite length, write Exp(R) for the set of Ap(F)-
characters appearing as central characters of irreducible subquotients of R.

Lemvia 2.1.1. — If G is simply connected, F-simple, and F-isotropic, then every
normal subgroup of G(F') is either G(F') itself or contained in Z(F).

Proof. — A normal subgroup N of G(F) not contained in Z(F) is open of finite
index in G(F') by [PR94, Prop.3.17] since G is F-simple. Since G(F) is F-isotropic
and simply connected, G(F) is generated by the F-points of the unipotent radicals
of F-rational parabolic subgroups [PR94, Th. 7.6]. Thus, by Tits’ theorem proved in
[Pra82], every open proper subgroup of G(F') is compact. On the other hand, N is
easily seen to be non-compact by considering the adjoint action of a maximal F-split
torus on a root subgroup.® Therefore, N = G(F). O

Prorosirion 2.1.2 (Howe-Moore). Assume that Gy is F-simple. Let ™ be an in-
finite dimensional irreducible unitary representation of G(F'). Then there exists an
integer 2 < k < oo such that every matriz coefficient of m belongs to L*(G(F)/Z(F)).

Proof. — This follows from the explanation on pp.74-75 of [HM79] below Th.6.1,
once we verify the following claim: if w(g) is a scalar operator for g € G(F) then
g € Z(F). Taking a z-extension of G, we reduce to the case when Ggqe is simply
connected. Pulling back 7 via the multiplication map Z(F) x G4er(F) — G(F) and
passing to one of the finitely many constituents (cf. [Xul6, Lem. 6.2]) which is infinite-
dimensional, we may assume that G is itself F-simple and simply connected. Now Z’

3)ror instance, see the proof of Proposition 3.9 in http://virtualmathl.stanford.edu/~conrad/
JLseminar/Notes/L2.pdf for details.
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be the group of g € G(F') such that w(g) is a scalar. Then Z’ is a normal subgroup
of G(F), and Z' # G(F) since dimm = co. Therefore, Z' C Z(F) by Lemma 2.1.1,
proving the claim. O

Provosirion 2.1.3 (Casselman). — Let m be an irreducible unitary representation of
G(F). For every w € Exp(nn) and every a € Ap, we have the inequality

(2.1.1) |w(a)| < 1.
If Gy is F-simple and a € Ap™, then the equality holds if and only if dim7 < oo.

Proof. — The inequality (2.1.1) follows from the obvious extension of [Cas95, §4.4]
(where p < oo is assumed) to cover the case p = co. (For instance, [Cas95, Lem. 4.4.3,
Prop. 4.4.4] have the analogues for p = oo, with “bounded” in place of “summable”
and “|x(x)| < 1”7 in place of “|x(z)| < 17.)

As for the last assertion, suppose that dim 7 = co. In the notation of [Cas95, §2.5],
Proposition 2.1.2 tells us that the matrix coefficient is LF, i.e., |cq,75\"”‘ is integrable
modulo center for some 2 < k < oo. Applying [Cas95, Cor.4.4.5] to p =k, F = ¢, 5
and a € Ap™, we obtain that |w(a)5;1/k(a)| < 1. Therefore, |w(a)] < 1. For the
converse, suppose that dim 7 < oco. Then ker 7 is an open subgroup of G(F'). As the
open subgroup N(F) Nkern of the unipotent subgroup N(F') acts trivially on ,
we see that N(F) itself acts trivially on . (Use conjugation by Aps(F).) Therefore,
Exp(mx) consists of the central character w of 7 (restricted to M (F)) only, which is
unitary. In particular, |w(a)| =1 for all a € A5~ O

Remark 2.1.4. — Proposition 2.1.3 is sharp in general.

For example, consider G = GLy(F) with P (resp. N) consisting of upper triangu-
lar (resp. upper triangular unipotent) matrices. The complementary series represen-
tations m. = I§(] - |5,]-|~%) with € € R with 0 < ¢ < 1/2 are irreducible and unitary.
We have

(me)n = In(m) @62 =02 (|- 15,1 ) e (|- 1751 9)
(- 1FHY2 ) Y @ (| 7R | R,

So in this case, Exp((m.) ) contains the character w = (|| =5F1/2, |- [F=1/2) of QX x Q.
Then a = (89) € Ap~. We get w(a) = p~/? which gets arbitrarily close to 1 as &
tends to 1/2.

Lemva 2.1.5. Assume that G has no F-anisotropic factor. Then every irreducible
smooth representation of G(F) is either one-dimensional or infinite-dimensional.

Proof. We may assume that Ggyey is simply connected via z-extensions. Suppose
that 7 is a finite-dimensional irreducible smooth representation of G(F'). Then the
normal subgroup kerm N Gaer(F) of Gger(F) is open. Lemma 2.1.1 implies that
ker TNGaer (F) = Gaer(F), thus 7 factors through the abelian quotient G(F)/Gger (F).
Therefore, dim 7 = 1, completing the proof. |
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2.2, Locar HECKE ALGEBRAS AND THEIR VARIANTS. We retain the notation from
the preceding section but allow the local field F' to be either non-archimedean or
archimedean. A basic setup of local Hecke algebras will be introduced, partly follow-
ing [Art96, §1].

Fix a Haar measure on G(F) and a maximal compact subgroup K C G(F). Let
G(F)g denote the subset of strongly regular elements g € G(F’), namely the semisim-
ple elements whose centralizers in G are (maximal) tori. By [Ste65, 2.15], G(F)g
is open and dense in G(F) (for both the Zariski and non-archimedean topologies).
Write R(G) for the space of finite C-linear combinations of irreducible characters
of G(F), which is a subspace in the space of functions on G(F)s.. We also identify
R(G) with the Grothendieck group of smooth finite-length representations of G(F')
with C-coefficients. Let H(G) = H(G(F)) denote the space of smooth compactly sup-
ported bi- K-finite functions on G(F'). Let J(G) denote the invariant space of functions
on G(F'), namely the quotient of H(G) by the ideal generated by functions of the form
g — f(g) — f(hgh™') with h € G(F) and f € H(G). From [Kaz86, Th. (0], we see
that f € H(G) has trivial image in IJ(G) if and only if its orbital integral vanishes on
G(F)g if and only if Trw(f) = 0 for all irreducible tempered representations of G(F');
moreover, the same is true if G(F)g, is replaced with G(F) and if the temperedness
condition is dropped. By abuse of notation, we frequently write f € J(G) to mean
a representative f € H(G) of an element in J(G). The trace Paley-Wiener theorem
[BDKS86] describes IJ(G) as a subspace of C-linear functionals on R(G) via

(22.1) f s (e - . f<g>®<g>dg).

If R(G) is thought of as a Grothendieck group, the above map is simply f — (7 —
Ten(f).

Denote by 8(G) the quotient of H(G) by the ideal generated by functions each of
which has vanishing stable orbital integrals on G(F)s,. Thus we have natural surjec-
tions H(G) — J(G) —» 8(G). By R(G)** we mean the subspace of R(G) consisting of
stable linear combinations (i.e., constant on each stable conjugacy class in G(F)g,).
Then 8(G) is identified with a subspace of functions on R(G)* via (2.2.1) (since
© € R(G)® now, the image depends only on the image of f in §(G)); the subspace
is characterized by [Art96, Th.6.1,6.2] in the p-adic case, cf. last paragraph on p. 491
of [Xul7]. Via the obvious quotient map J(G) — 8(G) and the restriction map from
R(G) to R(G)"*, we have a commutative diagram

9(G) 8(G)

| I

HomC—linear(R(G)7 (C) E— HomC—linear(R(G)Sty C)

Let us extend the setup so far to allow a fixed central character. By a local central
character datum for G, we mean a pair (X, ), where

— X is a closed subgroup of Z(F') equipped with a Haar measure px on X,
— x: X — C* is a smooth character.

JIEP. — M., 2023, tome 10



HO or [cusa VARIETIES 1315

Let H(G,x™ ') = H(G(F),x ') denote the space of smooth bi-K-finite functions f
on G(F) which have compact support modulo X and satisfy f(xg) = x~!(z)f(g) for
x € X and g € G(F). The x-averaging map

I(G) — HGx ), fr (gH / f(gZ)X(Z)dux>,

is a surjection. We have the obvious definitions of J(G,x!) and 8(G,x!), the
x-averaging maps J(G) — J(G,x 1) and $(G) — 8(G,x 1), as well as the quotient
maps

H(G. x™') —» IG,x71) —» 8(G,x 7).

We can think of J(G, x 1) as a subspace of functions on R(G, ), the subspace of R(G)
generated by irreducible characters with central character x. Analogously 8(G,x 1)
is the subspace of functions on R(G, x)®* defined similarly.

2.3. TRANSFER OF ONE-DIMENSIONAL REPRESENTATIONS. — Let G and G* be connected
reductive groups over a non-archimedean local field F' of characteristic zero, with G*
quasi-split over F. Let £ : Gz — G*F be an inner twisting, namely an F-isomorphism
such that {710 (¢) is an inner automorphism of G for every o € Gal(F/F). As in
Section 1.9, we have canonical F-morphisms p : Ggc — G and ¢* : G%. = G*. Define
an F-torus and two topological groups

G = G/Gaers, G(F)’ := cok(Gse(F) —25 G(F)), G(F)™ := G(F)/G(F)der,

where G(F)qger is the commutator subgroup of G(F') as an abstract group, which is
closed in G(F). (This is clear if G is a torus. If not, G(F)ger is not contained in
ZGa4..(F) so an open subgroup in Gge,(F) by [PR94, Th. 3.3], after reducing to the
simply connected and F-simple case via z-extensions.) Moreover, G(F')ger is contained
in im(G(F)sc = G(F)) [Del79, 2.0.2], so there are natural morphisms

(2.3.1) G(F) —» G(F)* —» G(F)” —» G(F)/Gaex(F) — G**(F).

In particular, G(F)" is an abelian group. The last two maps in (2.3.1) are isomor-
phisms if G4er = Gsc by Kneser’s vanishing theorem for H' of simply connected
groups (applicable since F' is non-archimedean). The definition and discussion above
applies to G* in the same way.

Let 1 - Z7 — G1 > G — 1 be a z-extension of G over F. Since G4 — G
induces G34 5 G2d, the classifying data for inner twists of G; and those of G
are identified (up to isomorphism). Thus we may assume that there is a z-extension
1—-2; =Gy * G* — 1 with an inner twisting &1 : G & = GTF such that & and &
form a commutative square together with the maps o and o*. The map G der = Gder
induced by « is a simply connected cover, allowing an identification G ger = G-
Likewise we have G7 4, = G-
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Lemma 2.3.1. There is a row-exact commutative diagram where the vertical maps
are isomorphisms:

1 — Zy(F)/Z1(F) NGy ger(F) — G1(F)" = G3*(F) — G(F)” — 1

JZ l? l?
1 — Z1(F)/Z1(F) N G} 4o (F) — G4 (F)’ = G*°(F) — G*(F)" — 1.
Here the second vertical map is given by the isomorphism G3> = G’T"ab induced
by &, and the first and third vertical maps are induced by the second. Moreover the
isomorphism G(F)* — G*(F)° is canonical, i.c., independent of the choice of z-
extensions.

We will write £” : G(F)” = G*(F)" for the canonical isomorphism.

Proof. — The row-exactness in the diagram is straightforward from the defini-
tion. The map &; induces an F-isomorphism G§b - Gi’ab and restricts to an
F-isomorphism from Z; onto Z;. Thus the first two vertical maps are isomor-
phisms, which implies that the last vertical map is also. To check the last assertion,
if Gy 25 G and Gy =2 G are two z-extensions, then the fiber product of G; and G,
over GG is also a z-extension. So we may assume that there is a surjection between

the two z-extensions, in which case the last assertion is clear. O
Lievna 2.3.2. — If Gy has no F-anisotropic factor, then G(F)* = G(F)P.

Proof. — We may assume that G is not a torus. Via a z-extension, we reduce to the
case when Gy. = Gger. Then G(F')ger is a noncentral normal subgroup of Gger(F).
Applying Lemma 2.1.1 to each F-simple factor of Gger, we deduce that G(F)ger =
Gaer(F), hence G(F)’ = G(F)?®. O

Cororrary 2.3.3. — If Gy has no F-anisotropic factor, then the following four groups
(under multiplication) are in canonical isomorphisms with each other:

(1) the group of smooth characters G(F) — C*,

(2) the group of smooth characters G(F)* — C*,

(3) the group of smooth characters G*(F)” — C*,

(4) the group of smooth characters G*(F) — C*,
where the maps from (2) to (1) and from (3) to (4) are given by pullbacks, and the
map between (2) and (3) is via the isomorphism of Lemma 2.3.1. With no assump-
tion on Gy, we still have canonical isomorphisms between (2), (3), and (4), and
a canonical embedding from (2) to (1).

Proof. — Since G(F)? is the maximal abelian topological quotient of G(F), we can
replace G(F) with G(F)*" in (1), and likewise for (4). From (2.3.1) and Lemma 2.3.1,
we have

G(F)™ —» G(F)’ ~ G*(F)" «— G*(F)™.
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Lemma 2.3.2 tells us that the last map is always an isomorphism (since G* has no
F-anisotropic factor); so is the first map if G has no F-anisotropic factor. The corollary
follows. |

Remark 2.3.4. — The only nontrivial F-anisotropic simply connected simple group
over [ is of the form Resps,rSLi(D) for a central division algebra D over a finite
extension F’ of F with [D : F] = n? and n > 2. So the condition in the corollary is
that G has no such factor. Two exemplary cases are (i) G = GL1(D), G* = GL,(F)
and (ii) G = SL1(D), G* = SL,(F). In (i), it is standard (e.g., [Rie70, Intro.]) that
G(F)ger = Gaer(F), and the four sets are still isomorphic. However, in (i), G(F)der
is the group of 1-units in the maximal order of D by [Rie70, §5, Cor.]. In particular,
(1) is a nontrivial group, whereas (2) and (3) are evidently trivial, thus (4) is trivial
by the corollary.

Remark 2.3.5. — One can also construct a natural map from (4) to (1) through
the continuous cohomology H'(Wr, Z(G)) = H(Wp, Z(G*)) following Langlands.
(This works for archimedean local fields F' as well.) Indeed, [Xul6, App. A] explains
the isomorphism between H' (W, Z(G*)) and (4), and a map from H'(Wp, Z(G*))
to (1).(4

Let g € G(F)ss and g* € G*(F)ss. When Gqer = G, we say g and g* are matching
if their F-conjugacy classes correspond via &. In general, matching is defined by lift-
ing € to an inner twisting between z-extensions of G and G* as in [Kot82, pp. 799-800]
(specialized to the case E = F'). From loc. cit. we see that the notion of matching is
independent of the choice of z-extensions, and depends only on the G(F)-conjugacy
class of €.

Since G* is quasi-split, every g admits a matching element in G*(F) (again by
[loc.cit.]). When ¢ and g* are matching, we have an inner twisting between the con-
nected centralizers Iy, I« in G,G* by [Kot82, Lem. 5.8]. Fix Haar measures on the
pairs of inner forms (G(F'), G*(F)) and (I,(F), I4+(F')) compatibly in the sense of
[Kot88, p. 631] to define (stable) orbital integrals at g and g*, cf. [Kot88, pp. 637-638].
Write e(G) € {£1} for the Kottwitz sign. Now f € H(G(F)) and f* € H(G*(F)) are
said to be matching if for every g* € G*(F)s, we have the identity of stable orbital
integrals

SO4(f), if there exists a matching g € G(F)ss,

9.3.2 SOg-(f*) =
( ) g (f ) {O, if there is no such g € G(F)ss~

Remark 2.3.6. — The sign convention in (2.3.2) is chosen in favor of simplicity. (See
also Remark 7.4.1 below.) One could require SO+ (f*) = e(G)SO,4(f) instead, so that

(4)The latter map is asserted to be also an isomorphism in [Xul6, App. A], but this is false for
G = SL1(D) (in which case Z(G) = {1}) as explained in Remark 2.3.4. In loc.cit., for a simply
connected group G’ over F, it is said that all continuous characters G’(F') — C* are trivial, but this
is not guaranteed unless Gsc has no F-anisotropic factor (e.g., this is okay for G*). This mistake is

surprisingly prevalent in the literature.
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the Kottwitz sign e(G) plays the role of transfer factor, but that would introduce e(G)
in the trace identity of Lemma 2.3.7.

A standard fact (cf. Section 2.6 below) from [Wal97] is every f admits a match-
ing f* as above, called a (stable) transfer of f.If the Harish-Chandra character O,
of 7 € Irr(G*(F)) is stable, i.e., O+ (g7) = Or~(g5) whenever g, g3 € G*(F)g, are
stably conjugate, then the value Trw*(f*) = [q. ) f*(9%)Ox+(g")dg" is determined
by the stable orbital integrals of f* on G*(F)s. This follows from the stable version
of the Weyl integration formula, cf. (2.3.3) below. The analogue holds true with G
and f in place of G* and f*. Note that ©,« is stable if dim7* = 1. (This can be
checked after reducing via z-extensions to the case when G, = G},

Levva 2.3.7. — Let f € H(G(F)) and f* € H(G*(F)) be matching functions. Let
™ ¢ G*(F) — C* be a smooth character. If m : G(F) — C* is given by ©* wvia
Corollary 2.3.3 then
Ten(f) = Trr (1)
Proof. — As dimm = dim7* = 1, we have O,(g9) = 7(g9) and O« (g*) = 7*(g*)
for g € G(F), g* € G*(F). Above the lemma, we observed that ©,« is stable. This
implies that ©, is stable. For a maximal torus T of G over F, write W (T) for the
associated Weyl group. By the stable Weyl integration formula,
1
(233) ()= [ J@esods =3 e [ sodpes
G(F) XT: W(D)| JrF).,

sT

where the sum runs over a set of representatives for stable conjugacy classes of max-
imal tori of G over F. The analogous formula holds for G*(F'). From here, the proof
is an easy exercise using (2.3.2) and the following fact coming from quasi-splitness of
G*(F): every maximal torus of G(F) is a transfer of that of G*(F) in the sense of
[Kot84b, 9.5]. |

Remark 2.3.8. — The correspondence of Lemma 2.3.7 need not be the Jacquet—Lang-
lands correspondence when G* = GL,,. E.g., if G = GL1(D) for a central division
algebra D over a p-adic field F' with n > 1, then the trivial representation of D*
corresponds to the Steinberg representation of GL,(F) under Jacquet—Langlands,
but to the trivial representation of GL, (F') in the lemma.

2.4, LLEFSCHETZ FUNCTIONS ON REAL REDUCTIVE GROUPS. Let G be a connected reduc-
tive group over R containing an elliptic maximal torus. Fix a maximal compact sub-
group K., C G(R). Denote by G(R) the preimage of the neutral component G*4(R)°
(for the real topology) under the natural map G(R) — G*4(R).

Levmva 2.4.1. — We have G(R) 4+ = Z(R) - o(Gs.(R)).

Proof. — Since G.(R) is connected, clearly o(Gy.(R)) maps into G24(R)°. Therefore,
GR)+ D Z(R) - o(Gs(R)). We have surjections
Gse(R)? x Z(R)° —» G(R)° —» G*(R)°

by [Mil05, Prop. 5.1]. This implies that G(R); C Z(R)G(R)? = Z(R) - 0o(Gs(R)). O
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Let & be an irreducible algebraic representation of Gg¢, and ¢ : G(R) — C* be
a continuous character. By restriction £ yields a continuous representation of G(R)
on a complex vector space, which we still denote by & Write we : Z(R) — C* for
the central character of . By Il (£,¢) we mean the set of isomorphism classes of
irreducible discrete series representations whose central and infinitesimal characters
are equal to those of the contragredient of £ ® (. This is a discrete series L-packet by
the construction of [Lan89], which assigns to I1 (&, ) an L-parameter

e W]R — LG.

Thus we also write Il (¢¢,¢) for IIoo (€, (). We have £ ® ¢ =~ &' ® ( as representations
of G(R) if and only if there exists an algebraic character x of G¢ such that & = £® x
and ¢/ = ¢ ® x~'. In this case (£, ¢) = Ioo(€,¢'), and ¢ >~ e . In fact
I (€, ¢)| is a constant d(G) € Zx1 depending only on G. When ¢ = 1, we also write
o (¢) and f¢ for Moo (€, ¢) and fe .

Write Ag for the maximal split torus in the center of G. Let x : Ag(R)? — C*
be a continuous character. Let Irriemp (G(R), x) be the set of (isomorphism classes of)
irreducible tempered representations of G(R) whose central character equals x on
Ag(R)°. Write H(G(R),x 1) for the space of smooth K. -finite functions on G(R)
with central character x~!. Following [Art89, §4], f € H(G(R),x~1!) is said to be
stable cuspidal if Tr7(f) is constant as 7 varies over each discrete series L-packet and
if Trw(f) = 0 for every 7 € Irrpemp (G(R), X) outside of discrete series.

Fix a Haar measure on G(R) and the Lebesgue measure on Ag(R)°

, SO as to
determine a Haar measure on G(R)/Ag(R)?. Choose a pseudo-coefficient f, €
H(G(R),we() for each m € TI(£,¢) & la [CD85]. Although it is not unique, the
orbital integrals of f are uniquely determined by the property that Tr7(f,) = 1 and
that Tr/(fr) = 0 for ' € Irtemp (G(R), (we¢) ™) and 7’ % 7. An averaged Lefschetz
function associated with (&, () is defined as

(24.1) feo =Mao(&O1T Y. fr € H(GR),wel).
m€llo (€,¢)
By construction, f¢ ¢ is stable cuspidal in the above sense.

For elliptic v € G(R), let I, denote its connected centralizer in G(R), and e(I,) €
{+1} its Kottwitz sign. Let Iﬁpt denote an inner form of I, over R that is anisotropic
modulo Z¢g. From [Kot92a, p.659], as our O, (fe,¢) equals d(G)7'SO,_(fs) there,
we see that

(2.4.2) Oy(fec)
d(G)~Hvol(Ag(R)N\IPH(R)) 1 (v)e(Ly) Tré(v), v« elliptic,
0, ~ : non-elliptic.

In (2.4.2), the Haar measure on IS**(R) is chosen to be compatible (in the sense of
[Kot88, p.631]) with the measure on I,(R) used in the orbital integral, to compute
vol(Ag(R)°\IP*(R)) with respect to the Lebesgue measure on Ag(R)". Again by
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[Kot92a, p. 659,

vol(Ag(R)N\ISPH(R)) = ¢ (y) Tré(y), v« elliptic,

2.4.3 SO =
(2.4.3) v (fec) { 0 ~ : non-elliptic.

Let G* be a quasi-split group over R with inner twisting G¢ — G¢, through which
&, ¢ above are transported to G*. Thereby we obtain an averaged Lefschetz function

fé o on G*(R).
Levma 242 — The function ff . is a transfer of fec (in the sense of (2.3.2)).
Proof. — This is immediate from (2.4.3). O

Lemwa 2.4.3. — Assume that § = 1. Let 7 : G(R) — C* be a continuous charac-
ter whose central character equals (~' when restricted to AG(R)O, Then 7T|G(R)+ _
C*1|G(R)+ if and only if 7|zw) = C’1|Z(R). If the equivalent conditions hold then
Tr(fe|m) = 1 if m = (75 otherwise Tr(f¢|r) = 0.

Proof. — The first assertion is clear from Lemma 2.4.1. For the second assertion, it fol-
lows from (2.4.2) via the Weyl integration formula that Tr(f¢|m) = vol(K)~* [, ¢(k)
7(k)dk, where K is a maximal compact-modulo-Ag(R)? subgroup of G(R). The inte-
gral vanishes unless 7 = (7! on K, in which case m = (! on the entire G(R) (since K

meets every component of G(R)) and Tr(f¢|m) = 1. O
2.5. ONE-DIMENSIONAL AUTOMORPHIC REPRESENTATIONS. — Now let G be a connected
reductive group over a number field F'. Let v be a place of F' and set G, := GF,.

We have a finite decomposition of Gg. into F-simple factors

(2.5.1) Gee =[] Gi;  with Gi=TResp, pHi,

i€l
for a finite extension F;/F and an absolutely F;-simple simply connected group H;
over each F;. Accordingly G*! = [],.; G2!. Note that we have a natural compos-
ite map G — G — G294 for each i € I, where the last arrow is the projection
onto the i-component. Let P, = M, N, be a Levi decomposition of a parabolic sub-

group of G,. We consider the following assumption, where “nb” stands for non-basic
(cf. Definition 5.3.2 and Lemma 5.3.7 below).

(Q-nb(P,)) The image of P, in (G2), is a proper parabolic subgroup for every i € I.

The assumption implies that G*? has no nontrivial F-simple factor that is aniso-
tropic over F),, thus so the embedding Gs.(F) <= Gsc(A%) has dense image by strong
approximation. When G is itself F-simple, (Q-nb(P,)) is simply saying that P, is
a proper parabolic subgroup of G,,.

Lemva 2.5.1. — Assume that Gaer = Gge and that G; is isotropic over F, for every
i € I. Let 7w be a discrete automorphic representation of G(Ag), and ' an irreducible
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Gaer(Ar)-subrepresentation of m. Decompose ' = ®;m; according to Gaer(Ar) =
Higl Gi(AF). Write

Gi(F,) = H;(F; ®p F,) = HHz(sz),

wlv

where w runs over the set of places of F; above v, and decompose 77;,@ = ®w|v7r§7w
accordingly. If for every i € I, there exists w|v such that 7}, is trivial, then dimm = 1.

Proof. — By strong approximation, the embedding H;(F;) < H;(A%,) has dense im-
age for each ¢ € I. Since the underlying space of m consists of automorphic forms
which are left-invariant under H;(F;), and since ;,, is trivial, the argument for
[KST20, Lem. 6.2] shows that =, is trivial on the entire H,;(Ap,). Hence 7’ is triv-
ial. Since G(Ar)/Gaer(AF) is abelian, we deduce that dimm = 1 as 7 is generated

by 7" as a G(Ap)-module. O
Write Ag for the maximal Q-split torus in the center of Resp,qG.

CoroLraAry 2.5.2
Let 7 be an irreducible G(Af)-subrepresentation of L3, (G(F)\G(Ar)/Ac(R)°)
and let w, € Exp(Jp,(my,)). Then

(2.5.2) jwo(@)| <05 %(a),  a€Ap

Now assume (Q-nb(F,)). Then the equality holds for some a € Ap~ if and only if the
equality holds for all a € Ap~ if and only if dimm = 1.

Proof. — The inequality in (2.5.2) is immediate from Proposition 2.1.3 and the nor-
malization Jp, (7,) = (7y)N, ® 51;5/ ?. It remains to check the three conditions for the
equality are equivalent. The only nontriviality is to show that dim7 = 1, assuming
that |w,(a)| = 5;v1/2(a) for some a € Ay

We may assume Gger = Gy via z-extensions. We decompose

P1l1 = Pv n G(der = HHPU,i,w according as (Gder)v = HH(Hz)un

i€l wlv i€l wlv

where w runs over places of Fj above v. Similarly Ap; =[], , 4p, , . Assumption
(Q-nb(P,)) tells us that for every i, there exists w|v such that P, ;. is a proper
parabolic subgroup of (H;),. In particular, G;, is isotropic for every i. So we can
apply Lemma 2.5.1. Adopting the setup and notation from there, it suffices to show
that for every 4, there exists a place w|v such that wg,w = 1. In fact, we only need to
find w|v such that dim 7}, < oo by Lemma 2.1.5 and Corollary 2.3.3.

The central isogeny Z x Giqer — G induces amap Ag, x Ap; — Ap,, which has finite
kernel and cokernel on the level of F,-points. Replacing a with a finite power, we may
assume that a is the image of (ag,a’) € Ag, (F,) x Ap/(F,), so that |w(a)| = |w(a’)].
(The central character of « is unitary on Ag, (F,), so |w(ap)| = 1.) Write @’ =

(@iw)iw and wU|AP’,(Fv) = (Wy,i,w)i,w according to the decomposition of P, above.
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We have |wy i 0(i0)] < 6;1/2 (a;) by Proposition 2.1.3, while ], , |wv.iw(a@iw)| =

—1/2 . .
L. 5Pu,{,w (@iw) from our running assumption. Therefore

—-1/2 .
Jwo i (@) = 0572 (ai0), Vi€l

Since Jp, (m,) C Jp,(7y), we see that wyla,, (r,) € Exp(Jp;(m,)). Thus we have

Wy iw € EXp(JPu,i,w (ﬂ-;,i,w))'

Finally for each i, we apply the equality criterion of Proposition 2.1.3 at a place w
where P, ; ., is proper in (H;),,. Thereby we deduce that dim 7} , < oc as desired. [

Let &: Gfl) G*F be an inner twisting, with G* a connected reductive group over F'.

Lemya 2.5.3. One-dimensional automorphic representations of G(Ap) are in a
canonical bijection with those of G*(Ar), compatibly with the bijection of Corol-
lary 2.3.3 at every place of F'.

Proof. — Define G(Ar)’ := cok(Gse(Ar) 2 G(Ap)). Similarly we have G*(Ap)”,
G(F)’, and G*(F)". Adapting the arguments of Section 2.3 via z-extensions, we see
that G(Ar)® is an abelian group and that there exists a canonical isomorphism
G(Ar)’ ~ G*(Ar)® compatible with the isomorphism of Lemma 2.3.1 at every place
of v and that the above isomorphism carries G(F)” onto G*(F)°.

Again by taking a z-extension, we can assume that Gg. = Gger. It suffices to
show that the inclusion Gaer(F)G(AF)der C Gaer(Ar) has dense image so that every
one-dimensional automorphic representations of G(Ar) factors through G(Ar)" (and
likewise for G*). Since G(Afp)ger contains G(Fy)der = Gaer(Fy) whenever G is quasi-
split over F,, (Lemma 2.3.2), the desired density follows from the strong approximation
for Gger- O

To state the next lemma, define a (global) central character datum to be a pair
(X, x) as follows, where H; means the restricted product over all places of F.

~ X =[], X, is a closed subgroup of Z(Ar) such that Z(F)X is closed in Z(Ap),
and

-x =Il,xv: XN ZF)\X — C*, with x, : X, - C* a continuous character.
(Implicitly for each © = (z,) € X, we have x,(z,) = 1 for almost all v, so that x is
well defined on X.)

Levmma 2.5.4. — Let (X, x) be a central character datum for G. Let v be a finite place
of F, and g, € G(F,) such that the image of g, in G(F,)*P is not contained in the
image of X,. Then there exists a one-dimensional automorphic representation m of

G(Ap) with mt|x = x such that m,(g,) # 1.

Proof. — Replacing G with a z-extension and (X, x) with its pullback to the z-exten-
sion, we may assume that Ggey = Ge. Then we may replace G with G?P as (%X, x)
factors through a central character datum for G®”. Thus we assume that G = T is
a torus. By assumption g, € T(F,) lies outside X,, and viewing g, as an element of
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T(Ap) via the obvious embedding T'(F,) < T(Ar), we see that g, does not belong
to the subgroup T'(F)X of T (Ar). Thus the proof is complete by the fact (from Pon-
tryagin duality) that, for every non-identity element z in a locally compact Hausdorff

abelian group X, there exists a unitary character of X whose value is nontrivial at x.
(Take X = T(Ap)/T(F)X and = = g,.) O

2.6. ENDOSCOPY WITH FIXED CENTRAL CHARACTER. — Let F' be a local or global field of
characteristic 0. Let G be a connected reductive group over F' with an inner twisting
Gz — G4 with G* quasi-split over F. Let &(G) (resp. Ean(G)) denote a set of
representatives for isomorphism classes of endoscopic (resp. elliptic endoscopic) data
for G as defined in [LS87, KS99]. A member of &(G) is represented by a quadruple
e = (G% G°, 8% n°) consisting of a quasi-split group G¢, a split extension §¢ of Wg
by @“, s¢ € Zge, and ¢ : G¢ — @G satisfying the conditions detailed in loc. cit.
Write Out(e) for the outer automorphism group [KS99, p.19]. In particular, e* :=
(G*,2G*,1,id) € Ean(G). Write £5,(G) = Ean(G)\{e*}.
From now on, let ¢ € E(G). Set

UG, G == 7(G)r(G*) " |Out(e)| ! € Q.

Throughout Section 2.6, we make the following assumption, which will be removed
via z-extensions in the next subsection. (The assumption is known to be true if e = ¢*,
when it is evident, or if G4 is simply connected, by [Lan79, Prop. 1].)

— (assumption) §°¢ = LG*.

For now we restrict to the case when F' is local. Let ¢ be as above. Consider
a local central character datum (X, x) for G as in Section 2.2. Let X¢ C Zg.(F)
denote the image of X under the canonical embedding Zg < Zg.. Thus we can
identify X = X°. We say a semisimple element ¢ € G¢(F) is strongly G-regular
if 4¢ corresponds to (the G(F)-conjugacy class of) an element of G(F)s via the
correspondence between semisimple conjugacy classes in G*(F) and those in G(F)
[LS87, 1.3]. Write G*(F)¢.sr C G*(F) for the subset of strongly G-regular elements.

Thanks to the proof of the transfer conjecture and the fundamental lemma [Wal06,
CL10, Ngo610], we know that each f € H(G(F)) admits a transfer f¢ € H(G(F))
whose stable orbital integrals on strongly G-regular semisimple elements are deter-
mined by the following formula, where the sum runs over strongly regular G(F)-
conjugacy classes, and A(:,-) denotes the transfer factor as in [LS87] (see the remark
below on normalization).

(2.6.1) SO (f)= Y. ARV, 1 E€G(F)ga-
VEG(F)ar/~

The assignment of f¢ to f is not unique on the level of Hecke algebras, but (2.6.1)
determines a well-defined map LS® : J(G) — 8(G*).

The transfer satisfies an equivariance property. For each z € Zg(F) C Zg-(F),
define the translates f., f of f, f¢ by f.(g9) = f(zg) and fi(h) = f¢(zh). The equivari-
ance of transfer factors under translation by central elements (see [LS87, Lem. 4.4.A])
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implies that f{ is a transfer of A°(2) f, for a smooth character A® : Zg(F) — C*. The
character A¢ is independent of f¢ and f, and its restriction \°| 70,(F) Can be described
as follows. Consider the composite map

[4
(2.6.2) Wp — LGt L Lg — L 70,
where the last map is dual to the embedding Z2 < G. Then )\E|Z%(F) is the character
of Z2(F) corresponding to the composite map above by [KSZ, Lem. 7.4.6]. Define a
smooth character x¢ : X¢ — C* by the relation

(2.6.3) X°(2) = A% (2) " tx(2), zeX=X"

In light of the equivariance property above, the transfer map LS® : J(G) — 8(G*®)
descends to

(2.6.4) LS : (G, x 1) — 8(G%, x* 1)

via averaging, still denoted by LS® for simplicity. The identity (2.6.1) still holds if
f¢ = LS°(f) under (2.6.4). In the special case of ¢ = ¢* (so that x* = x), we write
f* € H(G*(F),x 1) for a transfer of f € H(G(F),x 1). If X = {1} then f* here
coincides with the one in Section 2.3, noting that e¢(G) in (2.3.2) plays the role of
transfer factor.

The fundamental lemma tells us the following. Assume that G and ¢ are unramified;
the latter means that G° is an unramified group and that the L-morphism 7° is
inflated from a morphism of L-groups with respect to an unramified extension of F'.
We fix pinnings for G and G* defined over F', which determine hyperspecial subgroups
K C G(F) and K* C G*(F) as in [Wal08, §4.1]. The Haar measures on G(F') and
G¢(F) are normalized to assign volume 1 to K and K*¢. We also assume that y is
unramified, i.e., x is trivial on XN K. We normalize the transfer factors canonically as
in [LS87] (which is possible as G is quasi-split). Then LS® can be realized by a linear
map of the unramified Hecke algebras (defined relative to K and K°)

ge,*: g‘fur(G(F),X_l) N g_fur(Ge(F)’Xe,—l).

We turn to the case of global field F. Recall that Z is the center of G. Let (X, x)
be a global central character datum (Section 2.5). As in the local case, we define X°¢ =
[L, X to be the image of X under the canonical embedding Zg(Ap) — Zg:(Ar). We
have x¢ := ], x§ : X — C*, where x§, was given by the local consideration above,
so that functions in H(G(Ar),x 1) transfer to those in H(G¢(AFr), (x*)~!). Denote
by A =TI, A : Za(F)\Za(Ar) — C* the character with A{ as in the local context
above. (The Zg(F)-invariance of A\® follows from the equivariance of transfer factors
[LS87, Lem. 4.4.A] and the product formula [LS87, Cor.6.4.B].) The restriction of A
to Z2(AF) corresponds to the composite map (2.6.2) (with F now global). There is
an equality x* = A% ~!y as characters on X = X° as in (2.6.3) since this holds at
every place of F. In particular, x© is trivial on Zg(F) N X¢, and (X¢, x°) is a central
character datum for G*.
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Remark 2.6.1. The local transfer factors are well defined only up to a nonzero
scalar (unless G is quasi-split or G* = G*, if no further choices are made), so we
always choose a normalization implicitly, for instance throughout Section 3. Scaling
the transfer factor results in scaling the transfer map (2.6.4). However, according to
[LS87, §6.4], we may and will choose a normalization at each place such that the
product of local transfer factors over all places is the canonical global transfer factor.
This will not introduce ambiguity in our main argument as it takes place in the global
context.

It simplifies some later arguments if ¢ is chosen to enjoy a boundedness property.
We say that a subgroup of /G = G x W is bounded if its projection to G Gal(E/F)
is contained in a compact subgroup for some (thus every) finite Galois extension E/F
containing the splitting field of G.

Lemma 2.6.2. — In either local or global case, we can choose the representative ¢ =
(G*®,G¢,s¢,n°) in its isomorphism class to satisfy the following condition: n°(Wr) is a
bounded subgroup of “G. (We restrict n° to Wr via the splitting Wi — G¢ built into
the data.)

Remark 2.6.3. Bergeron—Clozel [BC17, Lem. 3.7] proved a similar lemma when
F=R.

Proof. — Since n°| 5. will be fixed throughout, we use it to identify G* with a subgroup
of G. We take the convention that all cocycles/cohomology below are continuous
cocycles/cohomology.

It suffices to show that there exists an L-morphism 71§ : §° — LG extending
n¢|ge such that n§(Wp) is bounded. Indeed, eq = (G*¢, S, s%,7g) is then the desired
representative.

To prove the existence of 7§ as above, we reduce to the case that Gqer = Gsc and
that G¢ = “G* via a z-extension. (In the notation of Section 2.7 below, the idea is to
multiply 7% by a suitable 1-cocycle ¢ : Wp — Z(G1) to make the image of (c - 5wy
contained in “G and still bounded.) In the case that Gger = Gy and G¢ = LG*,
our approach is to refine the proof of [Lan79, Prop. 1], where Langlands shows that
n¢|g. extends to an L-morphism 7§ : LGe — LG under the hypothesis but without
guaranteeing boundedness of image. To construct 1 (denoted & therein), Langlands
reduces to the elliptic endoscopic case, chooses a sufficiently large finite extension
K/F, and then constructs ' : Wy, — “G such that n§(g x w) := n°(9)¢'(w) gives
the desired L-morphism. (In the current proof, we follow Langlands to use the Weil
group Wy p to form the L-group, i.e., Lg = G x Wk/r.) It is enough to arrange
that £ has bounded image in Langlands’s construction.

Write N for the normalizer of T (which is £7° in loc.cit.) in G. Let ]Vc
(resp. Z(G®).) denote the maximal compact subgroup of N (resp. Z(G®)). The
starting point is a set-theoretic map &' : Wg/p — L@ satisfying the second displayed
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formula on p.709 therein. Such a & is chosen using the Langlands—Shelstad repre-
sentative of each Weyl group element w, denoted by n(w) € N in [LS87, §2.1]. (The
point is that the o-action wr,c(o) on “TY and the action w'(c) differ by the Weyl
action w?(o) in his notation. See the seventh displayed formula on p.703.) In fact
n(w) € N, since it is a product of finite-order elements in N. Thereby ¢ has image

A

in No x Wi, p (thus bounded). It follows that the 2-cocycle of W, given by

Gy = & (w1)€ (w2) & (wrws) ™

has values in Z(G%). (not just Z(G®) as in [Lan79, p.709]). We need to verify the
claim that the 2-cocycle is trivial in H*(Wg ,p, Z(G*),); then ¢ can be made a homo-
morphism after multiplying a Z (@e)c—valued 1-cocycle, keeping its image bounded, so
we will be done. In fact, thanks to Lemma 2 therein (stated for Z (@e) but also appli-
cable to Z (ée)C since both groups have the same group of connected components), we
may assume that a,, w, € (Z(ée)c)o. Then the claim follows from a variant of Lem. 4
therein, with S replaced by the maximal compact subtorus in the statement and proof.
(In particular, the map (1) on p. 719 is still surjective if S; and S are replaced with
their maximal compact subtori, by considering unitary characters.) O

2.7. ENposcopy AND z-EXTENSIONS. — Here we explain a general endoscopic transfer
with fixed central character by removing the assumption that §¢ = L@Ge in Section 2.8
via z-extensions. For the time being, let the base field F' of G be either local or global.
Fix a z-extension over F

1—Z1 — G —G— 1.

Let e = (G*, 5%, 5%, 1) € £5,(G). As explained in [LS87, §4.4] (see also [KSZ, §7.2.6]),

we have a central extension
1— 2721 — G — G — 1,

and ¢ can be promoted to an endoscopic datum ¢; = (G$,GS,s$,n8) for Gy such
that nf : “'GS — LG extends n° : G¢ < LG. Moreover, changing ¢; and ¢ in their
isomorphism classes if necessary, we may ensure that n{ (Wr) and n*(Wp) are bounded
subgroups in “G, and LG, respectively. Indeed, this is done in the course of proof
of Lemma 2.6.2 in the general case. Write X1 (resp. X{) for the preimage of X in Gy
(resp. GY), and x1 : X; — C* for the character pulled back from Y.

To describe endoscopic transfers, it is enough to work locally, so let F' be a local
field. Applying Section 2.8 to G; and e; in place of G and ¢, we obtain an identification
Xi = Xy under the canonical embedding Zg, — Zg; as well as characters Aj :
Zag,(F) — C* and x§ : X5 = X; — C* such that x$ = A" 'y as characters
on X§ = X¥;. Again )\§|Zgl(F) corresponds to the parameter (2.6.2) (with G§,G;

replacing G*, G). We also have a transfer

2.6.4
LS :J(G,x ) =9(Gy,x7 ) u’

where the equality is induced by G1(F) —» G(F).

$(GL. X",
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2.8. THE TRACE FORMULA WITH FIXED CENTRAL CHARACTER. In this subsection, G is a
connected reductive group over Q. Let A denote the maximal Q-split torus in Zg,
and Ag, denote the maximal R-split torus in Zg,. Put

AG,oc = AG(R)Ov AG]R7OO = AGR(R)O'

Let X0 : Ag,c0 — C* denote a continuous character. By L3, (G(Q)\G(A)) we mean
the discrete spectrum in the space of square-integrable functions (modulo Ag ) on
G(Q)\G(A) which transforms under Ag o by xo. Let (X =], X,,x =[], xv) be a

central character datum as in Section 2.5. Henceforth we always assume that
AG,oo C X

We can define L3,  (G(Q)\G(A)) in the same way as L2 (G(Q)\G(A)). Let

disc,x disc,xo
Adise,x (G) stand for the set of isomorphism classes of irreducible G(A)-subrepresenta-
tions in L2

diser (G(Q)\G(A)). The multiplicity of 7 € Adise,x (G) in L.  (G(Q)\G(A))
is denoted m().

Define H(G(A),x™!) := @, H(G(Qy), x, ') as a restricted tensor product. Each
f € H(G(A),x™ ') defines a trace class operator, yielding the discrete part of the
trace formula:

(281) T (f) = Tr (f | Liey (GQ\G(A)) = Y m(n) Te(f]n).

WeAdisc,x (G)

Fix a minimal Q-rational Levi subgroup My C G. Write £ for the set of Q-rational
Levi subgroups of G containing M. Define the subset Lcusp C £ of relatively cuspidal
Levi subgroups; by definition, M € £ belongs to Lcyusp exactly when the natural map
AM o0/ AG.co = Az 0o/AGr,00 1S an isomorphism. Let M € £ and v € M(Q) be a
semisimple element. Write M, for the centralizer of v in M, and Iy = (M,)° for
the identity component. Write 1 () € Zx; for the number of connected components
of M., containing Q-points. Write |Q2*] for the order of the Weyl group of M. For v €
M (Q), let Stab} () denote the set of z € X such that v and 27y are M (Q)-conjugate.
Note that Stabé\{[ (7) is necessarily finite (by reducing to the case of general linear
groups via a faithful representation). When M = G, we often omit M, e.g., I, = L?
and «(y) = :%(7).

Fix Tamagawa measures on M (A) and Ié” (A) for M € Lgysp and fix their decom-
position into Haar measures on M (A>) and M (R) (resp. I}/ (A>°) and I (R)). This
determines a measure on the quotient I (A)\ M (A), which is used to define the adelic
orbital integral at v in M, and similarly over finite-adelic groups. We also fix Haar
measures on X and X.. We equip I(Q) and Xg := X N Z(Q) with the counting
measures and Ag(R)? with the multiplicative Lebesgue measure. Thereby we have
quotient measures on I} (Q)\IM(A)/X, Xo\X/Ac(R)?, and Xo0/Ac(R)°.

We define the elliptic part of the trace formula as

(282) TG (= Y [Stab§(m)I~ ur) " volL, @\, (A)/%)05 (1),

v€ETen, 2 (G)
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for f € H(G(A),x 1) and where T x(G) is the set of X-orbits of elliptic conjugacy
classes of G.

Now we assume that G contains an elliptic maximal torus. Let £ be an irreducible
algebraic representation of G¢, and ¢ : G(R) — C* a continuous character. Let
M € Lgysp and T, an R-elliptic torus in M. Arthur introduced the function ® (7, §)
in v € Two(R) in [Art89, (4.4), Lem.4.2]. (See Lemma 4.4.1 below for a concrete
description.)

Let v € M(Q) and suppose that ~ is elliptic in M (R). Denote by L]/V[’Cpt a compact-
mod-center inner form of (Iéw )r. We choose a Haar measure on I f/” “PY(R) compatibly
with that on I} (R). Write g(I,) € Zx for the real dimension of the symmetric space
associated with the adjoint group of (Iy)R. Following [Art89, (6.3)], define

(2.8.3) X(IYT) o= (=) 15D (I )vol (Apar (NP (R)) (1)),

For f* € H(G(A®), (x>*)™h), let f55 € H(M(A>),(x>)~!) denote the constant
term, cf. Section 3.2 and Section 3.5 below. Dalal extended Arthur’s Lefschetz number
formula [Art89, Th.6.1] to the setting with fixed central characters. It is a harmless
condition that is satisfied in our main setup, but we expect it to be superfluous.

Prorosition 2.8.1. — Let (%,x),§,C be as above. Then for each f> € H(G(A>),
(x>*)™),
Tdci;sc,x(fﬁ»cfoo) )
_ 1 3 (—1)dim(An/4e) QM) ZX(IK)C(V)‘I’M(%ﬁ)Oy(fﬁ)
(@) vol(Xg\X/Ag,00) [2¢] < M () - |Staby (7)]

where the second sum runs over the X-orbits on the set of R-elliptic conjugacy classes
of M(Q).

Proof. — This is [Dal22, Cor.6.5.1]. We just note the difference of notation: his
Ag rat, Ag 00 are our Ag o0, Agy 00, respectively. O

)

MeL cusp

2.9. THE STABLE TRACE FORMULA. Let H be a quasi-split group over Q. Let (Xg, x#)
be a central character datum for H. Write X, , (H) for the set of stable elliptic con-
jugacy classes in H(Q) modulo X5, namely two stable conjugacy classes are equivalent
if one is mapped to the other by multiplying an element x € Xp. Following [KSZ,
§8.3.7], define

STy () =7, (H) 3 [Staba, () [~ SOH) (h)
Y EXenl, x 5y (H)
for h € H(H(A), x5)-

Consider a central character datum (X, x) for G as well as f=®/, f, € H(G(A), x71).
For each ¢ € £5,(G), we have ¢; and a central character datum (X, x§) (whose v-com-
ponents are given as in the preceding subsection). Write ff,, € H(GS§(A), (x§) ™) for
a transfer of f, at each v. Put ff := &/ f{,. For ¢ = ¢*, we transfer f to f* €
H(G*(A),x™ 1) as in Section 2.6.
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Prorosrrion 2.9.1. Let f = @ f, € H(G(A),x'). Assume that there exists a
finite place g such that Og4(fy) =0 for every g € G(Qq)ss that is not reqular. With f*
and f{ as above, we have

TS () =STS () + > oG.G)STGHE (f5).
CGSSl(G)

Proof. — By hypothesis, the stable orbital integral of Ji , vanishes outside G-regular
semisimple conjugacy classes. When the central character datum is trivial, the sta-
bilization of regular elliptic terms is due to Langlands [Lan83], cf. [Kot86, Th.9.6],
[KS99, §7.4], [Lab99]. For general central character data, the argument is essentially
the same if one uses the Langlands—Shelstad transfer with fixed central character as
in Section 2.6. ]

The following finiteness result is going to tell us that the sum in Theorem 7.5.1
(and a similar sum in Theorem 7.1.1 below) is finite for each choice of ¢>P.

Lemwva 2.9.2

(1) Let v be a rational prime such that Gg, and X, are unramified. Let f, €
HY(G(Qy), Xy 1). Then f, transfers to the zero function on G$(Q,) for each e
(G5, 9%, s%,n°) € £5,(Q) if G* is ramified over Q,.

(2) Let S be a finite set of rational primes. The set of e € E5,(G) such that G§, s
unramified at every rational prime v & S is finite.

Proof. — Part (1) follows from [Kot86, Prop. 7.5]. Part (2) is well known; see [Lan83,
Lem. 8.12]. O

3. JACQUET MODULES, REGULAR FUNCTIONS, AND ENDOSCOPY

Throughout this section, let F' be a finite extension of Q, with a uniformizer w
and residue field cardinality g. The valuation on F' is normalized such that || = ¢~ .
Let G be a connected reductive group over F'. We study how certain maps of invari-
ant or stable distributions between G and its Levi subgroups interact with Jacquet

modules and endoscopy, based on [Shil0, Xul7].

3.1. v-AScENT AND JAcQUET mopuLEs. — Let v : G,, — G be a cocharacter defined
over F. Let M, denote the centralizer of v in G, which is an F-rational Levi subgroup.
The maximal F-split torus in the center of M, is denoted by Ay, .

Write P, (resp. PSP) for the F-rational parabolic subgroup of G which contains
M, as a Levi component and such that («,v) < 0 (resp. (o, v) > 0) for every root «
of Ayg, in P, (resp. PP). The set of « as such is denoted by ®+(P,) (resp. ®T(P2P)).
Let N,, N°P denote the unipotent radical of P,, PP. For every o € ®+(P%P), we have
la(v(w))| = ¢~*) < 1. Therefore, v(w) € Apop. The following definition is a
rephrase of [Shil0, Def. 3.1]. ’
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Derintrion 3.1.1. We say that v € M, (F) is acceptable (with respect to v) if the
action of Ad(y) on (Lie NP)F is contracting, i.e., all its eigenvalues A\ € F have the
property that |A| < 1.

By definition, a € Ay, (F) is acceptable if and only if a € Aper. The subset of
acceptable elements is nonempty, open, and stable under M, (F)-conjugacy. Define
Hace(M,) C H(M,) as the subspace of functions supported on acceptable elements.
We also write H,_acc(M,) to emphasize the dependence on v. As in Section 2.2 we

often omit F' for simplicity.

Lemva 3.1.2. Let ¢ € Haee(M,). There exists f € H(G) with the following prop-
erties.

(1) For every g € G(F)ss,
05 (f) = dp,(m)"1 20}l (9)

g
if there exists an acceptable m € M, (F) which is conjugate to g in G(F) (in which case
m is unique up to M, (F)-conjugacy, and the Haar measures are chosen compatibly

on the connected centralizers of m and g), and O? (f) = 0 otherwise.
(2) Tr(f|m) = Tr (¢|Jper (7)) for m € Irr(G(F)).

Proof. — This is [Shil0, Lem. 3.9] except that we corrected typos in the statement.
The same proof still works with two remarks. Firstly, we removed the assumption in
loc. cit. that orbital integrals of ¢ vanish on semisimple elements with disconnected
centralizers. This is possible by reducing to the case of G with simply connected
derived subgroup (then M, ger is also simply connected by Lemma 1.9.1) so that the
centralizers of semisimple elements are connected in both M, and G. Secondly, the

mistake in loc. cit. occurs in line 1, p. 806, where it should read ¢° := ¢ - (5;1/1/2. g

Cororrary 3.1.3. Let ¢ and f be as in Lemma 3.1.2. For every g € G(F)ss,
SO (f) = 8, (m) /25031 (9)

if there exists an acceptable m € M, (F) which is conjugate to g in G(F). Otherwise,
SOS(f) =o.

Proof. This is clear from the preceding lemma, using [Shil0, Lem. 3.5]. O
Derintrion 3.1.4. — In the setup of Lemma 3.1.2, we say that f is a v-ascent of ¢.

Recall the definition of J(-) and the trace Paley—Wiener theorem from Section 2.2.
According to [BDKS86, Prop. 3.2], the Jacquet module induces the map

(3.1.1) A (M) — I(G), F— (7= F(JIper (7)) .

Write Jace(M,) for the image of H,ec(M,,) in J(M,). Then Lemma 3.1.2 means that,
when ¢ € Juec(M,), a v-ascent of ¢ is well defined as an element of J(G), which
is nothing but _#,(¢). The lemma yields extra information on orbital integrals. Xu

JIEP. — M., 2023, tome 10



HO or [cusa VARIETIES 1351

[Xul7, Prop. C.4] shows that (3.1.1) induces a similar map for the stable analogues,
which we denote by the same symbol:
(3.1.2) Hv:8(M,) — 8(G).

Write X5 (G) for the group of F-rational characters of G. Define X5(G)g =
X3#(G) ®z Q and ag := Hom (X (G)g, R). We have the map
(3.1.3) H®: G(F) — ag, g +— (x — log|x(9)])-
It is easy to see that H® is invariant under G (F)-conjugacy. Indeed, if g1, g» become
conjugate in G(F") for a finite extension F’/F then it boils down to the obvious fact
that HS (g1) = HY (gy), since the map HE is functorial with respect to G < G’ :=
RGSF//FG.

For f € H(G), define the following subsets of ag:

suppq, (f) = {H(2) : v € G(F)ss s.t. f(z) # 0},
(3.1.4) suppSy, (f) == {H(z) : x € G(F)ss s.t. O4(f) # 0},
suppaSGO(f) = {HG(J}) cx € G(F)gs 8.t SOL(f) # 0}
Obviously supp5< (f) C suppS.(f) C supp,,, (f). Writing
P (%) := collection of subsets of x,

we obtain a map supp,,, (resp.supp$., supp5?) from H(G) (resp. I(G), 8(G)) to
P(ag).

We define analogous objects for M, in place of G. The injective restriction map
X5(G)g = X5 (M, )g induces a canonical surjection
(315) Prg : Qn, — GG-

Set ap, := ayps, and identify X, (A, )r = ap, by p € Xu(Anr,) = (x = (X, 1)). Then
it is an easy exercise to describe prg as the average map along Weyl orbits: if T' is a
maximal torus of M, (thus also of G) over F, and if the Weyl group is taken relative
to T, then

(816)  pra(n) = 19671 3 wlw) = Q97 Y wln),  pe Xo(Au)x.

weNd wen®

Lemwia 3.1.5. — The sets supp,,, (f), supp$, (f), and supp5<(f) remain unchanged
if we restrict x in the definition (3.1.4) to a subset D C G(F)eg that is open dense
in G(F).

Proof. Since the map H® is continuous with discrete image, for each y in
supp,,, (f), suppaoG (f), or suppfg(f), the preimage (H%)~!(y) is open and closed.
If y € supp,,(f) then supp,,(f) N (HY)~!(y) is nonempty open in G(F) thus
intersects D. This proves the assertion for supp,,. (f).

Next let y € suppS.(f). Then (H®)"'(y) N D is open dense in (HY)7!(y).
If O.(f) =0 for every x € (HY)"!(y) N D, we claim that

0:(f)=0,  ze(H) (y)NG(F)s
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If x is regular, this follows from local constancy of O, (f) on regular elements. A Sha-
lika germ argument then proves O.(f) = 0 for non-regular semisimple z. (Com-
pare with the proof of Lemma 3.4.5 (1) below.) However, the claim contradicts
y € supp§, (f). The lemma for suppl, (f) follows. Finally, the stable analogue is

proved likewise. O
Lemyva 3.1.6. — The following diagrams commute.
Tuee(M,) —Z253(6) S (0,) —25(C)
supps,, l ‘Suppaoc suppy ‘ supps<
P(ap,) —2C s P(ag) P(ap,) —2C s P(ag)

Proof. — This follows from Lemma 3.1.2 and Corollary 3.1.3 since, for each m €
M, (F), the canonical map ay;, — ag sends HMv(m) to H%(m). O

Let k € Z and ¢ € H(M,). Define ¢ (1) := ¢(v(w)~*l) for | € M,(F) so that
#®) € H((M,). Since v is central in M, this induces a map

(3.1.7) () B2 9(M,,) — I(M,).

Lemma 3.1.7. If ¢ € Hace(M,) then ¢F) € Hoee(M,) for all k > 0. Given ¢ €
H(M,), there exists kg = ko(¢) such that %) € Hoee(M,) for all k > ko. The
analogue holds true with J in place of H. Moreover, letting f*) denote the v-ascent
of %) for k > ko, we have

supp, (f*) = prg(suppy,, (6™)) = k- HE (v(w)) + pre(suppy,, (9)),

for x € {O, SO} and where prg = ap, — ag is the canonical surjection.

Proof. — The assertions before “Moreover” follow from the facts that v(w) is accept-
able and that ¢ has compact support. As for the last assertion, the second equality is
obvious, so we check the first equality. By Lemma 3.1.5 it is enough to verify firstly
that if Oy (f*)) # 0 for g € G(F),eq then H%(g) € prG(supngu (¢*))), and secondly
that if Oy, (¢™™) # 0 for m € M(F),eq then prg(HM (m)) € suppQ, (f*)). This fol-
lows from Lemma 3.1.2 (1) and Lemma 3.1.6. The case of stable orbital integrals is
analogous. |

Let Groth(M, (F')) denote the Grothendieck group of admissible representations of
M, (F).

Lemva 3.1.8. Let 71,3 € Groth(M, (F)). Assume that for each ¢ € I(M,), there
exists ko(¢) € Z such that Trmy(¢F)) = Trmo(¢F)) for all k = ko(¢). Then 1 = ma
in Groth(M, (F)).

Proof. — This is proved by the argument of [Shi09, p. 536]. O

JIEP. — M., 2023, tome 10



HO or [cusa VARIETIES 1333

3.2. V-ASCENT AND CONSTANT TERMS. Fix an F-rational minimal parabolic subgroup
Py C PP of G with a Levi factor My C M,. Let P be another F-rational parabolic
subgroup of G containing Py, with a Levi factor M containing M. Henceforth we
will often write L := M,,.

We have the constant term map (compare with (3.1.1))

(3.2.1) ¢S 9G) — IM), T ((ﬁM — ?(n_mdgz(w))),

where n-ind$; : Groth(M(F)) — Groth(G(F)) is the normalized parabolic induction
(which does not change if P is replaced with a different parabolic with Levi factor M).
On the level of functions, when f € H(G), we can define fi; € H(M) by an integral
formula (e.g., [Shill, (3.5)]) so that

O?(f) =0, Vg€ G(F)reg not conjugate to an m € M(F'),

(322) O,C,';(f) — DG/M(m)l/QOrJrVLI(fM)7 VG—regular m € M(F)>

where D¢ /pr - M(F) — RZ denotes the Weyl discriminant of G relative to M. This
identity and parts (i) and (ii) of [Shill, Lem. 3.3] tell us that f — fas descends to
the map %}; above. (Even though G is a general linear group in loc. cit. everything
applies to general reductive groups since that lemma is based on the general results
of [vD72].)

Since n-ind§; induces a map R(M)* — R(G)** [KV16, Cor.6.13], the map €5
descends to a map on the stable spaces, still denoted by the same symbol:

€3 8(G) — $(M).
Define the following set of representatives for QX\ Q¢ /QM:
QL ={weQ’ wMnP)C P, w(LNP)C P}

For w € Qf/LL, write M, := M Nw™ (L), P, :== M Nw (P,), and L, :=w(M)N L.
Note that M, (resp. L) is an F-rational Levi subgroup of M (resp. L) and that w
induces an isomorphism M, — L,,, thus also w : J(M,,) = I(L,,) by

¢ (g dw™g)).

Since v is central in L, its image lies in L. So v, := w™!(v) is a cocharacter of M,,,.
Hence we have a chain of maps

&L -1
J(L) —L=s 9(Ly,) & I(M) LN I(M).
Lemma 3.2.1. If ¢ € Ty ace(L) then ‘KLLW (¢) is contained in Iy ace(Ly)-

Proof. — The proof of Lemma 3.3.5 below works verbatim: just replace stable orbital
integrals there with ordinary orbital integrals, and use (3.2.2). (Since Lemma 3.3.5 is
more general, we supply a detailed argument only for the latter.) |
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Lemwva 3.2.2. We have the following commutative diagram. The exact analogue is
true with 8(-) in place of I(-).

I(L) S I(@G) ‘it J(M)

@Cgfw Zw j’/w

O L) B O I0L)

weNg 1, weng |,

Proof. — Let ¢ € J(L). We check that the images of ¢ in J(M) given in the two
different ways have the same trace against every my € Irr(M(F)):

Te (61, (£0(@)mar) = Tr (7,(6) n-ind§ (mar) ) = Tr (¢l 75, (n-indf (mar)) )
= > T (eheindf, (wip, () = Y. Tr( S @ EE @)Im ),

WEQ%,L “’EQ%,L

where the second last equality comes from Bernstein—Zelevinsky’s geometric lemma
[BZ77,2.12]. The 8(-)-version is immediate from the J(-)-version proved just now, since
each map in the big diagram descends to a map between the stable analogues. O

3.3. V-ASCENT AND ENDOSCOPIC TRANSFER. — In this subsection we assume that G is
quasi-split over F. Let ¢ = (G, G%, 5%, n°) be an endoscopic datum for G such that
G* = L'G*. (The last condition will be removed via z-extensions in Section 3.6.) Here
we fix T p-pinnings (B¢, T¢, {Xa- }) and (B, T, {X,}) for G¢ and @, respectively. (These
choices are implicit in the discussion of Section 2.6.) Conjugating n° we may and will
assume that n¢(7¢) = T and n*(B¢) C B.

We have a standard embedding P, < G and a Levi subgroup *M, C 'P, as
in [Bor79, 3.3, 3.4]. Choose a subtorus S C T such that Cent(S,YG) = £ M,,. (This is
possible by [Bor79, Lem. 3.5].) Following [Xul7, §6], define

Q%(e,v) := {w € QY | Cent(w(S), LG*) — W is surjective}
and Q. , = QGt\QG(e, M,)/QMv . For each w € €, ,,, we obtain an endoscopic datum

e, = (GSJ,LGZ,SQ n,,) for L =M,

w?

as follows. (Henceforth we view “G*® as a subgroup of “G via 7°.) Pick g € G such
that Int(g) induces w on S. Then g “P,g~! N G* is a parabolic subgroup of *G* with
Levi subgroup g “M, ¢!, so there is a corresponding standard parabolic subgroup
Pt = MENE such that the standard embedding “P¢ — LG*® (resp. LMS — LG*)
becomes gLP,g71 N LG (vesp. g“M,g~! N £G*®) after composing with Int(g¢) for
some ¢g°¢ € G*¢. Then there is a unique L-embedding 7¢, : “M$ < LM, such that
Int(g) ont, = n° o Int(g%). Set G¢, := Mg, and s¢, := g sg € M,,. Then it is a routine
exercise to check that (G¢,,LG?, st n¢) is an endoscopic datum for M,,.
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There is a canonical embedding Ay, — Ay = Agy (ust like Zyg — Z in
Section 2.6). Composing with v : G, — Apz,, we obtain

Vy - Gm — AG& .
By construction, Gt, = M is a Levi subgroup of G* that is the centralizer of v,. In
particular, we have a map 7, : 8(G{,) — 8(G*) as in (3.1.2). Consider the following

commutative diagram

‘4

W IC R R VAR
(3:3.1) Int(g°) Int(g)
[4
Wi tge 1, 1q L79,

where the maps out of W come from canonical splittings for the L-groups, the two
horizontal maps on the right are induced by ZJ({L C M, and Z2 C G, the first two
vertical maps correspond to the Levi embeddings (coming from G¢, C G¢ and M,, C G)
followed by Int(g¢) and Int(g) respectively, and finally the rightmost vertical map is
induced by Z& C Z§,; . The left square in (3.3.1) commutes by Int(g)ong, = n°oInt(g*)
above. The commutativity of the right square is obvious since Int(g) acts trivially on
LZY,. Denote by

A 2y (F) — CF (resp. \* : Z2(F) — CX)

the smooth character corresponding to the composite morphism from Wz to © ZR/[V
(resp. LZ2) in the first (resp. second) row. The character A° is the same as in Sec-
tion 2.6. The commutativity of (3.3.1) implies that A{[z0 ) = A°. The canonical
splittings from Wr to YG¢, and “G* commute with the Levi embedding *G¢, < LG*
without Int(g®), but the point is that Int(g¢) on “G® is equivariant with the trivial
action on ©Z2 via the horizontal maps in (3.3.1).

Lemwva 3.3.1. Assume that n°(Wr) is a bounded subgroup of “G in the sense above
Lemma 2.6.2. (This condition can always be ensured by that lemma.) Then A, is a
unitary character.

Proof. — By assumption and commutativity of (3.3.1), n¢,(Wr) is a bounded sub-
group of M, whose image in LZRL is a bounded subgroup accordingly. Therefore,
A, is a unitary character via the Langlands correspondence for tori. |

Prorosition 3.3.2. — The following diagram commutes.

101,) —2* 36
@[mj /

D 8(G

BISI9

K 869
S S
)
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Let ¢ € O (M, (F)). If f*®) = 7,(¢™)) then writing o) = LSe’w(qS)(k), we have
o) =M (v(@) LS (e, L) = Y AL (@) A ().

wee

Remark 3.3.3. — When e is given by a Levi subgroup M as in Section 3.2 (so that
G = M), we have LS® = €}, LS** = %LLW, and the meaning of v, is consistent
between Section 3.2 and Section 3.3. We leave it to the interested reader to compare
the diagram above with that of Lemma 3.2.2.

Proof. — The first equality follows from the equivariance property of transfer as
discussed in the paragraph containing (2.6.3) (applied to z = v(w)™*, G = M,,
G* =G, and f = ¢). The commutative diagram comes from (C.4) in [Xul?] (when 0
is trivial). This, together with the first equality, implies the last equality. O

Cororrary 3.3.4. — Let ¢, qbff), and %) be as in Proposition 3.3.2. Then
supps?, (F, (60))) = k- H (va(@)) + prge (suppfC (LS(6))),  w € D,
where prg. : age —» ags is the natural projection.
Proof. — By Lemma 3.1.7 and Proposition 3.3.2,
supps, (S, (00)) = pre (supps, (91)) = pree (supp, (LS“*(6M)))
= prge (k- HO () + supps2, (LS™(9)) ).
We finish by observing that prg. (H (v, (@))) = HE (1, (w@)). O

It is useful to know preservation of acceptability in the setting of Proposition 3.3.2
as this will allow an inductive argument in the proof of Corollary 4.2.3 below.

Lemma 3.3.5. If ¢ € Jacc(M,) then ¢, := LS*“(¢) is contained in Syec(GE,).

Proof. Suppose that SO, (¢,,) # 0 for a strongly M, -regular element v, € G, (F).
We need to check that v, is v,-acceptable. (This is enough thanks to Lemma 3.1.5.)

From the orbital integral identity for SO, (¢.,) (cf. (2.6.1)), we see the existence
of v € M, (F)s whose stable conjugacy class matches that of ~,, such that O, (¢) # 0.
The latter implies that v is v-acceptable. Write T, T,, for the centralizers of =y, v,
in M,, G¢,, respectively. The matching of conjugacy classes tells us that there is a
canonical F-isomorphism ¢ : T ~ T,, which carries 7 to ~,,, cf. [Kot86, §3.1]. (A priori,
i sends the stable conjugacy class of v to that of 7, and is canonical up to a Weyl
group orbit. But i is determined if required to send v to ~y,.) Since v is central in M,,,
the map 7 necessarily carries v to v,,. Regarding 7" and T, as maximal tori of G
and G¢, respectively, we have an injection i* : R(G{,,T,,) — R(G,T) between the sets
of roots induced by i (again [Kot86, §3.1]) such that

(3.3.2) (o, v,) = (i*(a), V), a € R(G;,T,).
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We are ready to show that 4, is v,-acceptable. Let a € R(G¢,,T,,) such that
(o, v,) > 0. We need to verify that |a(7,)| < 1, cf. Definition 3.1.1. But (i*(a),v) > 0
by (3.3.2), so the v-acceptability of v implies that |i*(a)(7y)| < 1. Since i*(a)(y) =
a(7,), the proof is finished. O

3.4. C-REGULAR FUNCTIONS AND CONSTANT TERMS. — Assume that G is split over F' and
fix a reductive model over Op, still denoted by G. Let T be a split maximal torus
of G over Op. Let C € Ryy.

Derinition 3.4.1. — A cocharacter p : G, — T is C-regular if the following two
conditions hold.

(1) o, )| > C for every a € ®(T, G),

(2) [{cr]aypras(wp))| > C for every proper Levi subgroup M of G containing T,
every w € QY and every o € ®(T, G)\®(T, M).
Write X, (T)c-reg for the set of C-regular cocharacters.

Lemva 3.4.2. — The following are true.

(1) The subset Xy(T)creg of Xi(T) is nonempty, and stable under both nonzero
Z-multiples and the QC -action.

(2) Let p,pup € Xu(T). If u is C-regular, then there exists kg € Zsq such that
wo + kp is C-regular for all k > ky.

Proof

(1) Let X.(T)r,c-reg denote the subset of X, (T)g defined by the same inequalities
as in Definition 3.4.1. We choose an inner product on X,(7T)g invariant under the
Weyl group action. Clearly X, (T")c.reg and X.(T)r,c-reg are stable under nonzero
Z-multiples and the Weyl group action, and the latter is open. It suffices to verify the
claim that X, (T)r,c-reg is nonempty. Indeed, if the claim is true, we choose an open
ball U C X.(T)Rr,c-reg- For k € Zsq large enough, k - U contains a point of X, (T'),
which then also lies in X, (T") ¢-reg-

Let us prove the claim. Identify X, (T)g with the standard inner product space R™
via a linear isomorphism. Say that a measurable subset A C R™ has density 0 if
vol(ANB(0,r))/vol(B(0,7)) — 0 as r — oo, where B(0,r) denotes the ball of radius r
centered at 0. We will show that the complement of X, (T)r,coreg in Xu«(T)r is a
density 0 set. Since a finite union of density 0 sets still has density 0, it is enough to
check that each of the conditions [{a, p)| < C and [{a4,,,pry(wp))| < C defines a
density 0 subset in X, (7)g. Either condition defines a subset of R" of the form

(3.4.1) larzy + -+ apzp| < C

in the standard coordinates (1, ..., ), with a1, ..., a, € R. Moreover, not all a;’s are
zero, since neither (o, u) nor (&|a,,, pras(wp)) is identically zero on all p € X.(T)g.
(In the case of {(a|a,,,pra(wp)), the reason is that pry, : Xu(T)r — X«(Apr) is
surjective, and that a|4,, € X*(Aar) is nontrivial since a ¢ ®(T, M).) Now it is
elementary to see that (3.4.1) determines a density 0 subset. This proves the claim.
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(2) Since the pairings in Definition 3.4.1 are linear in p, it is enough to choose kg
such that (ko — 1)C is greater than |(a, )| and |{&|a,,, pras(wp))| for all o, M, w as
in that definition. O

Define T'(F')¢-reg to be the union of p(wr)T(OF) as p runs over the set of C-regular
cocharacters. For each M € L£(G) containing T, set

(3.4.2) ar.c = {a € ay : [{o,a)| > Cllog|w||, Ya € (T, G)\@* (T, M)}.

Here we use the pairing X*(T)gr x X, (T)r — R to compute («, a), viewing a in X, (T)g
via apr = Xu(Ap)r C Xi(T)r. Recall that X, (Ay)r ~ Hom(X*(M)g,R) via a —
(x — (x,a)). Analogously X,(Ar)r ~ Hom(X*(T)r,R). Write pry,; : X.(Ar)r —

— X« (Ap)r for the map induced by the restriction X5 (M) — X5(T). (This is the
analogue of prg in Section 3.1.)

Levma 3.4.3. Let M C G be a Levi subgroup containing T over F. Then the image
of T(F)C-reg under HM s contained in ay.c.

Proof. — Consider t := p(w) with gt € X.(T)¢oreg- Then H () € Hom(X*(M)g,R)
is identified with the unique element a € X, (Apr)r such that

(x,a) =log |x(u(w@))| = (x, ) loglw|,  x € X*(M)g.
Let o € ®(T,G)\®(T, M). Since the composite of the restriction maps X5 (M)r —
X5(T)r — X*(Ap)r is an isomorphism, we can find x € X5 (M)g such that x|a,, =
ala,,. Hence

(o, a) = (alay, @) = (X|aw, @) = (X, @) = (x, ) log || = (x| ar, 1) log ||
= (6 prag(p)) log @] = (@l ay, pray () log |oo|.

Since u is C-regular, |(&|a,,,pry (1)) > C. Hence |{a,a)| > C|log |w]]. O
The following definition is motivated by [FK88, p. 195].

Derinition 3.4.4. — Let C' > 0. Wesay f € H(G) is C-regular if supp(f) is contained
in the G(F)-conjugacy orbit of T(F)c.reg-? Write H(G)creg for the space of C-
regular functions.

Levmva 3.4.5. Let f' € H(G). Assume that every g € G(F)reg such that Og4(f")#0
(resp. SO4(f') # 0) is G(F')-conjugate (resp. stably conjugate) to an element of
T(F)C-reg- Then

(1) Og(f") =0 (resp. SO4(f") =0) if g € G(F)ss is not regular, and

(2) there exists f € H(G)creg Such that f and f’ have the same image in J(G)
(resp. 8(G)).

(®)1n practice it seems enough to impose the condition on supp® (f). However when producing
examples of C-regular f, often we have this condition satisfied.
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Proof. (1) If g € G(F)ss is not regular then no regular element in a sufficiently small
neighborhood of ¢ intersects the G(F)-orbit of T(F')c.reg. (Since every ¢t € T(F')c reg
satisfies |1 — a(t)| = 1 for @ € (T, G), no a(t) approaches 1.) Thus f’ has vanishing
regular orbital integrals in a neighborhood of g. This implies that O4(f") = 0, by
an argument as in the proof of [Rog83, Lem.2.6] via the Shalika germ expansion
around g. The case of stable orbital integrals is analogous.

(2) The point is that the G(F')-conjugacy orbit of T'(F')c.reg is open and closed in
G(F). (Since T(F)c-reg is open and closed in T'(F), and the map

G(F)/T(F) X T(F)C-reg — G(F)

induced by (g,t) — gtg~! is a local isomorphism.) Thus the product of f’ and the

characteristic function on the latter orbit is smooth and compactly supported, and
thus belongs to H(G)c.reg. Denoting the product by f, we see that f and f’ have
equal orbital integrals (resp. stable orbital integrals) on regular semisimple elements.
Therefore have the same image in J(G) (resp. $(G)). O

CoroLrary 3.4.6. — Fiz a C-regular cocharacter p : G, = T. Let ¢ € H(T). Then
there exists an integer ko = ko(p) such that for every integer k > ko, the p-ascent
of \¥) is represented by a C-regular function on G(F).

Proof. — There is a finite subset X C X, (T) such that supp(¢) CU,,,c x #o(@r)T(OF).
Applying Lemma 3.4.2 to each pug € X and also Lemma 3.1.7, we can find ky =
ko(¢) € Zso such that ¢(¥) is y-acceptable and supp(¢*)) C T(F)c.req for all k > k.
Write f(®) for a p-ascent of ¢*). By Lemma 3.4.5 it suffices to check for each k > ko
and g € G(F)eq that if Oy(f*)) # 0 then g is in the G(F)-orbit of T(F)c.reg- This
follows from the observed properties of ¢*) by Lemma 3.1.2. g

LEevvia 3.4.7. Let f € H(G)Creg, M € L=(G), and ¢ € E<(G). The following are
true.

(1) €5 (f) € I(M) is represented by a function frr € H(M) whose support is
contained in the M (F)-conjugacy orbit of T(F)c-reg. (In particular, fur is a C-regqular
function on M(F).)

(2) LS*(f) € 8(G*) vanishes unless G is split over F. If G* is split over F' then
LS*(f) is represented by a C-regular function on G*(F).

Proof. — (1) We keep writing T(F)c.reg for the set of C-regular elements relative
to G, which contain C-regular elements relative to M. Since T(F)¢.reg is invariant
under the Weyl group of G, an element v € M(F)s is conjugate to an element of
T(F)c-reg in G(F') if and only if it is so in M (F'). In light of Lemma 3.4.5, it suffices
to show the following: if O, (€5} (f)) # 0 for regular semisimple v € M (F) then 7 is
M (F)-conjugate to an element of T'(F')¢.reg-

If v is G-regular then we have from Section 3.2 that O, (f) = Dg/n(7)O4 (€55 (f)),
which is nonzero only if 7 is conjugate to an element of T'(F')¢.reg. If 7 is regular but
outside the M (F)-orbit of T(F')c.reg, then a sufficiently small neighborhood V' of v
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does not intersect the M (F')-orbit of T'(F') c-reg. On the other hand, G-regular elements
are dense in V. Since an orbital integral is locally constant on the regular semisimple
set, it follows that O, (€5 (f)) = 0.

(2) If T transfers to a maximal torus in G¢ then G* is split over F since T is a split
torus. Thus LS®(f) = 0 unless G* is split over F. Now we assume that T transfers
to a maximal torus T° C G*, equipped with an F-isomorphism 7' ~ T (canonical
up to the Weyl group action). Via the isomorphism we transport A to A* : G,,, — T
and identify ®(T°¢ G*) as a subset of ®(T,G). By abuse of notation, keep writing
T(F)C-reg for its image in T°(F'). Then C-regular elements of T¢(F) are contained in
T(F)C-reg-

Now the rest of the proof of (2) similar to that of (1), based on Lemma 3.4.5.
It suffices to check that if SO« (LS°(f)) # 0 for G-regular semisimple v* € G*(F)
then ~¢ is stably conjugate to an element of T'(F )c_reg. This is evident from the
transfer of orbital integral identity. O

CorovLrary 3.4.8. — For f € H(G)creg and M € L=(G), we have suppS. (€51 (f)) C
ap,c-
Proof. Let fas be as in the preceding lemma. Then

suppS (€57 (f)) = suppS (far) C suppg,, (far) € HM (T(F)creg) C anrcs

where the last inclusion comes from Lemma 3.4.3. O

The following lemma, to be invoked in the proof of Corollary 7.6.2, sheds light on
how much C-regular functions detect.

Levmma 3.4.9. — Let I be a finite set and let C > 0. Let m; € Irr(G(F)) and ¢; € C
foriel. If

daTrm(f)=0  Vf€H(G)Creg

iel
then Y ,c;ci - Jp,(m) = 0 in Groth(G(F)) ®z C.

Proof. — Fix a regular cocharacter u : G,,, — T over F such that Py = PyP. For each
¢ € H(T), we have some integer kg such that ) are p-acceptable for all k > ko and
their p-ascent f) are represented by C-regular functions by Corollary 3.4.6. Thanks
to Lemma 3.1.2,

0= Zci TI‘(f(k)|7T1) = Zci T‘I‘((ﬁ(k”t]po(ﬂ'i)), Vk 2 k‘o.

icl il
We conclude by Lemma 3.1.8. O
3.5. FIXED CENTRAL CHARACTER. We explain that the facts thus far in Section 3

hold in the setup with fixed central character. Let v : G,, — G be a cocharacter
over F and (G*,G%, s°,1°) an endoscopic datum for G with ¢ = LG*®. We can view X
as a closed subgroup of M, (F), G¢(F), and G¢,(F) of the preceding sections via the
canonical embeddings of Z(F) into their centers.
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As before, Haee(M,,x 1) € H(M,,x 1) is the subspace of functions which are
supported on acceptable elements. Taking the image, we also have J...(M,,x %)
and 8,cc(M,,x™1). Since acceptability is invariant under the translation by central
elements, the y-averaging map induces a surjection Haec(M,) — Haee (M, x~1). The
analogous surjectivity holds for J,.. and S,cc.

The earlier results are valid in the setting of fixed central characters, with the
following minor modifications. The proofs are omitted as no new ideas are required.

16 adapt Section 3.1. —  Averaging the v-ascent map, we obtain

S IMy,x7h) — G xTY, Z i 8(My,xT!) — 8(G,x )

satisfying the orbital integral and trace identities in Lemma 3.1.2 (with central char-
acter of m equal to x) and Corollary 3.1.3. The obvious analogues of Lemmas 3.1.5
and 3.1.6 hold true (with no changes to the bottom rows in the latter lemma). The
map (-)*) in (3.1.7) induces linear automorphisms on J(M,,, x~!) and J(G, x~'). With
this, Lemmas 3.1.7 and 3.1.8 imply their natural analogues, restricting 7y, 72 in the
latter lemma to those with central character .

1o adapt Section 3.2. —  Averaging the map H(G) — H(M) given by f — far, we ob-
tain a map H(G, x 1) — H(M,x 1), which induces

ey (G — IM,x Y

satisfying the same orbital integral identity as in Section 3.2. We can also describe
¢ by the same formula (3.2.1) from the space of linear functionals on R(G, ) to
that on R(M, x). Lemmas 3.2.2 and 3.2.1 carry over as written, with y ~!-equivariance

imposed everywhere.

76 adapt Section 3.3. — The Langlands—Shelstad transfer with fixed central character
was already considered in Section 2.6 by averaging the transfer without fixed central
character. With this in mind, we deduce the obvious analogues of Proposition 3.3.2,
Corollary 3.3.4, and Lemma 3.3.5. In particular, the diagram in that proposition yields
the following analogue.

I(My,, x~ 4V>JGX —>8 G xo )

S(GE,
GQ

w e,V

1o adapt Section 3.A. Definition 3.4.4 extends obviously to (G, x 1) by the same
support condition. A key observation is that the notion of C-regularity is invariant
under Z(F)-translation, so that the latter definition behaves well. More precisely, the
x-averaging map from H(G) —» H(G,x 1) is still surjective when restricted to the
respective subspaces of C-regular functions. Using this, we carry over all results in
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1

Section 3.4 to the setup with fixed central character, restricting to x ™ -equivariant
functions and representations with central character y.
3.6. z-extENsions. — Throughout this section up to now, we assumed §¢ = “G* on

the endoscopic datum e. When the assumption is not guaranteed, we pass from e
and G to ¢; and Gy via z-extensions and pull back the central character datum from
(X,x) to (X1,x1) as explained in Section 2.7.

Let v1 : G,, — G1 be a cocharacter lifting v. (Such a v is going to be chosen in
practice; see Section 7.4 below.) By Definition 3.1.1, v € M,, (F) is vi-acceptable
if and only if its image in M, (F) is v-acceptable. Everything in this section goes
through with e1, G, (X1, x1), 71 playing the roles of ¢, G, (X, x),v. We write A\{, A{ ,
for the characters A, A{, of Section 3.3 in the setup for ¢; and G.

4. ASYMPTOTIC ANALYSIS OF THE TRACE FORMULA

We prove key trace formula estimates in this section, to be applied to identify
leading terms in the trace formula for Igusa varieties in Section 7. The main estimate
is Theorem 4.2.2, whose lengthy proof is presented in Section 4.4. We work in a
purely group-theoretic setup, with no reference to Shimura or Igusa varieties in order
to enable an inductive argument on Q-semisimple rank. The point is that the trace
formula appearing in the intermediate steps need not arise from geometry.

4.1. SETUP AND SOME BASIC LEMMAS. — Throughout Section 4, G is a connected quasi-
split reductive group over Q.

Let (X, x) be a central character datum as in Section 2.8. Let £ be an irreducible
algebraic representation of G¢ and ¢: G(R) — C* be a continuous character such
that £ ® ( has central character Xgol on X. The restriction Xoo|Ac,oo via Agoo C Xoo
can be viewed as an element of X*(Ag)c, which is again denoted yo, by abuse of
notation.

We will write HS: G(Q,) — ag,, for the function defined by Equation (3.1.3)
(which also makes sense for F' = R). We have a canonical identification

(4.1.1) ac = Xu(Ag)r = HOH](X@(G),R), ar— (x— <X‘Acva>)'
A similar map induces identifications ag, =X.(Ag,, )Jr = Hom(X§, (G),R). In par-

ticular, there is a natural surjection ag, —# ag at each place v. Thereby we often
view the image of HS in ag.

Let Xy, denote the unique character making the following diagram commute. (The
existence is obvious since the composition Ag o — a¢ is an isomorphism.)

HE Ao

AG,oo C G(R) aAGr ag = X*(Ag)R Cx

Xoo

Fix distinct primes p,q. Let v : G, — Gg, be a cocharacter over Q,. Let U €
Hom(X§(G), Q) denote the image of v € X, (A, )o = Hom(Xg(M,),Q) induced by
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M, < G.© By definition, 7(x) = v(x) for x € X§(G). Viewing 7 as a member of ag,
we can compute (xoo,?) € C via the canonical pairing X*(Ag)c x X«(4g)c — C.

Levma 4.1.1. M (HE (v(p))) = p~Xee )
G(l/

Proof. — By definition H,’(v(p)) sends x € X§(G) to log|x(v(p))],. Similarly for
a € Ag o, we have HG (a) = (x — log |x(a)|s). We claim that HS (v(p)) € G, and
HS (w(p)~!) € ag, have the same image in ag. To show this, choose r € Z>; such
that 77 € X,.(Ag). Since ag is torsion-free it suffices to check that Hg((m/)(p)) =
HS ((r7)(p)™'), or equivalently that

X(r) ()l = X (D)), x € XG(G).

Since x((r7)(p)) € Q is an integral power of p (as both x and r7 are algebraic),
we have [x((17)(p))l = IX((r7)(p))|;* = [x((rv)(p))|, . This proves the claim. Now
the claim implies that

M (S (0p)) = M (HE@@) ™) = xoe (P() ) =p~ 07 D
If G is a connected reductive group over Q and S is a set of Q-places, we write

HS(7) =Y H{(y) € ag.
veS

If S¢ is the complement of S, we write H&S" := HS.

Lemma 4.1.2. — Let G be a connected reductive group over Q.

(i) Let S be a set of Q-places. Let v, € G(Q). If v and v are conjugate in G(Q)
then we have HS (v) = HS (V') € ag.
(ii) Let S be the set of all Q-places. Let v € G(Q), then H§(v) =0 € ag.

Proof. (i) Let F/Q be a finite extension such that v and v’ are conjugate in G(F).
Set G' := RespjoM. The natural embedding i : G — G’ allows to view 7,7’ as
elements of G'(Q), and induces an injection ag < ag/. Thus it suffices to prove
that HS (v) = HS (v'), since the map HS : G(As) — ag is functorial with respect
to 7. By the reduction in the preceding paragraph, we may assume that v and +' are
conjugate in G(Q). Then the proof is trivial since HS is a homomorphism into an
abelian group.

(ii) Using the functoriality for G — Z¢, from step 1, we may replace G by its
cocenter Zg,, then Z/, by the maximally split torus A inside Z(,, and finally we
may replace A by G,,, in which case the statement boils down to the usual product
formula. U

If M € Leysp(G), we write r_en, x (M) for the set of v € M(Q) such that v € M(R)
is elliptic, and ~ is taken up to M (Q)-conjugacy. The following will be useful when
studying Levi terms in the geometric side of the trace formula.

(6)In the notation of the preceding section, 7 = prg(v).
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Lemya 4.1.3. Let M € Loysp(G) and let v € Treen x(M) be a regular element.
Let P C G be a parabolic subgroup with Levi component M. Let £ be an irreducible
representation of M¢, and (: M(R) — C* a continuous character. Write fCM5 for the
function on M(R) given by (2.4.1). Then

vol(Xg\X/Ag,00) " X(I)1)C(y) Tr(7; €) = d(M)vol(1) (Q) Apar oo\ I} (A)/X) O (£E5)-
Proof. — By Equation (2.8.3) we have
XY = (=1) 1D (I vol (A \IMmPH(R))~1d(IM) = 1.
=0

As 7y is regular, I} is a torus and d(I1}') = 1. Additionally ¢(1}")
and

(as 7 is elliptic)

(1)) = vol(I} (@) Apar o\ I3 (A)).

Thus we obtain

3(IM) = vol(IM(Q) Ay oo \IM (A) ol Ay \IMmP(R)) 1,
Since v is R-elliptic, we obtain from (2.4.2) that

C(7) Tr(7;€) = d(M)vol(Anr,oo\ Iy ™ (R) O3 (f20)-
(we also used e(I}') = 1; recall Ay := Apr(R)?). We obtain
vol(XQ\X/Ac,00) "' X(177)C () Tr(7:€)
vol(IM (Q) Agar \IM (A A\ [Mcmpt
=00 e A ij((jj;”m\\zM,cmpt(i)))) O3 e
= d(M)vol(I} (Q)Azar o \IJT (A)/X) O (f20),

where we used that Ay; equals A Y because 7 is elliptic. |

4.2. THE MAIN ESTIMATE AND ITS CONSEQUENCES. — We prove the following bounds for
elliptic endoscopic groups and Levi subgroups of G, to be applied in Section 7.

The notation O(f(k)) (resp. o(k)) for a nonzero C-valued function f(k) on k € Z
means that the quantity divided by |f(k)| has bounded absolute value (resp. tends
to 0) as k — +oo. In practice we take f(k) to be complex powers of p (so we take
absolute values). In our argument, every instance of o( f(k)) turns out to represent a
power-saving, namely it is bounded by a power of p with (the real part of) exponent
strictly smaller than the exponent for f(k).

Let us fix a Q-rational Borel subgroup B with Levi component T' C B (which is
a maximal torus in G). We fix a Levi decomposition B = T'Ny. As before we write
Ar C T for the maximal Q-split subtorus. Additionally we write S, C Tg, for the
maximal Q,-split subtorus.

Part of our setup is a cocharacter v: G,, —+ G over Q,. By conjugating, we may
and do assume that v has image in 7" and that v is B-dominant. Write p € X*(T)q
for the half sum of all B-positive roots of T in G over @,. Thus we have (p,v) €
%Z>0. We transport various data over Q, or @p to ones over C via an isomorphism
tp: Q, ~ C. (We will fix ¢, in Section 5.2.)
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We also fix a prime ¢ such that Gg, is a split group. (For the existence, choose
a number field F' over which G splits. Then any prime ¢ that splits completely in F’
will do.) If needed for endoscopy, an auxiliary z-extension G of G over Q is always
chosen to be split over Q; this is possible because Gg, is split. Thus the contents of
Section 3.4 and their adaptation to z-extensions apply to G’ and G over Q. Since all
endoscopic groups appearing in the argument will be split over Q4 (to be ensured by
Lemma 3.4.7 in the proof of Corollary 4.2.3), whenever choosing their z-extensions,
we take them to be also split over Q; without further comments.

Prorvosirion 4.2.1. — Let foF =[], , fo € H(G(A®P), (x>°P)~1) and ¢, €
Hace (M, (Qp), x; ). For k € Z, write f,gk) € H(G(Qp), x; ") for a v-ascent of ¢§,k) as
in Section 3.2. Then
Tgsc,x(f;gk)foo’pf&c) — O(pk(ml/)*(XooP))).

Proof. — The left hand side equals

> mm) Te(fP|my) Te(f>r

ﬂeAdisc,x(G)

Write Jper(m,) = >, ¢;7; in Groth(M, (Q,)) with 7; € Irr(M, (Qp)). Let w,, denote
the central character of 7;. Then

Tr(fyPmp) = Tr(@f | Tpgr (m)) = D e Trl@f|m) = 3 eicor, (v(p))* Tr(pl:).

) Tr(fe,c|moo)-

We define a character Ay : G(Q)\G(A) — RZ, as the composite

HE Ao
A G(Q\G(A) ag —== RX%,.
Write A, for the restriction of Ay to G(Q,) for a place v of Q. For each 7 € Agiscx (G)
contributing to the sum, we see that 7 ® /\jg1 is a unitary automorphic representation
of G(A) since mo ® A\ is unitary (by construction, o ® A! has trivial central
character on Ag(R)?). Thus m, ® )\];1 is unitary. Applying Corollary 2.5.2 to 7@ A~!
at p, we have

|wr, (V)N (0 (D)) < 8ot 2 ((p)) = 1),
noting that v(p) € Ap . We deduce via Lemma 4.1.1 that

o ()] < PO A ()] = o) 06,
By [BZ77, Cor.2.13] the length of Jper(7,), namely ). ¢;, can be bounded only in
terms of GG. This completes the proof. |

We state the main trace formula estimate of this paper. The proof will be given in
Section 4.4 below.

Turorem 4.2.2 (main estimate). Let G, (%,X),p,4,&,(, v be as defined in the begin-
ning of Section 4. Let

P = g o € HG(AT ), (07 0) ),

- d)p S %acc(Mu(Qp)7X;1)7 and

- ,(,k) € H(G(Qp), x; ") be a v-ascent of gzﬁz(;k), fork € Zxo.
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Then there ezists a constant C = C(f°9,¢,) € Rsg such that for each f; €
:}C(G(Qq) X;l)c-reg;

T S Faf P ferc) = Tsen (f5F Faf P feg) + o(pH(or) = Ixee))

As a corollary, we derive the stable analogue of Theorem 4.2.2. We keep the setup
of Theorem 4.2.2 and let P ¢,, f;k) be as in that theorem. For each ¢ € £5(G),
we have ¢; = (G, LGt s$,1%) and a central character datum (X, x%) as in Section 2.7.
Moreover we choose the representatives e, e; such that n°(Wg) and n$(Wp) have
bounded images, as explained in Lemma 2.6.2 and Section 2.7. Let

fe = Hf(k“efHG% ), (x$) ™

be a transfer of fIS’“)quOOMf“. Then we have the following bound.

Cororrary 4.2.3. — In the setup of Theorem 4.2.2, there exists a constant C' € Ry,

depending on [, ¢p,&,C, such that for every fq € H(G(Qq))C-reg, firstly

(k) TG (5571579 fyfe.c) + o (pFUPI= 0P|

S ellx(fp quoo,p,qu’g) = _
O (pk(<p7V>7<XOC’V>)) R

[4

and secondly for each ¢ € £5,(G) (note that ffkq) inherits C-regularity from fg),

Sll»d (fl(k)#) — O(pk(<p,u>*<xoo7?>)).

Remark 4.2.4. — The inductive proof of the last bound only uses the fact that its

ST

g-component is C-regular, the co-component is a Lefschetz function, and most im-
portantly the p-component is an ascent for a suitable cocharacter. We do not rely on
the fact that fl(k)’e is a transfer of a function on G(A).

Proof. — The second estimate is immediate from the first via Proposition 4.2.1. Let

us prove the first and third asymptotic formulas, by reducing the former to the latter.
We induct on the semisimple rank of G. (For each G, we prove the corollary for all

central character data and all v.) When G is a torus, the estimate is trivial as STell x =

TeG]1 X = TdCfSC’X. We assume that G is not a torus and that Corollary 4.2.3 is true for

all groups which have lower semisimple rank than G. Put f*) .= f,gk) fafoP 9 fe e
Proposition 2.9.1 tells us that

STG (™) = TG () = D UG.GISTGl (7).
€5 (G)

In light of Theorem 4.2.2, since the summand is nonzero only for a finite set of ¢ by
Lemma 2.9.2 (depending only on the finite set of primes v where either Gg, or f, is
ramified), it suffices to establish the last bound of the corollary. This task takes up
the rest of the proof.

If G} contains no elliptic maximal torus or if Age # Ag (equivalently if Ag: #
Ag,), then J1 00 18 trivial as observed in [Kot90, p. 182, p. 189] so the desired estimate
is trivially true. Henceforth, suppose that G} contains an elliptic maximal torus.
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Then flk) '* is a finite linear combination of fy¢ cs over the set of (1}, (f) such that
Ny © Wys ¢ = We . Proposition 3.3.2 and its adaptation to z-extensions according to
Sections 3.5 and 3.6 tell us that

k k k
iy = = 2 Mot S (o1:5) =2 Xl ) it
(k)¢

where we have put f17p7@ = o (¢§’fp;w) for a vy ,-ascent of the operator ¢y’ €
Hace(GS ,(Qp), (x§,,) ). Here we applied Lemma 3.3.5 (keeping Sections 3.5 and 3.6
in mind) to have the transfer qblk) ¢ of qb supported on v ,-acceptable elements.
Recalling that 7§ (Wg) C LG1 is a bounded subgroup, we see from Lemma 3.3.1
that A{ , is a unitary character. Thus we are reduced to showing the existence of some
C¢ > 0 such that the following estimate holds for w and (n{, () as above whenever
I1,4 is Ce-regular:

G1 ? vy— v
(4.20)  STG (FP20P f A0S o cp) = o(pPUPI =0 PD) k€ 7y,

1,p,w
Indeed, take C' to be the maximum of all C, over the finite set of ¢ contributing to the
sum. Then for each C-regular f,, Lemma 3.4.7 tells us either that Gf is split over Q,
and ff , is C-regular (thus also C,-regular), or that G is non-split over Q, and ff ,
vanishes. Thus the bound (4.2.1) applies, and we will be done.

By the induction hypothesis, there exists C, > 0 such that whenever fi  is
C.-regular, the left hand side of (4.2.1) is O(pkw’;’”1’w>_<X§=°°’§1~“>)), with 71, €
X.(Ag:) defined from vy, in the same way 7 from v, and where p§ is the half sum
of positive roots of G§ for which 14, is a dominant cocharacter. (In other words, p§
is to vy, as p is to v.) Therefore, it is enough to check that

(@) (p1,v1.0) <{p,v) (in Q).

(b) Re<X§,oovv1,w> = Re(Xoos V).

Let us begin with (a). Since (p,v) = (p1,v1), with p; defined for G; as p is for G
(recall that v : G, — Gy is a lift of v), the proof of (a) is reduced to the case when
G1 =G and d vy =wv. We have an embedding G — G coming from 7, which restricts
to Ge — M Here we have chosen I' p-invariant pinnings for the dual groups such
that the restriction works as stated. We may and will arrange that the Borel subgroup
of G restricts to that of G*. Fix a maximal torus T C @fu that is part of the pinning
for é; Viewing T also as a maximal torus in each of G* and @, we write @V(T\, @)
and CIDV(f, @e) for the corresponding sets of coroots. Then

(4.2.2) (p* V) = Z <0‘v’l/>a (p,v) = Z <avvl/>‘
aVedV (T,Gt) aVedV (T,G)
(aV,v)>0 (aV,v)>0
Thus it suffices to verify that there exists a coroot aV € @V(f @) outside G* such
that («v,v) > 0. Write v € X*(T T) for the dominant member in the Weyl orbit of
characters determined by v. The centralizer of U in G is identified with the dual
group M, M, (namely (aV,v) = 0 if and only if &V is a coroot of M\) so we will be done
if LleM + LieG* is a proper subspace of Lie G. This is exactly proved in [KST20,
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Lem. 4.5(ii)] applied to G = @, M = M\V, and § = s°. (The proof of loc. cit. greatly
simplifies. One reduces to the case when the Dynkin diagram of G is connected as in
the first paragraph in the proof of that lemma. Then argue as in the fourth paragraph
of that lemma, with X,, = 0 and with the role of X4 played by the semisimple
element s°.)

Now we prove (b). Since (Xoo,7) = (X1,00,71), We reduce to showing (b) when
G1 = G and ¢; = ¢ (with possibly nontrivial central character data). Thus we drop
the 1’s from the subscripts and check that

Re(Xoos 7) = Re(Xoos Pw)-

We claim that 7 = 7, in X.(Ag)r = X«(Ag:)r. In the diagram below, the triangle
on the right commutes, and we want that the triangle on the left commutes as well.

AG AGve AM,, 35 AG;

We choose maximal tori T" C M, C G and T° C Gf, C G* with an isomorphism

TE ~T% to identify the absolute Weyl group Q% asa subgroup of O . (This is done
as in [Kot86 §3].) The isomorphism also identifies v = v,,. By (3.1.6), we have the

equalities
U= ’ﬁG‘_l Z w(v), R |§Ge‘_1 Z w(v).

wen® wen®’
Hence 7 = }QG/Q |~ Zweﬁc’/ﬁm w(Vy) = 7. Indeed, the last equality follows since

Uy € Xi(Ag:)r = X« (Ag)r, which tells us that w(7,,) =7, for w € .

Applying (2.6.3) at the archimedean place, we have x = A xS, as characters of
Ac(R). Since A& is unitary, |xoo| = |X& |- Since 7 € X, (Ag)r (not just in X, (Ag)c),
we conclude that Re(xS, ,7) = Re(xoo, V) as desired. This verifies (b). O

4.3. SOME FACTS AND NOTATION ON WEYL GROUPS AND WEYL cHAMBERS. — In this sub-
section we fix some additional notation on Weyl groups, Weyl chambers, which will
be needed in the proof of the main estimate in the next subsection.

Let P = MN C G be a parabolic subgroup such that B C P and T C M.
Write ZY, for the identity component of the center of M and Sy, for the maximal
Qp-split subtorus in Z%,. If M = T, we will write more simply S, := Sas,,. Thus
Arq, C Sp C Tg,. We will write

QGcQECQG

for the Weyl groups of Ar, Sp, and T in G. Similar notation will be used for other
objects related to Weyl groups, for instance we write Qf/[p - Qg for the set of Kostant
representatives for Q5 /QM.
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Write ®, = ®§,(Axr; G) for the set of roots of Ay in Lie(G). Write ®(Ays; B),

®(Sp; Bo, ), ®(Zar; B) for the sets of positive roots attached to Anr, Snrp and Zyy.

We write areg C ayy for the subset of all regular elements, i.e., x € ap; such that
(o, ) # 0 for all aw € ;. The connected components of ayf are said to be the (open)
Weyl chambers of ap;. The subset

€l i={x €alf|Va € ®(An, B) : (o, z) > 0} C ayf,

is the dominant Weyl chamber. Let QF, C QY be the set of Kostant representatives
for the quotient Q¢/QM. The Weyl chambers € € mo(a}y) are parametrized via the
bijection

Q5 — mo(ah®), wrr € = w H(CF;) € mo(aiE)
If € C a)f is a Weyl chamber, we write €V C a}, for the dual chamber, i.e., the set
of t € a}; such that ¢(z) > 0 for all z € C.

Lemva 4.3.1. — The following statements are true:
(1) The inclusions AM@p C SM7p7@p - ZJO\/]@p induce (by restriction) a sequence
of maps
®(Z3;; B) — (S p; B) — ®(Aw; B)
which are all surjective.
(2) The following three subsets of ay; are equal:
(a) the set of x € apr such that for all o € ®(ZY;; B) we have (o, x) > 0;
(b) the set of x € ap such that for all o € ®(Sir,p; B) we have (o, z) > 0;
(c) the set of x € ap such that for all o € ®(Anr; B) we have (o, x) > 0.
(3) The natural maps mo(ayf) — mo(Xu(Samp)pt) — mo(Xu(Z9)RE) are injec-
tions.

Proof. — We have inclusions of the centralizer groups

Mg = Cent(AMQP7 G@p) D Cent(SM’p’@P, GQ ) D Cent(Z° G@p) o Mg, ,

MQ,’
where the first equality is well known [Bor91, Prop. 20.6(i)]. Hence the equality holds

everywhere. So ®(Anr; B), ®(Sap; B), and ®(ZY,; B) consist of eigen-characters for
the adjoint actions of A, 5 a,C Sy 23, C ZM g, on the same space Lie (B)/Lie (BNM),

respectively. Therefore, the maps in (1) are surjections. Statements (2) and (3) are
directly deduced from (1). O

4.4. Proor or Turorem 4.2.2. — The rest of this section is devoted to establishing
the main estimate in Theorem 4.2.2 over several pages. Lemma 4.4.1 (which is tech-
nical) could be taken for granted at a first reading. Before diving into the details we
recommend the reader to review the outline that we sketched below (1.4.2) in the
introduction.

Proofof 4. — We argue by induction on the Q-semisimple rank rg of G. If r¢ =0,

then we have T =T¢

el x disc,y» and the statement follows. Assume now that the theorem
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is established for all groups of lower (Q-semisimple rank and all accompanying data

(ie., (X,x),p,¢,€,¢ and v).
We introduce a constant to control regularity at ¢:

1
. P,;q,00
logq wan’}%g’(,sp,aKa?x +€P>|a

(441)  C=0(®%¢,) =

where M, zP*9°° e, o range over the sets

7P7Q)

o o G
Leusp(G), suppg,, (fyr "), PrassupPa,, v, (Pps, (s, ), @ € O

respectively. Define the constants

. oM
vy = vol(X0\X/Ac.0o) and cp = (1)d1m<AM/AG>|QG|, M € Lensp(G).

Write foo (k) .= f"o’p’qugk)fq7 to indicate the dependence on k at p. The running
hypothesis on f, is that it is C-regular for (4.4.1). By Proposition 2.8.1 we have

(442) Tdci;sc,x(ff&foo,(k))

=dG)™" Y emvy!

MeLcusp YEDR-e11,x (M)

S X))@ ar (7, €)OM (fr0 ™)
M (+)]|Staby (7)) '

We first compare the term corresponding to M = G € Lcusp on the right hand side
of Equation (4.4.2) with TeG11 X Only regular R-elliptic conjugacy classes contribute
0 (4.4.2): For v € Tenx(G) non—regular we have O,(fy) = 0 since f, is C-regular.
Addltlonally, the orbital integrals O 7 ( fec) vanish for non R-elliptic v € G(R).

In Lemma 4.1.3 we checked that for v € T'r.e, x(G) we have
IG P , OG 0, (k)
(443) d(G)_1CGU;1 X( ¥ )C(Z) G(ry g)G v (f )
SO)lstabg ()] e
_ vol(L, (@M, (A)/X)OF (fe o =)
1(v)~*[Stabg (y)[ !
(this uses ¢ (7, &) = Tr(v, £), cf. [Art89, below eq. (4.4)]). Therefore, TS| X(fg,cfoo’(k))

appears on the right hand side of (4.4.2) as the summand for M = G (see also (2.8.2)).
Thus (4.4.2) can be rearranged as

(4.4.4) TS (fe.cfW) = T (fecfH)

o0,(k)
_de Y eyt Y X Pa (7, 0N (faf )

M
MeLSuep V€T a2 (M) [ ()lIStabz (7)]

As f,gk) is a v-ascent of qi)ék), we have by Lemma 3.2.2

(4.4.5) £ = Z £, € HM(Q,), x5,

wp GQM,MV
where

k
(4.4.6) = o, w00 ), M, = w,(M)N M,

va "-’p . wp
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At the prime ¢, we may arrange by Lemma 3.4.7(1) and Lemma 4.3.1 that the

constant term fq s is supported on C-regular elements. Thus f, 5 is decomposed

according to the various chambers C of a}yf:

fq,M = Z fq,M,wq € :H:(M(Qq)axgl)C—rcga

“’qeﬂgl
where fq ar.w, satisfies suppS (fg,11,0,) C Cu, . We define
I = B iy Fattio, € HOM(B), X7,
so that
o™ = S, e HM(A),x7).
wplefPMV Wwq €2,
Changing the order of summation (each sum is finite), Equation (4.4.4) becomes
(44.7) T\ (fec /W) = T (fecf ™)
oo, (k)
X)) Dar (7, )OM (fr7:0,,
—d(G)_IZCﬂ Z ('y)() ( )'y(M,p,q)

M
M,wp,wq vx Y€ en, (M) M (7)l[Stabz (7)]

)

. G
where the sum is over M € L5, wp € QMQ’MV, wy € QF.
To state the next lemma, we define a constant

(v, 8p + xP°)
4.4.8 ki =ki(f>1, = max € Ry,
( ) 1= k(7 6p) Mwy wq,aep,27° | log(p) {a, pryy (wp 'v)) >0

where the maximum is taken over

Me LS

cusp

ep € PrasUPPS,, (W, ' dpan, ), 2 € suppl, (f377),

G@ G
(G), wp € Qpriy, . wq € Dy,

and o ranges over those a € ®§; such that (o, pry(w, 'v))) # 0.

We have fixed a maximal torus T in G¢ (we have G¢ =~ G@p via t,), along with
a Borel subgroup B. We write p = p for the half sum of the B-positive roots of T’
in Lie(B). Note that we have p|a, = p. We use similar definitions for 7, and py
if M C G is a Levi subgroup. Let A = Ag, A € X*(T') denote the highest weight of £
and its dual representation £*, respectively, relative to B.

For each M € Lcusp(G) we introduce the following notation. Denote by P(M) the
set of parabolic subgroups P of G of which M is a Levi component. We remark that in
[GKMO97] the set P(Mp) is used, meaning parabolic subgroups P of Gg such that Mg
is a Levi component of P. As M € L¢ysp(G), we know that (A )rAcy = A,
and therefore any parabolic subgroup of Gg that contains M is defined over Q. In
particular, P(Mg) = P(M).

For each \g € X*(T)" we write 5% for the irreducible Mc-representation with

highest weight A\g. We define ws, * Ao := woo(Ag + p) — p for each wy, € ﬁij and
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Ao € X*(T)". Let wo € ng. Write w}! € " for the longest Weyl group element,
and

AB(Woo) 1= —wi (Weo * Ng) = W weowdAp — W weod — WP,
so that we have

f,J\\é(woo) = (5%0*,\*3)*-

Lemwva 4.4.1. Assume that k > ky. Consider M,w,,wy,y as in (4.4.7), and assume
that

(4.4.9) oM (M Yy #0.

M, wp,wq

Let xg == HM () € apn, and write xo for the image of xg under ayg, — anr. The
following are true.

(i) The element xo € anr is regular and lies in the chamber Cy = Co(M, wp,wy) C

ayf which has the following set of positive roots

(4.410) {a € ®F | (a,pry(w, 'v)) > 0}
Uf{ac ®§ | (oz,prM(wp_lz/» =0and a € —CX,(I}.

(ii) There exists an explicit subset ﬁfj = ﬁf;(M, Wp,wq) C ﬁf/[ (see (4.4.22)) and
an explicit sign €° = e®(M,wp,wq) (see (4.4.23)) such that we have

ey, )= Y 57 Y elwe) e &N )

PeP(M) ot

where e(ws) € {£1} denotes the sign as an element of the Weyl group .

Proof. — (i) If S is a set of places of Q, we write in this proof
rs:=H¥(y) € ay, 2% := HMS(y) € ay.

We check that (a,z.) # 0 for all @ € ®f, (ie., 7o is regular). By the product
formula in Lemma 4.1.2 we have

(4.4.11) —(a, Too) = (0, 7)) + (o, xp).

At p, OW(fzg,%,wp) # 0 implies that x, € supp?M(f;%Mp). By Lemma 3.1.7 (and

Equation (4.4.6))

k — _
Suppg,, (Fyiar,) = k- H)' (wy v(p)) + prag(suppg,, . (@, dpan,)).

Therefore
(4.4.12) xp =k HY (w, 'v(p) +ep

for some ¢, € pr Msupp?Mw (wy, Lo, wa). Thus
(4.4.13)
(o, 2p) = k- (o, HY (w, 'v(p))) + (@, 8p) = —k(logp) - (a0, pryy (w, 1)) + (@, €p).
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We now distinguish cases. First consider a € ®§; such that (a, pry(w, ') # 0.
By (4.4.11) and (4.4.12),

(4.4.14) —(o, o0) = {a, 2P™) + (o, &) — k(log p) - (o, pryy(w, 'v)).
As k > k; (see (4.4.8)) we have
k(logp) - [{a, pry (w, 'w))| > (e, g + 27|,

Thus from (4.4.14) we get (@, Zoo) # 0.
Consider a € ®F; such that (o, pry,(w, 'v)) = 0. Again by (4.4.11) and (4.4.12),

(4.4.15) —{0, Too) = (0, 2P°°) + (v, ).
As f, is C-regular, we have from (3.4.2), (4.4.1), and Lemma 4.3.1 that
(4.4.16) (@, zq)| > Clogq > [, 27T + £p)].
for all « € ®§;. In particular
(o, zq) + (0, 2P 4 ¢,) # 0.

Therefore, each side of (4.4.15) does not vanish. Hence (a, z,) # 0 for all a € ®f;.
We now determine for which a € ®§, we have (o, z.) > 0. If (o, pry, (wy'v)) #0,
then

sign({a, x0)) = sign({a, PrM(wp_l’/»)

by the arguments following (4.4.13). If {a, pry,(w, 'v)) = 0, then

sign((o, To0)) = —sign((a, z4))

by C-regularity (see (4.4.16)). We have z, € supp,,, (fq,a.0,)- Statement (7) follows.

(ii) Let us start by recalling a result of Goresky, Kottwitz and MacPherson in
[GKM97]. We write pry, : X*(T)r — X*(Aas)r for the restriction map. Let P =
MN € P(M) Write pn, (resp. py,) for the half sum of the positive roots of Ay,
(resp. T') that occur in the Lie algebra of the unipotent radical Ng of Pr. Write we
for the central character of £. Write as, ..., a, € aj, for the simple roots of Ay, in
Lie (Ng), which form a basis of (apz, /ag,)*. This determines the dual basis consisting
of t1,...,tn € apg/ag,. Put I := {1,2,...,n}. Define the following subsets of I
(cf. [GKMO97, p.534])

I(v) =={i € I | (i, zr) <0},

(4.4.17) . . o
Hweo) :=={i € I | (priy, (—Weo * AB) — P, — we, i) > 0}

Since M € Lcysp the map
(4.4.18) ClM]R/CtGR — ClM/ClG
is an isomorphism. In particular, a1, ..., a, is also a basis for (ay;/ag)*, and we can

replace g by Z in the definition of I(y), without changing the set.

JIP — M., 2023, tome 10



1354 A. Krer & S. W. S

By the discussion above Th.7.14.B in [GKM97] we have

(4.4.19)  @p(—r,Driy, (oo * Ap) + P, + )
_ {(‘Udimwcw(—1>dim<AMR/AGR)-W, if (we) = 1(7),

0, otherwise.

By (i), oo € aps is regular, and as M € Leysp(G) we have apy, /ag, = ayr/ag, so the
element zr € ayy, is also regular.
We define Ly () € C following [GKM97, p. 511],(") when zp is regular®:

(4420) Lag(y) i= (-1)8mCen) $™ 45212 ()
PeP(M)

D elweo) Te(v 88 a2 )PP (=T, Pris, (woo * AR) + Dy + we).

Woo Gﬁﬁl
Theorems 5.1 and 5.2 of [GKM97] imply the following identity(®)

(4.4.21) Dpr(v,€) = L (7).

Thus the right hand side of (4.4.20) is an expression for ® (7, ).

By assumption (4.4.9), 2o = HX () lies in the chamber Co(M,wy,w,) by part (i)
of this lemma. So the set I(7) does not depend on . Write Jg = Jo(M,wp,w,) for
I(~), and

(4.4.22) Q= 00 (M wp,wq) = {woe € Doy | Twae) = o}
in terms of (4.4.17). Then (4.4.20) simplifies thanks to (4.4.19):

Lag(y) = (1) fmCve/ A=l N 5 02 0) 3™ e(w) Tr(y 1600 ).

PeP(M) w050
We obtain (ii) by using ﬂ(v‘l;fﬂo*)\%) = Tr('y,gﬁ(ww)) and taking
(4.4.23) e® = (_1)dim(AMR/AGR)*Uo\. 0
We keep on assuming k > ki and write ¢, = £°¢(wWeo)cnrd(G)~! from now.

We apply Lemma 4.4.1 (4¢) to Equation (4.4.7) and change the order of summation

(MWe write L (7) where the authors of [GKM97] write L%, (7). This is because we only need to
use the “middle weight profile", so there is no need to distinguish between different profiles v in our
notation. Since we use the middle weight profile, we have v = —p — we.

(®)on p- 504 the authors give a definition of Lps(y) without the requirement that x~ is regular
(but we don’t need it here). Under this more general definition, Equation (4.4.21) also holds for
non-regular oo.

)1 [GKM97], they write ® (v, 0% ) for ®p7(7, &%), Their E corresponds to our £*.
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to obtain

(4.4.24) TS, (fe.cf®) =TS (fe.c o))
_ Z &ygvzt Z X(IM) Tr(; f,\B(w ) ©Cop 1/2) (fM’U(J]Z,wq)

M
M,P,wp,wq,Woo YEL e, x (M) ‘L ( )||Stabae( )|

)

where M, w,,w, run over the same sets as before and P,ws, range over P(M),Q;; ,
respectively. We apply Lemma 4.1.3 to equalize

(IM) TI'(’)/ g)\B(woo) ® C5_1/2)O (fjw Wp) ‘*’q)
M (7)][Staby’ ()]

vol(I(Q) Arst c\IY (B)/R)ON(f, |, ) s Frtion)
|1 (7)][Staby ()]

(4.4.25) o' >

YETen, x (M)

— (M)
YELen1, x (M)

)

using that every v with O (fj'}’if)wq

supported on regular elements. Define
Xp =X Aproos var = vol(Xg\X/AG 00) T vOl(Xnro\X s /A o)

The restriction of the central character of gg{s(wm) ® C5;1/2 to Apr,co is denoted by

) # 0 in (4.4.25) is regular since fy s, is

zﬁc AN — C*.
Since the central character of f)Jf/IB (weo) restricts to the central character of £ on Zg,
we have
2 e = X0
On the other hand, Z¢(R) N Arm,co = Ag,00 C Zri(R). Therefore
XNArc =Ac, 00
Consequently, there exists a unique character
Xojﬁo : Xy — CX
such that

XomlAn o = (25)7

The pair (X7, X2 ) is a central character datum for M as in Section 2.8. Moreover,

and M [z = x

(K
Fam (o 522 0t iy € FM(A) X,
The expression in (4.4.25) can be rewritten as
(K
var - vol(IX (@) Ay o \IM (8)/Zan)OM (£, |, ) o2 Frtioman)
M (7)]|Stabk,, (7)]

= d(M)vrr - Th st (P COp P Frri,)-

(4.4.26) d(M) >

V€T en, x ,, (M)
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Put ¢y, := yvpd(M). Combining (4.4.24) and (4.4.26), we obtain

(4.4.27) TG (feo /W) = T\ (Fec M)

M oo, (k)
— Z C/](/[ . TeILXM (fAB(woo),Cis;l/z fM,wp,wq)'

woo
M,P,wp,wq,Woeo

Let w, be as in the sum. Since w), € Qf/ﬁﬁwuv we have
wp(MNB)CB and w,'(M,NB)CB.

In particular, for each root « in Lie(MNNy), the root wya also appears in Lie(MNNg).
So

(a,w, 'v) = (wpa,v) 2 0.
Hence w;lu is dominant for M N B. (See the paragraph above Proposition 4.2.1 for
dominance of v relative to B.) By Proposition 4.2.1 and the induction hypothesis for

M € L5, we have
oo,(k 4 wo )y — M o, Pr ~1y
(4.4.28) Tej}fxyx(fAme),ca;“szip)wq) = O(pktpar ey )= (O o pras (o )Y

(To apply the induction hypothesis, we need to ensure that the setup of Theorem 4.2.2
applies to the left hand side. The point is that the conditions at p and ¢ are satisfied.
At p, this is a consequence of (4.4.6) and Lemma 3.2.1; thus each fz()’k]b’wp is an ascent
from an acceptable function. At ¢, this follows from Lemma 3.4.7 (1).) In the special
case M = G we obtain

(4.4.29) T ([ 177 fe c) = O(pF(ow) =D iciD)),

Now assume that the datum (M, P, w,, wg, weo) contributes to (4.4.27), in particular
M € L5, and also assume that

ropag) 7 0

M
Oy (fxawm),ca;l“f WpsWq

for some «y € T'en x,, (M). Then we claim that

(4.4.30)  Re({p,v) = (Xoo: Prar)) > Re({par,wy, 'v) = (XL ) oo PrAs (W) ')

This claim, together with (4.4.28) and (4.4.29), tells us that the main term for G
dominates the proper Levi terms in (4.4.27), thereby implies the theorem.
It remains to verify the claim (4.4.30). Clearly it is sufficient to show that

(@) (p,v) > (par,w, '),

(b) Re(Xoo, Prar) < Re((Xi, )oo, Prys(wy '0)).

Moreover, it is enough to prove (a) and (b) for sufficiently large k (note that
the set Q§? and thus w., depends on k). To prove (a), we start from the equality
{(par,wy 'v) = (pw,m, V). Since wy, is a Kostant representative (cf. (4.4.5)),

<ppraV> < <p,y>.
To check that
<ppr7V> 7é <p71/>,

JIEP. — M., 2023, tome 10



HO or [cusa VARIETIES 1357

we argue as in the paragraph below Equation (4.2.2): As v is not central, the argument
for Lemma 4.5(ii) of [KST20] shows that Lie(M,) + Lie(M) # Lie(G). Hence we can
find a root a in Lie(G) which in either Lie(M) or Lie(M,), i.e., (o, v) # 0. The proof
of (a) is finished.

Now we prove (b). Recall that g = HS (), and that 7, is the image of g in ag.
Write shorthand

X =pris(—wee * Ag) — Py —we and Y:prM(wp_lu).

The equality I(y) = I(we) from (4.4.22) implies (a4, %) < 0 < (X,t;) > 0
(cf. (4.4.17), and the isomorphism in (4.4.18)), and thus also

By Equation (4.4.10) we have
(@i, 20) >0 <= (0;,Y)>0o0r [{o;,Y)=0and a; € —Covjq].

Since z, is regular, we have (a;, o) # 0, thus (@, ) > 0 & (v, To) = 0, and so
by combining the above

(4.4.31) (X,t;) <0 <= (o;,Y) >0o0r [(,Y) =0and o; € —€) 1.
Write X =", ¢c;o; and Y =, d;t;. Then (4.4.31) implies
(X,Y) = Zcidi <0.
i

‘We now conclude:
Re((x2 )oo, Y) = —Re(z} | Y)

= —Re(pri;(As(weo)), Y) — Re(¢65"/2, V)

= —Re(pri,(

—wo(weo % Ap)),Y) —Re(( — pn,Y)
Re(X,Y) + Re(—we — (,Y)
>0 =(Xo0,Y)
We are now done by observing that (xeo,Y) = (Xoo, PraV)- a

~
J. SHIMUR/\ VARIETIES OF HODGE TYPE

The goal of this section is to set up the scene for the mod p geometry of Shimura
varieties and central leaves, paving the way for introducing Igusa varieties in the next
section. We pay special attention to the connected components and H°.

5.1. CONNECTED COMPONENTS IN CHARACTERISTIC ZERO. — From this point onward, let
(G, X) be a Shimura datum as in [Del79] satisfying axioms (2.1.1.1), (2.1.1.2), and
(2.1.1.3) therein. Write £ = E(G, X) for the reflex field [Del79, 2.2.1], which is a
finite extension of Q in C. We have the algebraic closure £ C C. Let K be a neat
open compact subgroup of G(A>). (See [Lanl3, p.82] for the definition of neatness
in an adelic group following Pink.) We write Shx = Shg (G, X) for the canonical
model over E, which forms a projective system of quasi-projective varieties with finite
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étale transition maps as K varies. We have the E-scheme Sh := l'mK Shg. Put
d := dimShg (which does not depend on K). Write G(Q)4 for the preimage of
G(R), (defined in Section 2.4) in G(Q). The closure of G(Q), in G(A*°) is denoted
by G(Q)}.

Recall some facts about connected components from [Del79, 2.1]. We have a bijec-
tion

(5.L.1) mo(Shy ) — G(Q\G(A)/G(R)+ K,

which yields a G(A)-equivariant bijection 7o(Shz) — G(A)/G(Q)o(Gs(A))G(R) 4+
upon taking limit over all K. Note that G(A)/G(Q)o(Gs.(A))G(R)4 is an abelian
group quotient of G(A), and G(Q)\G(A)/G(R); K is a finite abelian group quotient.

Fix a prime ¢ and a field isomorphism ¢ : Q, ~ C. When V is a Q,-vector space,
write [V =V ®g, .. C. By convention, all instances of cohomology in this paper
are étale cohomology. The description of my(Shy) translates into a G(A*)-module

isomorphism
(5.1.2) tH?(Shg, Q) ~ P 7™,

where the sum runs over one-dimensional automorphic representations 7 such that m.,
is trivial when restricted to G(R);+. Indeed, at each prime p, we have dimm, = 1
since , factors through G(Q,) — G(Q,)” = G(Q,)/0(Gsc(Q,)), cf. Corollary 2.3.3.
Since one-dimensional automorphic representations have automorphic multiplicity
one, there is no multiplicity factor in (5.1.2).

Now fix a prime p # ¢ and an open compact subgroup K, C G(Q,). By taking
limit of (5.1.1) over neat open compact subgroups K? C G(A°?), writing Shg, :=
lim , Shi, .

(5.13) ro(Shye 3) > GQT\G(A®)/K,.
We have a G(A>?)-module!?)
Hi(SthE’@Z) = HKngi(SthKp,Ev@e)» i 20,
where KP? runs over sufficiently small open compact subgroups of G(A>P).
Lemma 5.1.1. — There is a G(AP)-module isomorphism

LHO(Sth,Ev@Z) = @,}Toom’

where the sum runs over discrete automorphic representations m of G(A) such that
(i) dimm =1, (ii) 7, is trivial on Kp, and (iii) 7 s trivial on G(R) 4.

Proof. — This is clear from (5.1.2) by taking K ,-invariants. O

(10)gee [Sta21, Tag 03Q4] for the canonical isomorphism, which is G(A°P)-equivariant by a
routine check. Alternatively, it is harmless to think of the identity as a definition for the left hand
side.
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5.2, INTEGRAL CANONICAL MODELS. Let (G, X) be a Shimura datum of Hodge type.
This means that there exists an embedding into the Siegel Shimura datum

iV,w : (G7X) — (GSp(Vva ¢): S\#ﬂp)v

where (V) is a symplectic space over Q, and Siw denotes the associated Siegel half
spaces. For simplicity we write GSp = GSp(V, ) and S* = S‘j/[,w.

Derintrion 5.2.1. —  An unramified Shimura datum is a quadruple (G, X, p, §), where
(G, X) is a Shimura datum, p is a prime, and § is a reductive model for G over Z).
(In particular, G is unramified over Q,,.) Write 8Dy, 44, for the collection of unramified
Shimura data whose underlying Shimura data are of Hodge type.

For the rest of this paper, we fix (G, X,p,5) € 8Djjyqqe and iv,y, thus also a
hyperspecial subgroup K, := §(Z,) of G(Q,). Since G is unramified over Q,, the
prime p is unramified in the reflex field . We fix an isomorphism ¢, : C ~ @p, which
induces an embedding £ — Q, as well as a p-adic place p of E. Thereby we identify
Ep ~ @p. The integer ring O localized at p is denoted by O, (), and its residue field
by k(p). Identify the residue field of Q, with F,, thus fixing an embedding k(p) < F,.

We follow [Kisl7, (1.3.3)] to review integral canonical models for Sh = Sh(G, X)
over O (p), leaving the details to loc. cit. We may assume that iy, is induced by
an embedding § — GL(VZ(p)) for a Z,)-lattice Vz,, C V and that ¢ induces a per-
fect pairing on Vz, . There exists a finite set of tensors (sa) C VZ%;) such that G is
the scheme-theoretic stabilizer of (so) in GL(Vz,,). We may assume that one of the
tensors is given by ¢ ® ¢V € (Vzv(p))®2 ® VZ%Q), whose stabilizer is GSp(VZ(p),w).(H)
We fix the set (so). There is a hyperspecial subgroup K, C GSp(V,%)(Q,) extend-
ing K, (i.e., K, N G(Q,) = K}) such that iy, induces an E-embedding of Shimura
varieties

(5.2.1) Shg, (G, X) — Shg, (GSp, $F) g E.

Kisin [Kis10, Th.2.3.8] (for p > 2) and Kim-Madapusi Pera [KMP16, Th.4.11]
(for p = 2) constructed integral canonical models, as a projective system of smooth
quasi-projective schemes Sk r» over O () for all sufficiently small open compact
subgroups K? C G(A°?) with finite étale transition maps Sk, kv — Lk, ke for
KP' C KP. The projective system is equipped with an action of G(A®P), given by
the isomorphism

Tk = T gikrgs g€ GASP),  KP C GA™P),

extending the isomorphism Shp, k» = Shg,4-1Krg giving the action of g on the
generic fiber. The inverse limit ./, = @KpYKpr is a scheme over O (,) with

(D) This way the weak polarization in the sense of [Kis17] is remembered by (sa). So we need not
keep track of polarizations on abelian varieties separately.
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a G(A®P)-action, uniquely characterized by an extension property [Kis10, Th. 2.3.8].
The construction yields a map of Og (p)-schemes

(5.2.2) T, — Lx;(GSp, ST) @z, Ok (),

whose base change to E is identified with (5.2.1), where ./ (GSp, S#) is the integral
model over Z,y for Sh(GSp(V, ), S‘f’ w) parametrizing polarized abelian schemes up
to prime-to-p isogenies with prime-to-p level structure, as in [Kis10, (2.3.3)]. By pulling
back the universal polarized abelian scheme over the Siegel Shimura varieties, we ob-
tain polarized abelian schemes h : Ak, xr — pr x» compatible with the transition
maps in the projective system.

Let Sk, kv kp) = FK,kr Q0p ) k(p) denote the special fiber. Write Shg,
(resp. Lk, k(p)) for the inverse limit of Shy r» (vesp. Sk, kv k(p)) Over KP. By base

change to E,, OEF’ and k(p), respectively, we obtain Sh K, B, prvofp , and S )
from Shr,, ¥, , and Sk, i(p)- There are canonical G(A>?)-equivariant embeddings

of generic and special fibers

ShK%Ep pr’ofp pr,k(p)’

These embeddings induce G(A®P)-equivariant bijections by means of arithmetic com-
pactification as implied by [MP19, Cor.4.1.11]:

WO(Sth,Ep) L> Wo(pr7oEp) L Fo(pr’W).
Lemma 5.2.2. — The G(A®P)-action is transitive on Wo(SthEp) and Wo(pr W)'

Remark 5.2.3. — Oki [Oki23] showed that the analogous transitivity is false if Gg,
is ramified.

Proof. — By the bijections above the lemma, it is enough to check the transitivity
on WO(ShKP,Ep)v which is [Kis10, Lem.2.2.5] (applicable since K, is hyperspecial).
Alternatively, this also follows from weak approximation, which tells us that the diago-
nal embedding G(Q) — G(Q,)x G(R) has dense image. For this, apply [PR94, Th. 7.7]
and notice that the set Sy of the theorem can be taken away from p and oo from the
discussion in §7.3 of loc. cit. since G is unramified at p. (In the argument on p.421
of [PR94] the torus T can be chosen to be unramified by examining the proof of
Prop. 2.10 in loc. cit. Thus it suffices to check that the conclusion of Prop. 7.10 therein
holds for K = Q and S = {p, oo} when the diagonalizable group F in that proposition
is unramified at p. This follows immediately from Cor.2 on p.418.) ]

Let T be a k(p)-scheme. At each point x € Sk, k»(T) we have an abelian variety A,
over T' (up to a prime-to-p isogeny) pulled back from Ag, rr. As in [Kisl7, (1.3.6)]
and [KSZ, §5.1.5, Rem. 5.1.6], we have (sq¢) C (R hst+Qe)® for each prime £ # p and
also adelically away from p,co. By pullback, we equip the prime-to-p rational Tate
module VP(A,) of A, with (Sa.e,2)ezp-

When T = Spec k with k/k(p) an extension in k(p), write D(A,[p>]) for the (inte-
gral) Dieudonné module of A, [p>], and &, for the Frobenius operator acting on it.

JIEP. — M., 2023, tome 10



HO or [cusa VARIETIES 1361

Following [Kis17, (1.3.10)] we have crystalline Tate tensors (sq,0,.) C D(Ay[p™])®
coming from (so). Lovering [Lov17], and also Hamacher [Ham19, §2.2], have glob-
alized (sq,0,2). Namely there exist crystalline Tate tensors (sq,0) on the Dieudonné
crystal D(Ag, kv [p™]) associated with Ag, xr[p™] over ko i(py Such that (Sa,0)
specializes to (5q,0,0) at every x € S, kr(k(p)).

5.3. CentraL LEAVESs. — Continuing from Section 5.2, we review central leaves in
the special fiber of a Shimura variety of Hodge type. Let B(Gq,) denote the set of
(G(Q,), 0)-conjugacy classes in G(Q,). Fix a Borel subgroup B C Sz, and a maximal
torus I' C B over Z,. We have the set of dominant coweights X, (T@IJ)Jr and X, (T@P)a .
Via the fixed isomorphism ¢, : @p ~ C, we obtain Tc C B¢ C Gc as well as X, (T¢)™"
and X*(T@)a. Since the conjugacy class {ux} is defined over E and since Gg, is
quasi-split, we have a cocharacter

tp € X*(T@I))Jr defined over Ej.

in the conjugacy class {¢ppx}. When there is no danger of confusion, we omit the
subscripts Q, and C. Write p € X*(T')q for the half sum of all positive roots, and (-, -)
for the canonical pairing X*(T)g X X.(T)gp — Q or its extension to C-coefficients.
Each b € G(@p) gives rise to a Newton cocharacter v,: D — G@p (so it is a
“fractional” cocharacter of G@p) and a connected reductive group J, over QQ,, given by

(5.3.1) Jy(R) := {g € G(R ®q, Q,) : 9 'bo(g) = b}, R:Q,-algebra.

Recall that A, denotes the maximal Q,-split torus in the center of Jj.

Lemva 5.3.1. — The Newton cocharacter vy, factors through the center of J,. The
induced cocharacter D — Ay, is Qp-rational.

Proof. — The centrality follows from [Kot85, (4.4.2)]. The cocharacter D — A, is
o-invariant by the definition of Jj, thus Q,-rational. O

We define an open compact subgroup of J,(Q,) (where “int” stands for integral):
T = J(@) N S(Zy) = {g € 9(Zy) - g~ bor(g) = b}.

Given b € G(Q,), we denote its (G(Q,),o)-conjugacy class by [b] and (S(Z,),0)-
conjugacy class by [[b]]. Recall that b € G(Q,), or [b] € B(Gq,), is basic if vy, :
D — G@p has image in Z (GQP)’ or equivalently if .J, is an inner form of G [RR96,
Prop. 1.12]. The following condition will appear in our irreducibility results later. The
definition makes a difference only when G is not Q-simple. See Lemma 5.3.7 below
for a relation to Section 2.5.

Derintrion 5.3.2. Let G2d = [Licr G24 be a decomposition into Q-simple factors.
An element b € G(Q,), or [1] € B(Gq,), is said to be Q-non-basic if its image in
B(Gi,) via the natural composite map G — G* — @, is non-basic for every i € I.
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Remark 5.3.3. The definition is not purely local in that it depends on not only
Gq, but also G. Compare G' = GLy x GLy with G' = Resp/gGL2, where F' is a real
quadratic field in which p splits.

Let © € Sk, kv k(p) be a closed point. Then there exists a sufficiently divisible
r € Z>1 such that F,r D k(p) and there exists a Zyr-linear isomorphism (cf. [Kis17,
(1.4.1)))
(5.3.2) VZ*@) B2y Lpr D(Az[p™]) ©w (k(p)) Zpr

carrying (Sq) to (Sq,0,2). The Frobenius operator ®, on the right hand side is trans-
ported to an o-semilinear operator on the left hand side of the form b,(1 ® o) for a
unique b, € G(Q,r). Then [[b,]] (thus also [b,]) is independent of the choice of 7 and
the isomorphism. Now let T : Spec?p — Sk, K k(p) D€ a geometric point supported
at © € Sk, kv k(p)- Then we can define bz, [bz], and [[bz]] similarly.

Write |k, kv k(p)| for the set of closed points on .k v k(). As a subset of
|7k, kv k(p)|> the central leaf associated with b is defined as

Coxcr = Az € |Lr, k()| [[ba]] =[]},

Clearly the definition depends only on [[b]]. By [HK19, Cor.4.12], Cp k» is a locally
closed subset of [ kv k(p)|. (The result is stated for Fp-points there, but the same
proof applies to the underlying set of closed points.) We promote Cj x» to a locally
closed k(p)-subscheme of Sk, kv k(p) equipped with reduced subscheme structure.
We still write Cy, g» for the scheme and call it the central leaf associated with b. As K?
varies, the transition maps for x r» k(p), Which are finite étale (Kis10, Th.2.3.8]),
induce finite étale transition maps between Cp g». Put Cp := I.&HKP Cy xr. We say
either C g» or Cp is Q-non-basic if b is Q-non-basic.

Prorosition 5.3.4. — The k(p)-scheme Cy gr is smooth. If nonempty, its dimension
is (2p,Vp).

Proof. These properties can be checked after extending base to k(p). Since Cj k»
is reduced, it is still reduced over k(p). Thus the proposition follows from [Ham19,
Prop. 2.6]. O

A finite subset B(Gg,,u,"') C B(Gg,) is defined in [Kot97, §6] by a group-
theoretic generalization of Mazur’s inequality. The set B(Gq,, i, 1) contains exactly
one basic element, but may contain several elements that are not Q-non-basic. Set
ZY := U,31Z, as a subring of Q.

Prorosition 5.3.5. — The central leaf Cy i» is nonempty if and only if the (S(Zp), 0)-
conjugacy class [[b] intersects G(Z1")op, ' (p)G(Zy") nontrivially.

Proof. — By [KMPS22, Prop. 1.3.9], the Newton stratum for b is nonempty if and
only if [b] € B(Gq,,p,"). On the other hand, if b € G(Z)")op, ' (p)G(Zy") then [b] €
B(Ga, ") by [RZ96, §4].
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To prove the “only if” part of the proposition, we assume Cj g» # @. Then [b] €
B(GQp,qul) by the preceding paragraph. Since Cp gk» is of finite type over k(p),
a closed point z € Cj gr» has finite residue field, and there exists an isomor-
phism (5.3.2) for some 7. Then [[b.]] = [[b]], and b, € G(Zpr)op,*(p)S(Zyr) by
[Kis17, 1.4.1].

In the “if” direction, the condition on b implies that [b] € B(Gg,, uy, '), 50 Ny, v # @
for neat subgroups K?. Pick a closed point & € Nj, g». Then b, lies in the double coset
S(Zpr)op, ' (p)S(Zyr) by [Kisl7, 1.4.1], and [b,] = [b]. Writing b = g~ 'b,0(g) for some
g € G(Qp)7 we see that g lies in the affine DeligneLusztig variety for (be,opu,").
Using z as a base point, we can apply the p-power isogeny corresponding to g to find
a closed point y € Ny gr, thanks to [Kis17, Prop. 1.4.4]. By construction [[b,]] = [[b]],
so Cp, k» is nonempty as desired. 0

For r € Z>, define a subset G(Q)")r-gooa C G(Q)") consisting of b such that
(brl) b e 9(Zpr)0',u;1(p)9(ZpT),

(br2) r is divisible by [E} : Q] (equivalently F,» D k(p)),

(br3) rvp : Gy, — Gy, 1s a cocharacter (not just a fractional cocharacter).

Clearly G(Z3")opu, " (p)G(Zy") is the union of G(QE"),-gooa over all 7, and G(QR"),-good
is contained in G(Qgr),«/_good if  divides . Proposition 5.3.5 tells us that Cp g» is
nonempty if and only if b belongs to G(Q}");-good Up to (S(Zp), o)-conjugacy for a
sufficiently divisible r, where r can be chosen independently of KP. For the purpose
of studying central leaves, we may and will always assume from now that

b€ G(Q))rgooa for a sufficiently divisible r.
Conditions (brl)—(br3) imply the following.

(br1)’ [b] € B(Gq,,u;, ") and vy is defined over Q,r, by (brl).

(br2)” u, is defined over Q,r, by (br2).

Since py, is defined over E,,, which is unramified over Q,, (br2)’ is easy to see. In (brl)’,
[b] € B(Gq,, ") comes from [RR96, Th.4.2]. we already explained above that v is
defined over Q,r if b € G(Q,r). Since b, € G(Q,r), [Kot85, (4.4.1)] tells us that v,
is defined over Q,-.

Since the G(Q,r)-conjugacy class of rv; is defined over Q, [Kot85, (4.4.3)], but v
itself need not be defined over @Q,,. To apply harmonic analysis results of Sections 3
and 4 let us introduce a o-conjugate element b° such that rv4e is a cocharacter over Q,,.
Since Gg, is quasi-split, there exists h € G(Q,r) such that h™!(ru)h is defined
over Q. Multiplying h on the right by an element of G(Q,), we can ensure that
h=Y(rvp)h factors through G,,, — T and is B-dominant, namely h =1 (rvp)h € X, (T)7F.
Fix such a h and put b° := h~'bo(h) so that vy = h=1(v})h from [Kot85, (4.4.2)].
We also have a Qp-isomorphism

Jp = Jpo, g— hilgh

determined by h, which carries rvp to rvpe.
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Starting from vy € X, (T)(ES defined over Q, as above, we put Py := P, , in the
notation of Section 3.1, and similarly define Py’, Nyo, N2, and Mye. In particular,
Py (resp. Mye) is a standard Qp-rational parabolic (resp. Levi) subgroup of Gg,,
and Mye is the centralizer of 140 in Gg,. There is an inner twist [RZ96, Cor. 1.14]

(5.3.3) Jre ©g, Qpr > Mye Rq, Qpr

given by the cocycle Gal(Qpn/Qp) — Mpo(Qpr), o + b°. Thus Mye is also an inner
twist of J, over Q, (which is independent of the choice of ° up to isomorphism of
inner twists by routine check). Under the canonical Q,-isomorphisms Z(Myo) ~ Z(J)
and Apg,, = Ay, it is readily checked that v is carried to vy.

ExamrrLe 5.3.6. — We have the following for the ordinary strata of modular curves,
when Gg, = GLy. Take B and T to the subgroup of upper triangular (resp. diagonal)
matrices. Then p is the cocharacter z — diag(z, 1) up to conjugacy. We can take b = b°
such that v,(z) = diag(1, 27'), which is visibly B-dominant. Then P,* = B = P_,,,
My, =T, and 6p,(v(p)) = [p~ | = p.

Lemma 5.3.7. The element b € G(Qp) as above is Q-non-basic if and only if
(Q-nb(PBy)) of Section 2.5 holds.

Proof. — Write G*' = [],.; G2 as in Definition 5.3.2 and b; € G24(Q,) for the
image of b. By functoriality of Newton cocharacters, the composition of v, with the
natural map G — G2 is v,,, which is Q,-rational since vy is. This implies that the
image of P, in G2 is P,,, where P,, C G2 is defined analogously as P, in G over Qp-
Each b; € G?d((@p) is basic if and only if v, is central in G2¢ (i.e. trivial) if and only
if P,, = G2. Therefore, (Q-nb(P,)) holds if and only if b; is non-basic for every i € I,
and the latter is the definition for b to be Q-non-basic. O

Let 1 = Z; =+ G1 — G — 1 be a z-extension over Q, that is unramified over Q,.
Let pip1 : G — G1 g, be a cocharacter lifting ji, : Gp, — Gg,». (Such a p,,1 always
exists since Z; is connected, but we will make a choice of y,; coming from a lift of
Shimura data, cf. Section 7.2 below.)

Levmva 5.3.8. — Assume that b € G(Q;r)r_good. Then there exists an element by €
G1(Qpr) lifting b, as well as an element b € G1(Q,r) in the o-conjugacy class of by,
such that

— the analogues of (br1), (brl)’, and (br2)’ hold true with G,u,,b replaced by

Gla Hp,1, bl;
— o s defined over Q, and lifts vy.

Moreover, we can make r more divisible (without changing iy, b, pp1, b1, by) such
that rvy, is a cocharacter of G1.'?) (So b, € G1(Qp")r-good for the new r.)

(12)5 priori we only know that 714, is a fractional cocharacter, even though ru, is an (integral)

cocharacter of G.
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Proof. — Since G1(Zyr) — G(Z,r) is onto (by the surjectivity on Fp--points and the
smoothness of G; — G), the map G1(Q,r) = G(Q,r) induces a surjection

GI(ZPT)U:“;}L(p)Gl (Zpr) —» Q(Zp”')gﬂgjl@)g(zpr)'

Take b1 € G1(Qpr) to be any preimage of b under this map. This takes care of the
first bullet point. As for the second point, since G'1 is quasi-split over @, there exists
b € G1(Qpr) o-conjugate to by such that Vps is defined over Q,, and also such that vye
factors through T C G1, where T} is the preimage of T'. Then the composite of vpe
with G; — G is conjugate to v in G, so differs from e by an element of the
Qyp-rational Weyl group of G [Kot84a, Lem. 1.1.3 (a)]. Identifying the latter with the
Qp-rational Weyl group of G1, we can use the same element to modify vpe so that vpe
maps to vpe under G; — G. Finally, the last point on r in the lemma is obvious. O

In the setting of the lemma, we introduce Qp-algebraic groups Ji,, Jpo, Pog, Mpe,
etc. for G; by mimicking the definition for G. Let 17, B; denote the preimages of
T, B in G. Since vps maps to vpe, it is clear that v, € X, (T1)™, where + means
Bi-dominance, and that Py, Mpe map to Py, Mpo. As before, we can identify
Z(Mye) = Z(Jp), which carries vpe to v3,. The point of the discussion about b°
and b9 is that it is usually harmless to work with b° and b7 in place of b and by
regarding harmonic analysis questions. With this understanding, we will abuse nota-
tion to write My, Py, My, , Py, etc. for Myo, Pyo, Myo, Pyo etc. to simplify notation, and
write vy, vy, for Vpo , Upe if there is little danger of confusion.

6. TGUSA VARIETIES

Here we state the main theorem on HY of Igusa varieties and carry out the initial
reduction to the completely slope divisible case, where we have a tower of finite-type
Igusa varieties over a fixed finite field. This prepares us to apply a fixed-point formula
in the next section.

6.1. InriNiTE-LEVEL lcusa varieTies. — We continue in the setting of Section 5.3,
with b an element of G(Q});gooa- Let b € GSp(Q,) denote the image of b.
By Dieudonné theory, we have a polarized p-divisible group 3 over F, such that
D(Xy) = Vi, @z, Ly with Frobenius operator b (1 ® o). By 3, we mean the
p-divisible group X equipped with crystalline Tate tensors (t,) on D(X) corre-
sponding to (sa) on Vz, . When there is no danger of confusion, we still write 3
and Yy for their base changes to F.

Applying the construction of Section 5.3 to S/ k' (GSp, S*) and b’, we obtain a
central leaf Cyp grp C yK;K/,p(GSp, S*). Let R be an F,-algebra. Following [CS17,
§4.3] we have the Igusa variety Jgy rrp — C’b/yK,,pr whose R-points parametrize
isomorphisms

(611) Eb/ XFI) RE.ARLPOO]
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compatible with polarizations up to Z;-multiples, where Ag denotes the pullback
of the universal abelian scheme via Spec R — C,, K'oF, Then Jg; g0 is a per-
fect scheme, which is an Aut(3 )-torsor over C,, K'oF, by [CS19, Cor. 2.3.2], where
Aut(Xy ) denotes the group scheme of automorphisms of Xy (preserving the polar-
ization up to Z,-multiples).

The map prKP,FP — 7 Ko F, clearly induces a map C@KP,F,J - C ' KPF,
We define the subscheme

~ ~ f erf

(612) ng’Kp < (ng/’K/’p ch/»K/’vap vaKpjp)per = j‘gb/vK/’p chle,r}f(/,pjp ;KP,TP
to be the locus where (6.1.1) carries (sq) t0 (Sq,0) on the Dieudonné modules. Com-

posing with the projection maps, we have F,-morphisms Jg, x» — Jgy x.» and

I v — le’izfp = - The latter gives rise to the composite map
s p

perf _ _
I xr — C s, — CornF, — T, K0 F,

As KP varies, the Hecke action of G(A*P) on prKpﬁp restricts to an action on
Cy kv 7, and extends to an action on Jg, x» by [HK19, Lem. 6.4]. (The point is that
the central leaves and Igusa varieties are defined in terms of p-adic invariants, which
are preserved under the prime-to-p Hecke action.)

Lemva 6.1.1. — The following are true.

(1) The Fp-scheme Igy gv is perfect and a pro-étale Ji"*-torsor over Cp‘;fp . .(13)

K7 F,
(2) The map 3¢y, c» — TGy v 5 a closed embedding, under which the Jy (Qyp)-
action on gy . restricts to an action of Jy(Qp) on Jg, » (via the embedding

Jo(Qp) = Ty (Qp) )

Progf. — This follows from [Ham19, Prop.4.1, 4.10], noting that our Jg, x» is his

o(ff_oo) (the perfection of his #.,) and that our Jit is his I'p. Two points require
some further explanation. Firstly, we see that Ji™* = T'y, as follows. Observe that Ji"* C
Jo(Q,) C Jy(Q,) and Ji™ C G(Z,) C GSp(Z,). Thus Ji™* consists of automorphisms
of 3y which are exactly the stabilizers of (¢,,) via Dieudonné theory. Secondly, [Ham19,
Prop. 4.1] tells us that foo — C, 7, is a pro-étale J{-torsor. Since every perfection
map (as a limit of absolute Frobenius) is a universal homeomorphism, which preserves
the pro-étale topology [BS15, Lem. 5.4.2], it follows that the perfection /O(fioo) —

perf . , int
Cb,KP,FP is also a pro-étale J,**-torsor. O

Levwvia 6.1.2. — Let R be a perfect Fp-algebra. Then Igy, rer (R) is identified with the
set of equivalence classes of (x,j), where

— x € Sk, k»(R) is an abelian scheme over Spec R and
—J 2 x5, R— Ag [p>°] is a quasi-isogeny carrying (Sq) t0 (Sa.0.z),

(13)It can be shown that 39y kp — Cbp, i is an Aut(3p)-torsor by [CS19, Cor. 2.3.2] and adapting

the argument there, but we do not need it.
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and A, denotes the pullback of the universal abelian scheme along x. Here (x,j)
and (z',j') are considered equivalent if, in the notation of Section 5.2, there exists
a p-power isogeny i : Ay — Ay carrying (Sa,eqx)e£p 10 (Sata)ezp and (Sa0.z) to
(Sa,0,2) such that ioj = j'. Each p € Jy(Qy) acts on the R-points of Jg, v by
sending j to j o p.(14)

Proof. — This is the Hodge-type analogue of [CS17, Lem. 4.3.4] proved in the PEL
case. By loc. cit. Jgy ;. (R) is the set of p-power isogeny classes of (4, j) with A €
Sk (R) and j 2 3y x5, B — A[p™>] a quasi-isogeny compatible with polarizations
up to Q. Now we have a commutative diagram from the construction of central
leaves and Igusa varieties:

loc. closed
~ _ M —
o0 — Cy s, i ko F,

closedﬂ J l
loc. closed

jgb/,K/'p > Cb/’K/,p’ﬁp K;}K/,p7Fp

Now we prove the first assertion by constructing the maps in both directions, which
are easily seen to be inverses of each other. Given y € Jg, x»(R), its image gives
r € Sx,kv(R). The j comes from the image of y in Jgy . (R). The compatibility
of j with crystalline Tate tensors follows from the very definition of Jg,, ». Conversely,
let (x,j) be as in the lemma. Modifying by a quasi-isogeny, we may assume that j
is an isomorphism. Then (x,j) comes from a point y' € Jgy g (R) as observed
above. Since Spec R and Cj k» are reduced, x € S, x»(R) comes from a point in
z € Cp gr(R). Then y' and = have the same image in C | KIwF, (R), so determine a
point

~ perf
ye (ng’,K'm XCbQK/,pﬁp Cb7Kp7Fp) (R) = (jgb’,K"p XCb,)K/TpYFp Cb)Kpjp)(R)'

The compatibility of j with crystalline Tate tensors exactly tells us that y €
J9s, k0 (R).

It remains to show the last assertion. In light of Lemma 6.1.1 (2), the assertion on
the J;(Qp)-action follows from the analogue description for Ji (Q,)-action on Jgy x1.»
as in [CS17, Lem. 4.3.4, Cor.4.3.5]. O

Now we compare Igusa varieties arising from two central leaves C}, and C}, in the
same Newton stratum. Thus we assume that b, by € G (Q;r)r_good for some r and that b
is o-conjugate to by in G(Q,). We have an isomorphism J,(Q,) ~ Jy, (Q,) (induced
by a conjugation in the ambient group G(Qp)), canonical up to J,(Q))-conjugacy.

(19We make a right action of J,(Qp) on Jg;, jcp so that it becomes a left action on the cohomology.
In [CS17, §4.3], their arrow j is reverse to ours, from A[p™] to I XF, R. The two conventions are
identified via taking the inverse of j (with the understanding that the authors of loc. cit. are also
using the right action of J,(Q)p), though this does not appear there explicitly).
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CoroLrrary 6.1.3. There exists a G(A*P)-equivariant isomorphism
jgb ; jgb(],

which is also equivariant for the actions of Jy(Qp) and Jp,(Qp) through a suitable
isomorphism Jp(Qp) =~ Jp, (Qp) in its canonical Jy(Qp)-conjugacy class.

Proof. — Since [by] = [by,], there exists a quasi-isogeny f : Xp, — X, compatible
with G-structures. Using the description of Lemma 6.1.2, we can give an isomor-
phism Jg, — Jgy, on R-points by (4, j) — (A,j o f). The equivariance property is
straightforward. g

The Jy(Qp)-action on Jg,, ;» commutes with the Hecke action of G(A>?) (as KP
varies) as it is clear on the moduli description. Now we would like to understand the
G(A>®P) x Jp(Qp)-representation

H'(3gy, Q) = lim H'(3g, 1, Qp), >0,
Kp

where the limit is over sufficiently small open compact subgroups of G(A>P).

From Section 2.3 we obtain the following commutative diagram. Indeed, all maps
and the commutativity are obvious except possibly the map J,(Q,)*> —» M, (Q,)2,
which comes from the proof of Corollary 2.3.3. (The latter also tells us that

Mb(Qp)ab = Mb(Qp)b and G(Qp)ab = G<@p)b~)
(6'1'3) Jb(@p) Mb(@p) — G(Qp)

l l l

Tp(Qp)*> ——» Mp(Q,)* —— G(Q,)™.
The diagram yields the composite maps

(6.1.4) G Jp(Qp) — G(Qp)ab and (@ Mp(Qp) — G(Qp)ab-

Thus every one-dimensional smooth representation 7, of G(Q),) (necessarily factoring
through G(Q,)*") can be pulled back to one-dimensional representations of J,(Q,)
and M;(Qy), to be denoted 7, o §, and mp, o (f.

As a reminder from Section 5.3, every nonempty Q-non-basic central leaf can be
written as Cy, where b is a Q-non-basic element contained in G (Qgr)r_good for a suffi-
ciently divisible 7 € Z31. (Conversely such a b gives rise to a nonempty leaf.) We are
ready to state the main theorem of this paper.

Turorem 6.1.4 (Main Theorem). — Let (G, X,p,G) be a Shimura datum of Hodge
type. For every (nonempty) Q-non-basic central leaf Cy, there exists a G(AP) x
Jp(Qp)-module isomorphism

LH (39, Q) = @ 7P @ (mp 0 G),
TeAL(G)

where Aq1(G) stands for the set of one-dimensional automorphic representations m of
G(A) such that moo is trivial on G(R) ..
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Proof. After reduction to the completely slope divisible case by Lemma 6.2.2; the
theorem will be established in Section 7 below. g

Remark 6.1.5. — Since dimm, = 1, we have (m, o () ® ép, = Jper(mp) @ 5113{)2 as

Jy(Qp)-representations. (The point is that the unipotent radical N;* acts trivially
on mp.) This is closely related to Lemma 3.1.2. It is also worth comparing with [HT01,
Th. V.5.4] and [Shil2, Th.6.7], where a similar expression appears in the description
of cohomology of Igusa varieties.

62 FINITE-LEVEL [GUSA VARIETIES IN THE COMPLETELY SLOPE DIVISIBLE CASE

We recall the definition of finite-level Igusa varieties following [Man05, CS17,
Ham19]. From Section 5.3 we have r € Zy; such that b € G(Q)")rgooa- In this
subsection, we further assume that b is completely slope divisible in the sense of
[Kim19, Def. 2.4.1]. In particular, the decency equation holds:

(6.2.1) bo(b) - - " (b) = ruy(p).

A priori, (6.2.1) holds for some r € Z>1 but then it is still true for all multiples of r.
So we may and will assume that (6.2.1) holds for the same r as in Section 5.3 by
making 7 more divisible.

We start from the Siegel case. Write Igy ,,, gr.» — Cl kv for Igusa varieties of
level m € Zs; as in [Man05, §4] or [Haml19, §3.1] (the definition works over F,r
not just over F,), defined to parametrize liftable isomorphisms on the p™-torsion
subgroup of each slope component. As shown in loc.cit. Igy ., o — Cip kv is a
finite étale morphism, forming a projective system over varying m via the obvious
projection maps. Write Ig, /., for the projective limit of Igy ., k., over m. There
are maps Jgy gro — Igb/,m,thﬁp for m > 1 compatible with each other, since the
isomorphism (6.1.1) induces isomorphisms on isoclinic components. This induces an
isomorphism Jgy oo — Igz’ff{,,pﬁp. See [CS17, Prop. 4.3.8] and the preceding para-
graph for details.

Following [Ham19, §4.1] (but working over F,- rather than F,), define the F,--

subscheme

~ perf
Igy kv C (Igb/,K/=P XCyr gt Cb,KP)

to be the locus given by the same condition as in (6.1.2). Define Ig,, ,,, ;c» as the image
of the composite map

IgbﬁK,, — Igb/,K/,p XCyr k1w Cb,KP — Igb/,m,Kur) XCyr k1w Cb,KP~

The projection onto the second component gives an F--morphism Ig, ,,, x» — Cb kv,
which is finite étale by [Ham19, Prop. 4.1]. Via the canonical projection Igy, ,,, 11 g» —
Igy, o x» commuting with the maps to Cp k», we take the projective limit and denote
it by Igy, gv-

Besides the Hecke action of G(A®P) on the tower of Ig;, », we also have an action
onIg, 4, 5, by asubmonoid S, C Jp(Qp) defined in [Man05, p. 586]. (The latter action

is defined only over F, in general since self quasi-isogenies of ¥, are not always defined
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over finite fields.) The precise definition is unimportant, but it suffices to know two

facts. Firstly, S; generates J,(Q,) as a group. Secondly, S, contains p~' (the inverse

of the multiplication by p map on %) and(15)

fr™" =1y (p) € Jp(Qp).

By Lemma 5.3.1, fr™" € A, (Q,). Let Fr denote the absolute Frobenius morphism on
an [F-scheme.

Lemma 6.2.1. — The following hold true.

(1) ™" € A;b; C A, (Qp) = Ay, (Qyp). As an element of My(Q,), we have fr™" €
A;{p. (Recall that A;zf;’ was defined in Section 2.1. For A, (Qp) = Ay, (Qp), see
Section 5.3.)

(2) The action of Fr" x 1 on gy, r» X5, Fp induces the same action on Ig, x» as
the action of fr™" € Jp(Q,).

(3) There is a canonical isomorphism Jg;, x» ~ Ig
with the G(A>P) x Sy-actions as KP varies.

perf

b, Ko F, OVET ObK”Fp’ compatible

Proof. — (1) We already know fr™" € A;,(Q,) = A, (Qp). Since rvy, is B-dominant
(Section 5.3), we have ruv(p) € A;;p. Moreover rvy(p) € A;;_p as the centralizer of
rvp(p) in G is exactly M.

(2) Write Fry, for the absolute Frobenius action on Xj/F,-. In view of (6.2.1),
fr™" = ruy(p) acts on Xy /F,r as (Fry)”. Thus fr™" sends (x,7) to (x,j o Fry) in the
description of R-points in Lemma 6.1.2. On the other hand, Fr" x 1 on Jg;, x» sends
(z,7) to (", ), where (") corresponds to the p”-th power Frobenius twist of z (so
that A, = (A;)™), and j( is the p"-th power twist of j. Finally we observe that
(), §) is equivalent to (z, joFry) via the p"-power relative Frobenius A, — A, .

(3) We have the map Jg;, x» — Ig, k7, over Gy i, 5 from the definition, which
WK,
isomorphism exactly as in the proof of [CS17, Prop. 4.3.8], the point being a canonical

perf
b, KP.F),’ =

factors through Jg, x» — Ig since Jg,, k» is perfect. This is shown to be an

splitting of the slope decomposition over the perfect scheme Ig

Lemva 6.2.2, In the setting of Theorem 6.1.4, if the theorem is true for every b
which satisfies (6.2.1) for some r, then the theorem is true in general.

Proof. — Let by be arbitrary in the setting of Theorem 6.1.4. By [Kim19, Prop. 2.4.5]
(alternatively by the argument of [Zhal5, Lem. 4.2.8]), there exists b € G(Q,) which
is o-conjugate to by such that

= b€ G(Zy)opy(p) ' G(Zy),

— b is completely slope divisible and satisfies (6.2.1) for some r € Zx1.

(15)Here is a note on the sign. On the slope 0 < A < 1 component, the action of fr” is p”, but
vy, records slope —A since we use the covariant Dieudonné theory.
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It follows that we have (brl) for b, namely b € G(Zyr)op,(p) " *G(Z,) for some r.
By making r more divisible (note that (6.2.1) still holds for the new r), we can
ensure (br2) and (br3) for b. Thus b € G(Q}")r-gooa and Cp # @. By hypothesis,
Theorem 6.1.4 is true for this b. On the other hand, we see from Corollary 6.1.3 that,
fixing an isomorphism J,(Qp) =~ Jp, (Qp) as in there,

H°(3g,,Qc) ~ H°(3g,,,,Qr)  as G(A™P) x Jy(Q,)-modules.

Therefore, Theorem 6.1.4 for b implies that the same theorem holds for by. (Note that
the transfer of one-dimensional representations via J,(Q,) =~ J5,(Q,) is canonical.)
0

7. CoHOMOLOGY OF [GUSA VARIETIES

The main purpose of this section is to prove Theorem 6.1.4. Throughout we are in
the setting of Section 6.2, namely we are assuming (6.2.1) on b and r in addition to
(brl)—(br3) of Section 5.3, since this is sufficient in light of Lemma 6.2.2. We will switch
to compactly supported cohomology via Poincaré duality and apply Mack-Crane’s
Langlands—Kottwitz style formula to bring in techniques from the trace formula and
harmonic analysis. All ingredients will be combined together in Section 7.6 to identify
the leading term in the Lang—Weil estimate.

7.1. COMPACTLY SUPPORTED COHOMOLOGY IN TOP DEGREE. In Section 6.2 we con-
structed Ig, x» over Fyr such that Jg, ., is isomorphic to the perfection of Igb)K,pr
(compatibly with the transition maps as KP? varies). Recall that dimIg, = (2p, vp).
Define for ¢ € Zxy,

HZ(Igb,m,?pv@é) = hL”HZ(Igb,m,Kp,ﬁpaQe)a Hé(lgbfpa@e) = hﬂ Hé(lgb,mﬁpa(@z)~

K m>0

As for Hé(Ingp ,Qy), we have a G(A>P) x J,(Q,)-module structure on H¢ (Igbjp , Q).
This is an admissible G(A>?) x J,(Qp)-module as the cohomology is finite-
dimensional at each finite level. It is convenient to prove the following dual version
of Theorem 6.1.4.

Turorem 7.1.1. Assume that b is Q-non-basic, and that ¥y is completely slope
divisible. Then there is a G(A*P) x J,(Q,)-module isomorphism
HEP (g5 Q) = B 7P @ ((mp 0 () @ 6p,).
meA1(G)
Proof. The proof will be carried out in Section 7.6 after recalling a stabilized trace
formula (Theorem 7.5.1), by employing the estimates in Section 4. ]

Theorem 7.1.1 implies Theorem 6.1.4.. — We may put ourselves in the completely
slope divisible case by Lemma 6.2.2. Write d := (2p, 14). Applying Poincaré duality to
finite-level Igusa varieties Igy, ,, x» and taking direct limit over m and K”, we obtain
a pairing

HO(Igb,FPv Q) x chd(Igb,va Qi(d)) — Qy,
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where Q(d) denotes the d-th power Tate twist. The construction of duality
(Exp. XVIII, §3 in [SGA4-3]) goes through a family of canonical isomorphisms
Rfy, k»Qp ~ Q(d)[-2d] (concentrated in degree 2d) over m and KP, where
Jm.xr ¢+ 18y, k» — SpecF,- denotes the structure map. Thus the action of
G(A>P) x Jy(Qp) on Ig, = {Ig;,, r»} induces an action on Q,(d)[—2d], through a
character ¢ : G(A™?) x J,(Qp) — @Z (As in Section 6.2.1, the action of Ju(Qp)
is defined a priori on a submonoid S, and then extended to J3(Qp). Alterna-
tively, this action can be defined directly after perfectifying Ig,.) Together with
the G(A*>P) x J,(Qp)-action on Ig,, this yields an action of G(A*?P) x J,(Q,) on
Hfd(lgbfp,@l(d)) and H O(Igbfp,@l), respectively. It follows from the functoriality
of Poincaré duality that the above pairing is G(A™P) x J,(Qp)-equivariant. Thus
H()(Igbjp,@z) is isomorphic to the (smooth) contragredient of Hfd(lgb’ﬁp,@z(d)),
which is isomorphic to Hfd(Igbjp7@e) ® ¢. Therefore, Theorem 7.1.1 implies that
(7.1.1) HOg,r, Q) > @ (0F) @ (10 G) ®6p,)) @
TE€AL(G)

On the other hand, HO(Igbfp,@e) is the space of smooth Q,-valued functions on
WO(Igbﬁp), on which G(A>?) x J,(Qp) acts through right translation. (Here smooth-
ness means invariance under an open compact subgroup of G(A*"?) x J,(Q,).) In par-
ticular, the trivial representation appears in H° (Igb’ﬁp ,Q,) as the subspace of constant
functions on mo(Ig, 5 ). Hence ¢t =(m"") @ ((m0,p 0 ) ®Ip,) for some my € A1 (G).
Plugging this formula into (7.1.1) and using the fact that A;(G) is invariant under
taking dual and twisting by 7o, we can rewrite (7.1.1) as

HY(Ig7,Q) > B 7@ (1p0G).

TeA1L(G)
Finally, the same holds with Jg, in place of Ig, F, thanks to Lemma 6.2.1(3). |
Remark 7.1.2. — It may be possible to compute the character ¢ in the proof, but we

have got around it. As we know the Frobenius action on Q,(d)[—2d], Lemma 6.2.1(2)
tells us that fr™" € J,(Q,) acts by p"@. We guess that < is trivial on G(A>?) and
equal to 5131)1 on Jp(Qp).

7.2. PREPARATIONS IN HARMONIC ANALYSIS. — Let ¢P = @, ¢, € H(G(A®P))

and ¢, € H(J,(Q,)). With a view towards Theorem 7.1.1, we want to compute
Tr (6776 [1Ho(lgy g, Q) ) = D (<1)' Tr (676 1Hi(lg, 5, Q) )
i>0
We keep T, B, b € G(@p)7 and r € Zx; as before, so that rv, € X, (T)+. Recall
that rvy(p) € Ay, Given ¢, € H(J,(Qy)), define
o) € H(I(Qp) by ¢(0) = 0p(im(p)19),  jE L.

This coincides with the analogous definition of qﬁ,(,k) in Section 3.1, namely gzﬁz(,j ) = qS;,k)
via k = j/r and v = rip. (The difference is that v is a cocharacter but v} is only a
fractional cocharacter.)
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An element § € Jy(Q,) is acceptable if its image in My(Q,) is acceptable (Defi-
nition 3.1.1) under the isomorphism J,(Q,) ~ M;(Q,) induced by some (thus any)
inner twist at the end of Section 5.3. As in Section 3.1, let Hace(Jp(Qp)) C H(J(Qp))
denote the subspace of functions supported on acceptable elements. Choose jy € Zx

such that
¢;(;J) € g{acc(Jb(Qp))? ,7 € er ] 2 j()~

Such a jg exists by the argument of Lemma 3.1.7. By Lemma 6.2.1 and the definition
()
of ¢y,

(7.2.1) Tx(¢=7gf) ‘ H(Ig,5,, Q) = Tr(6™76, x (B x 1) | cH.(lg, 7, Qp)),

where Fr/ is the j/r-th power of the relative Frobenius of Ig, over F,.. Since the
action of Fr/ is the same as the action of a central element of Jp(Qp), it commutes
with the action of ¢*?¢,. Thus (7.2.1) and the Lang-Weil bound tell us that the top
degree compactly supported cohomology in Theorem 7.1.1 is captured by the leading
term as j — oo. This will be the basic idea underlying the proof of the theorem in
Section 7.6 below.

We fix the global central character datum (X, xo) = (Ag 00, 1) for G, which can also
be viewed as a central character datum for G* via Z(G) = Z(G*). (Since we compute
the cohomology with constant coefficients, we do not need to consider nontrivial xq.)

We also fix a z-extension 1 — Z; — G7 — G — 1 over Q once and for all, which is
unramified over Q. As explained in [KSZ, §7.3.3], we can promote G; to a Shimura
datum (G, X1) lifting (G, X') together with the conjugacy class {px, } of cocharacters
of G1 ¢ lifting {px }. Therefore, in ¢,{f1x, }, we can find a cocharacter

tp1 Gy — Gy

which lifts p, and is defined over an unramified extension of Q, (since the reflex
field of (G1,X1) is unramified at p). Making r more divisible, we arrange that p, 1
is defined over Q,-. We apply Lemma 5.3.8 to find a lift b; € G1(Qpr) of b; we also
ensure that rv;, is a cocharacter as in the last assertion of that lemma. We mention
that p,1 and b; are going to enter the construction of test functions at oo and p,
respectively.

For each ¢ € €.(G), fix a Q-rational minimal parabolic subgroup of G¢ and its Levi
component as at the start of Section 4.2 (with G* in place of G there). Call them P}
and M{ in the case ¢ = ¢*. On the other hand, we have Gg, D Bg, 2 Tg, from
Section 5.3. Since Gg, is quasi-split, there is a canonical G*4(Q,)-conjugacy class of
isomorphisms Gg, ~ Gg, . We fix one such isomorphism such that Bg, (resp. Tg,)
is carried into Pg"@p (resp. M&Qp). The images of By, and Tp, in G(’@p will play the
roles of B and T in Section 4.2.

For each ¢ € £5,(G), we have a central extension 1 — Z; — G§ — G* — 1 over Q,
determining an endoscopic datum e; for Gy and a central character datum (X$, x$)
for G as in Section 2.7.
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7.3. THE TEST FUNCTIONS AWAY FROM P. For each ¢ € €. (G), Let us introduce the
test functions to enter the statement of Theorem 7.5.1 below. Here we consider the
places away from p. The place p will be treated in the next subsection.

The first case is away from p and co. When ¢ = ¢*, we have (f1&*)>P = ®;¢m7p o
where fr € H(G*(Q,)) is a transfer of ¢, as in Section 2.5. In case ¢ € £5,(G), at
each v # oo, p, the function ¢, admits a transfer ff, € H(G{(Qv), (x§,)""). Then
we take

()27 = ©) s € H(GTASD), (11%7)7).

The next case is the real place. We construct the test function f{gofJ € H(G§(R),
(X$.00)"") by adapting [Kot90, §7] to the case with central characters. In the eas-
ier case of ¢ = ¢* = (G*,£G*,1,id), we take fl&* := e(Gs)f1 in the notation of
Section 2.4. Now let ¢ € £5,(G). In the notation of Section 2.4, both £ and ¢ are
trivial in the current setup (since we are focusing on the constant coefficient case).
Write & and (7 for the pullbacks of £ and ( from G to G; they are again triv-
ial. We obtain a discrete L-packet II(&1,¢71) for G1(R) along with an L-parameter
ber ey - Wr — FGy as in Section 2.4. Let ©2(G{ g, ¢¢,,c;) denote the set of discrete
L-parameters ¢ € ®(GS(R)) such that n{¢’ ~ ¢¢, ¢,. Then define (cf. [Kot90, p. 186])

50 = (DM (a5 3 det(we (6) for,
¢/
where fy4 is the averaged Lefschetz function for the L-packet of ¢’ defined in Sec-

tion 2.4, and the sum runs over ¢’ € (G| g, ¢¢, ¢, )- As in [KSZ, §8.2.5] we check that

Ig,e

1o 18 (Xi,oo)*l—equivariant and compactly supported modulo Xj .

7.4. THE TEST FUNCTIONS AT P. We apply the contents of Section 3 to the cochar-
acter v := 1y over F' = Q, with uniformizer @w = p. In particular, we have P, := P,
whose Levi factor is M, = M,,.

Consider the case ¢ = ¢*. Each function ¢, € H(J;(Q,)) admits a transfer ¢ €
H(My(Qp)) as explained in Section 2.3. When ¢, € Haec(J(Qp)), we can arrange
that ¢5 € Hace(Mp(Qp)) after multiplying by the indicator function on the set of
acceptable elements in M;(Q,). (This is possible as the subset of acceptable elements
is nonempty, open, and stable under J,(Q,)-conjugacy.) The image of ¢ in 8(M,)
depends only on ¢, (as an element of 8(.J;)). In the notation of Section 3.1, define

[0 = %(511{2 or0)) € 8(G),  jEZLso,

As before, we still write fZI,g’*’(j) for a representative in H(G(Q,)). Lemma 3.1.2 implies
that

Te(f185W|m,) = Te(¢5D | Jpor (m) @ 64°),  Vmp € Iir(G(Qy)).
Remark 7.4.1. — In the definition of fZI,g’*’(j ). we have not multiplied the constant cjz,,
appearing in [Shil0, §6] (with H, My there corresponding to G*, M}, here). In the sign
convention of Remark 6.4 therein, the transfer factor between J, and M, equals e(Jp),
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resulting in cpr,, = e(Jp). In contrast, we have taken the transfer factor between inner
forms to be 1 (cf. Remark 2.3.6), so ¢pr,, = 1 in our convention.

Now let ¢ € £5,(G). Recall from (7.2) that by € G1(Q,r) was chosen. Take vy :=r1y, .
By pulling back the z-extension 1 — 77 — G; — G — 1 via M}, — G, and using the
definition of J, and Jj,, we obtain z-extensions over Q, as follows:

1—2Z) — My, — My — 1, 1—2Zy — Jp, — Jp — L.

(For Jy, the point is that the o-stabilizer subgroup of Resg /g, Gm is simply Gm.)
We pull back ¢ € F(J,(Qp)) to obtain ¢t} € H(Jy, (Qy), X1,5)- (Recall that x; =
[, x1,0 is the trivial character on X; = Z1(A).) Write ¢; € 3(M(Q))) for a transfer
of ¢p, and ¢7 , € H(Mp, (Qp), x1,) for the pullback of ¢5. Then ¢;’(j) (defined in
Section 3.1) is a transfer of gzﬁz(,j) (namely ¢*\) = (qﬁ,(,j))* in 8(J)), and gbik:j(gj) is a
transfer of ¢{') for all j € Z.

The desired test function fig;’f is described by the process in [Shil0, §6] (which
is applicable since G; has simply connected derived subgroup), with J,,,G{,G1 in

place of Jp, H, G therein, followed by averaging over X; = X§{. We summarize the
construction as follows:

(7.4.1) RS = 3T B where

WEey 1y
I = o Fun LIS - 013))) € HGHQ) X3, ),

Here ¢, € C are constants (possibly zero) independent of ¢,. Note that #,, , and
LS*"* denote the maps in the setup with fixed central character as in Section 3.5.
We observe the following about the right hand side of (7.4.1).

51/2 512 5172 1/2 (4)
(7.4.2) W2 or =2 ) (057 - 67 ,) 7 = pe (57 0,) .
7.5. THE STABLE TRACE FORMULA FOR lGusa varieries. — Continuing from the preced-

ing subsections, we freely use the notation from Section 2.9 . The following stabilized
formula for Igusa varieties is of key importance to us.

Tueorem 7.5.1. Given P € H(G(A>®P)) and ¢, € H(Jp(Qp)), there exists
Jo = §o(67,6,) € L1 such that ¢} € Hace(J5(Qy)) and
(7.5.1)  Tr(¢*P¢) | LH.(Igy, Q)

= STG, Xo(flg’*’(j))+ Z (eNes )STenX (! Ige, (J))
e€€5,(G)

for every integer j = jo divisible by r.

Proof. — The point is to stabilize the main result of [MC22]. This is carried out in
[BMS22]; see Theorems 3.3.9 and 4.4.2 therein. O
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Remark 7.5.2. The coefficients ¢,, in (7.4.1) for e # ¢* can be made precise with a
normalization of transfer factors as in [BMS22], but we do not need the information
in this paper.

7.6. CompLETION OF THE PROOF OF ThHroreEM 7.1.1. — The main term in the right
hand side of Theorem 7.5.1 will turn out to be the following. Recall A;(G) from
Theorem 6.1.4.

Prorosition 7.6.1. — Fiz ¢=P¢, € H(G(A®P) x Jp(Qp)), from which f@)
H(G*(A)) is given as in Section 7.4 for every j € Zs1 such that j = jo = jo(¢™P,).
As j = jo varies over positive integers divisible by r, we have the estimate

TS (fB) = 37 Te(@™P[nF) - Te () | (mp 0 ) @ 6p,) + o(p? 207,

TeA1(G)
Proof. — We have

(7.6.1) Tfee o (f870 Zm ) Te (1852 | 7*P) Te(fleO|rs).

Let JH(Jper(my)) denote the multi-set of irreducible subquotients of Jper () (up
to isomorphism). The central character of 7 € JH(Jpor(m})) is denoted w,. We see
from Lemma 3.1.2 (ii) that

Te (100 | 75) = Te(042050) | Jpor (1)) = Te(650) | Jpon(m3) @ 614)
(7.6.2) =Y w @) m) T,

TEJH(JPg)p (73))

We have juy(p) € APop,
basic implies (Q- nb(POP)) by Lemma 5.3.7, it follows from Corollary 2.5.2 that the
largest growth of w, (jup(p)) as a function in j is achieved exactly when dim7* = 1.
In that case, we have m(7*) = 1 and 7, is a unitary character. Via Lemma 2.5.3,

7* corresponds to a unique one-dimensional automorphic representation 7w of G(A).
We have 75 ~ 7, via G*(Q,) ~ G(Q,). Thus

cf. Section 3.1. Since our running assumption that b is Q-non-

Rem.6.1.5

Te(¢ | J por (75 @ 67°) Te (65D (5 0 ) @ )
(7.6.3) = Tr(¢|(mp 0 G) ® 8p,) = dp, (j16(p)) Tr(dp| (mp 0 G) @ )
= p? ) Te(gp|(mp 0 &) @ O, )

We used Lemma 2.3.7 for the second equality above. Indeed, (7 o () @ dp, as a
character of M;(Q,) and (7, 0 () ® dp, as a character of J,(Q,) correspond to each
other via the diagram (6.1.3).

Let f1 denote the averaged Lefschetz function on G(R) as in Section 2.4 with

§=1and ( = 1. Write ¢(G®?) := [[, ., , ¢(Gv) for the product of Kottwitz signs.
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We rewrite (7.6.1) as
TdiS*C,X() (flg’*’(j))
= Z Tr (fig’*h;o) Tr (flg,*yoo,phr*,oo,p) Tr (le,g’*’(j)hr;) + 0(pj<2pwb>)

dim 7 =1
S D) TS T (60 G) ©5,) + (20,
dimT;rzl

where the last equality was obtained from (7.6.2) at p, Lemma 2.4.2 at oo, and
Lemma 2.3.7 at the places away from p. To conclude, we invoke Lemma 2.4.3 to

see that Tr(f1|Teo) = 1 if Too|g(r), = 1 and Tr(f1|7e) = 0 otherwise. O
Finally we complete the proof of Theorem 7.1.1 employing the main estimates of

Section 4.

Cororrary 7.6.2. — Theorem 7.1.1 is true.

Proof. Let ¢ # p be an auxiliary prime such that Gg, is split. Fix ¢>P9¢, €
H(G(A>P1) x Jy(Qp)). Let ¢ € £5,(G). There exists a constant C, > 0, depending
on ¢4 ¢, such that for each ¢ € H(G(Qq))c,-reg, We have the following bound
on endoscopic terms in the stabilization of Theorem 7.5.1 by applying the last bound

in Corollary 4.2.3 to k = j/r, v = riv ., Z(,k) = cw(éllt,/2 ’{p)(k), and y = xo for
L, 91,

each w € Q, ,,. Notice that fﬁ;z)(j) is ptP* 1) times f,gk) of that corollary, in light
of (7.4.1) and (7.4.2). We have

STGi (( {g,c,p)flg,e,(j)) _ O(pk((zp",rul,w>—(X§,r§1,w)))

ell,x{ 1,p,w

= O(pj(<2pevl’1,w>_<xivpl,w>)).

To turn this into a more manageable bound, we use (a) and (b) from the proof of
Corollary 4.2.3 and the fact that (xo,00,7) = 0 since xo (which plays the role of x
there) is trivial. Thereby we see that the right hand side is o (p?(?#)). Taking the
sum over w € ), ,,, we obtain

(7.6.4) STGE (£290) = o(p/®0m)), e E5(Q).

ell,x§

By Lemma 2.9.2, there are only finitely many e contributing to the sum in Theo-
rem 7.5.1 for a fixed choice of ¢>*P%¢,. Thus the coefficients +(G, G*) are bounded
by a uniform constant (depending on ¢>7%¢,). We deduce the following by apply-
ing Theorem 7.5.1, (7.6.4), Corollary 4.2.3 (the first estimate therein), and Propo-
sition 7.6.1 in the order: there exists a constant C' = C(¢>P?,¢,) > 0 (e.g., the
maximum of C, over the set of finitely many ¢ which contribute) such that for every
0q € H(G(Qyq))C-reg, We have

Te(¢°7 ¢ | LHe(Ig;, Q)

= STg;X(fIg,*w) Fo(p @)y = TG (f18% WD) 4 o(pi o))
— Z Tr (¢°°P|7°°P) - Tr(qﬁ;';’(j) | (0 () ® 5Pb) + O(pj(2p,ub>)_

TeAL(G)
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We have seen in (7.6.3) that Tr(gé;gj) (7o) ®6p, ) is either 0 or a nonzero multiple of
p/$2P0) as j varies over multiples of 7. Since dim Ig, = (2p, 13,), it is implied by (7.2.1)
and the Lang—Weil bound that the leading term should be of order pi{2¢:++) (16) There-
fore
Tr(¢™Pgy) [ LH ™) (1g,, Q) = Y Tr (6™ |7>F) Tr (65| (my 0 G) ® 3p,).-
TEAL(G)

Let B, be a Borel subgroup of Gg, over Q, with a Levi component T,. According to
Lemma 3.4.9, we have an isomorphism of G(A*?7) x J,(Qp) X T4(Qq)-representations
Tp, (HE ) (Igy, Q) = Y 7P @ ((mp 0 () ® 6p,) ® T, (7).

T€AL(G)
(A priori the isomorphism exists up to semi-simplification, but distinct one-dimen-
sional representations have no extensions with each other.) Repeating the same argu-
ment for any other prime ¢’ ¢ {p, ¢} such that G(Q, ) is split, the above isomorphism

exists with ¢’ in place of q. Comparing the two consequences, we deduce that as
G(A>®P) x Jp(Qp)-modules,
HEP (1, Q) = B 7P @ (w0 () ® 5p,)
TrEAl(G)
by multiplicity one for A;(G) and weak approximation for G. |

8. APPLICATIONS TO GEOMETRY

This section is devoted to working out geometric consequences of Theorem 6.1.4,
continuing in the setting of Hodge-type Shimura varieties with hyperspecial level at p.

8.1. IrrepuciBILITY OF lGUsa varieTiES. — In Section 1.2, we reviewed earlier results
on irreducibility of Igusa towers over the p-ordinary Newton strata of certain PEL-
type Shimura varieties. Now we explain that our main theorem implies a generalization
thereof to Hodge-type Shimura varieties and to non-u-ordinary strata.

Let (G, X,p,5) € 8Dyoqqge and b € G(Q,) be as in Section 6.1. Assume that b is
Q-non-basic. Define J(Q,) := ker(¢, : Jo(Q,) — G(Q,)?P), cf. (6.1.4). Recall that
pr:Jg, — C’;%r: is a pro-étale J™-torsor. From Theorem 6.1.4, we deduce that Igusa

varieties are “as irreducible as possible”.

Turorem 8.1.1 (Irreducibility of Igusa varieties). — In the setting of Section 6.1, the
stabilizer of each connected component of Jg, under the Jy,(Qp)-action is equal to

Io(Qp)".

Proof. — Fix a component I C Jg, and write Stab(I) for the stabilizer of I in J,(Q)).
Since the J,(Q,)-action on every m, in Theorem 6.1.4 factors through J;,(Q,)/J5(Qp)’,
we see that Stab(I) D J,(Q,)". To prove the reverse inclusion, we show that every
§ € Jo(Qp)\Jp(Q,)" acts nontrivially on H°(Jg,, Q,). Write 52" := ,(§) € G(Q,)?P.

(16)1y fact, the Lang—Weil bound proves that dimIg, = (2p,vp) even if we did not know it a
priori. This gives an alternative proof of the dimension formula in Proposition 5.3.4.
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Then 6*" # 1 by assumption. It suffices to show that some 7 in the summation of
Theorem 6.1.4 has the property that wp(éab) = 1. This follows from Lemma 2.5.4. O

CoroLrary 8.1.2. Let S be a connected component of C’;%r:. Then the set
mo(pr=1(S)) C mo(Jgy) is a torsor under the group Ji**/(Jin® N J,(Q,)). Every
component of pr=*(S) is a pro-étale torsor under Ji"* N J,(Q,)', and conversely,
if I C Jg, is an open subscheme such that I — S is a pro-étale Ji"* N J,(Q,) -torsor
via pr, then I is irreducible.

Proof. — As pris a J™-torsor, Ji"* acts transitively on mo(pr=!(S)). Theorem 8.1.1
tells us that the action factors through a simply transitive action of Ji**/Ji**NJ,(Q,)’,
implying the first assertion. The second assertion also follows from the same theorem
and the fact that pr is a J}i)“t—torsor. ]

For the remainder of this subsection, we compare with similar irreducibility results
in the p-ordinary case. Thus we specialize to the case when [b] € B(G, p,, 1) is p-or-
dinary, meaning either of the following equivalent conditions [Worl3, Rem. 5.7(2)]:

~ [b] = [u, ' ()] in B(G) (which implies [b] € B(G, p,")).

— [b] is the unique minimal element in B(G, u,, 1) for the partial order < therein.
In this case, we may and will take b = b° = p- ' (p). Indeed, we can change b within its
o-conjugacy class thanks to Corollary 6.1.3. Put r := [k(p) : Fp]. By the convention
of Section 5.3, u,, is defined over Q,-. Then we have v}, = %Z:;Ol Jiu; ! (this follows
from (4.3.1)—(4.3.3) of [Kot85] with n = r and ¢ = 1), which is defined over Q,, and
conditions (br2) and (br3) are satisfied.

We define the p-ordinary Newton stratum N, g» as in [Worl3], that is, by changing
the definition of Cp g» (Section 5.3) to require the existence of an isomorphism only
after inverting p. Then Cp x» C Np k» is closed by [Ham17, §2.3, Prop. 2]. It is worth
verifying that Cy g» = Np kr, so that Jg, is a pro-étale torsor over ij?; (not just
CP)-

Levma 8.1.3. In the p-ordinary setup above, Cy v = Ny k.

Proof. This is a consequence of two facts: that the p-ordinary Newton stratum is
an Ekedahl-Oort stratum [Worl3, Th. 6.10], and that every Newton stratum contains
an Ekedahl-Oort stratum that is a central leaf [SZ22, Th.D]. (We thank Pol van
Hoften for communicating this proof to us.) O

We explain that Corollary 8.1.2 gives another proof for the irreducibility of Igusa
towers in the p-ordinary case, for unitary similitude PEL-type Shimura varieties as
in [CEF*16, EM21], cf. [Hid11, §§2,3]. Analogous arguments can be made in the
elliptic/Hilbert/Siegel modular cases.

Write (Ig“m'?]rﬁ,)m>1 for the Tgusa tower (Ig,, )1, m = 1, over the u-ordinary stra-
tum Np gr in [EM2/17 §3.2] (relative to the same KP) with finite étale transition
d

. —ord . , :
=lim TIg/ "% is a pro-étale J;™-torsor over Ny, x». Then

maps. The scheme Ighy" lim
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Iy ke ~ (Igheordypert compatibly with the actions of G(A®?) x S; (see Prop. 4.3.8
and the paragraph above Cor.4.3.9 in [CS17]; see also [CS19, Rem. 2.3.7]), and we
have a J,(Qp)-equivariant bijection

7o(Igy,xr) = mo((Ighee™)Per) o= 7o (Ighi™?).

Therefore, each connected component of Igh-o™ has stabilizer J,(Q,) in Jy(Q,).

The Z,-group J,, in [EM21, Rem. 2.9.3] has the property that J** = J,(Z,). Let
IC Ig‘;g,?rd denote the open subscheme IgiU over a fixed component S of Ny g» as
defined in [EM21, §3.3] (more precisely, we mean the special fiber of IgiU over ).
Then I is a pro-étale Ji** N J(Q,)-torsor over S by construction. (The determinant
map of [EM21, §3.3] goes from a Ji™-torsor to a torsor under §*"(Z,), so the fiber
is a torsor under ker(Ji"* — G*(Z,)).)") Hence I is irreducible by the preceding
paragraph, cf. the proof of Corollary 8.1.2.

If [b] is moreover ordinary, namely if [b] is p-ordinary and v, is conjugate to i,
then g, is defined over Q,, (since the conjugacy class of v, is always defined over Q).
Also r = [E, : @] = 1. By our choice b = p,(p)~", we have v, = ;' (not just
conjugate) in this case. The following lemma is handy when comparing with results
in the ordinary case such as [Hid09, Hid11]. Note that trivially o(Gsc(Qp)) = Gaer(Qp)
when Gger = Gee.

Levmva 8.1.4. — If [b] is ordinary, then J, = My, Ji"* = My(Z,), and J,(Q,)" =
Mb(@p) N Q(GSC(QP))'

Proof. By definition, M, is the centralizer of v, = p, 'in G. From the def-
inition (5.3.1) with b = p,'(p), we see that M, is a closed Q,-subgroup of Jj.

On the other hand, M, is an inner form of J,, so we conclude M, = J,. Then
JRt = J,(Qp) N S(Zy) = My(Qp) N §(Zy) = My(Zy). The description of J,(Qp)’
is obvious from J, = M,. O
8.2. Tue piscreTe HECKE ORBIT CONJECTURE. We state the Hecke orbit conjecture

for Shimura varieties of Hodge type with hyperspecial level at p. We prove the discrete
part of the Hecke orbit conjecture, and find purely local criteria for the irreducibility
of central leaves.

Fix (G, X,p,9) € 8Dijoage- Let = € kv, k(p)(Fp). Denote by & C [Lf, x(p| the
preimage of x in the topological space |.“k, k(p)| Via the projection map .k r(p) —
SKrK, k(p)- Define the prime-to-p Hecke orbit as a set:

H(.’E) =7 G(Aoo’p) C |pr,k(p)|'

Write Hgr(z) for the image of H(x) in [Zkrk, k(p)|- By Ckr(z) we mean the central
leaf through z, namely Cj, k». Since the action of G(A*?) does not change the
(G(ZP)7 o)-conjugacy class [[by]], we see that

HKp (SL’) C |CKp (SL’)|

(17)In fact we have not understood the definition of the determinant map in [EM21, §3.3] unless
B is a field, so we should restrict our comparison with loc. cit. to this setup.

JIEP. — M., 2023, tome 10



HO or [cusa VARIETIES 1381

Following Chai and Oort, cf. [Cha05, Cha06], we formulate the Hecke Orbit Problem
as follows.

Question 8.2.1 (Hecke Orbit Problem). Let © € Lo, n(p)(Fp) such that [by] is
Q-non-basic. Does the subset Hyxv(x) have the following properties?

(HO) Hg»(z) is Zariski dense in the central leaf Crr ().

(HOcont) The Zariski closure of Hgv(x) in Ckr(x) is a union of irreducible com-
ponents of Cgr(x).

(HOgise) Hie () meets every irreducible component of Cgr ().

(HOY,,) For every x € kv, (E(p)) such that [b,] is Q-non-basic, the immersion

Crr(2) = Sk, w(p) induces a bijection mo(Crr(x)) — mo (prKp @).

Remark 8.2.2. The hypothesis on [b,] cannot be weakened to only requiring that
[b;] be non-basic. For example, for Shimura varieties arising from (G x --- x G, X x

- x X), with (G, X) a Shimura datum, we see the necessity to assume [b,] to be
basic in every copy of G (which is a Q-factor).

Note that (HO) is the analogue of the Hecke orbit conjecture for Hodge-type
Shimura varieties, which is divided into discrete and continuous parts in the sense
that (HOgisc) and (HO¢ont) combined is obviously equivalent to (HO). We usually
refer to (HOJ,.) as “irreducibility of central leaves”, as it states that the central
leaf through x is irreducible in each connected component of the ambient Shimura
variety. Regarding (HOgisc) and (HOZ_ ), we have the following relationship and
representation-theoretic interpretations.

Lemma 8.2.3. — Let b be Q-non-basic such that Cy is nonempty. Between the following
statements, there are logical implications (1) < (2) = (3) < (4).

(1) (HOL..) holds true for all neat K? C G(A°P?) and all x € Cy o (F,).

(2) H(Cy, Q) ~ H(Shk,,Q,) as G(A°P)-modules. (This asserts the existence
of an isomorphism, which need not be induced by the natural map Cy — Shg,.)

(3) (HOy;,.) holds true for all neat K? C G(A*P) and all x € Cy xr(Fp).

(4) dimg ey Hom(1, H°(Cy, Q,)) = 1.

Remark 8.2.4. — The non-emptiness condition in the lemma is essentially equiva-
lent to the condition that b € G(Z1)opu,(p)~'G(Z5T). Indeed, by Proposition 5.3.5,
the latter implies that C, (as well as Cp g» for all neat KP) is nonempty; con-
versely, if C} is nonempty then we can re-choose b without changing Cj such that
b e S(Zy)oup(p) " S(Z).

Proof. As KP? varies, the immersion Cp x»r — kv, k(p) induces a G(A>?)-equi-
variant map

(8.2.1) 7'('0(01,) — WO(meW)’

which is surjective since G(A*P) acts transitively on 7o(.%, =) by Lemma 5.2.2.

Kpﬁk(p)
Condition (1) is equivalent to the condition that the above map is an isomorphism,
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and (3) is equivalent to the condition that G(A®P) acts transitively on mo(C). From
this, it is clear that (1) = (2) and that (1) = (3) < (4).

Now suppose that (2) holds. Then the G(A>?)-equivariant injection H°(Shg,, Q)
— H%(Cy,Qy) induced by (8.2.1) must be an isomorphism by (2), since tH°(Shg, , Q)
is a semisimple module in which each 7°°P appears with finite multiplicity (in fact
multiplicity one) by Lemma 5.1.1. Hence (8.2.1) is a bijection, and (1) follows. O

Now we allow b € G(Q,) which need not be Q-non-basic for the moment. The map
G J(Qp) — G(Qp)*P from (6.1.4) is an open map as it is the composite of open
maps.

Write G2P for the abelianization of G as an algebraic group over Z,. Then Gab jg g
torus over Z,, and §*"(Z,) is a unique maximal subgroup of G**(Q,). On the level of
points, denote by §(Z,)?" the image of §(Z,) under the projection G(Q,) — G(Q,)".
When Gger = Gy, then §(Z,)*P = G*(Z,) as subgroups of G(Q,)** = G**(Q,).

Given a cocharacter v : G,,, — G over (@p, define the affine Deligne—Lusztig set

Xy (b) :={g € G(Q,)/5(Zy) : g "bo(g) € $(Z,)v(p)S(Zy)},
equipped with the left multiplication action by J,(Q,). In fact X,,(b) is the set of
closed points of a perfect variety over F, [Zhul7, BS17].

Levma 8.2.5. — The subgroup (y(Ji™) C G(Q,)*" is open, compact, and contained in
S(Z,)*". Furthermore, there exists by € S(Zy")opy(p) = S(Zyr) which is o-conjugate
to b in G(Q,) such that Coo (Ji) = G(Zy ).

Proof. Since ¢ is an open mabp, it carries the open subgroup Ji"* of .J,(Q,) onto
an open subgroup of G(Q,)*". Since (,(Ji") is contained in both G(Q,)*® and the
image of S(Zp) under the abelianization map, it is contained in S(Zp)ab. This proves
the first assertion.

As for the second assertion, we start by claiming that there exists an element bg
in the double coset G(Z1")op,(p) ' G(Z4T) which is o-conjugate to b such that Ji**
contains an Iwahori subgroup of Jy,(Q,). This follows from the proof of [ZZ20,
Prop. 3.1.4], which is based on results of He [Hel4]. (The claim amounts to the exis-
tence of a point on X - (b) whose stabilizer in J;(Q,,) contains an Iwahori subgroup.
It is enough to check this on the level of Iwahori affine Deligne-Lusztig varieties. More-
over, the assertion is invariant under J;(Qp)-equivariant bijections between Iwahori
affine Deligne—Lusztig varieties. With this in mind, take w and z as in the first two
paragraphs of the proof of [ZZ20, Prop. 3.1.4]. Then the claim follows from the fact
that J;(Qp) N fP(Zp) is a parahoric subgroup of J;(Q,), cf. p. 168, line 14 in loc. cit.
where P is a parahoric subgroup of G@p defined therein.)

By the last claim, it suffices to show that

Goo (Iw) = §(Z,)™"

for just one Iwahori subgroup Iw of Jy, (Q,) since all Iwahori subgroups are J;, (Qy)-
conjugate. As the statement is now only about by, we drop the subscript 0 to simplify
notation.
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By using an unramified z-extension 1 — Z; — G7 — G — 1 over Q, (which gives
rise to a smooth map of reductive models §; — G with connected kernel over Z,;
the induced map G (Z,) — G(Z,) is thus surjective) and choosing b; € G1(Q,) as in
Lemma 5.3.8, we reduce to the case when Gger = Gsc. So My, and Jp, also have simply
connected derived subgroups. In particular, G(Q,)*® = G**(Q,,) and likewise for M,
and Jp.

Since Mj, splits over Q, we see from (5.3.3) that J, also splits over Q. By [DeB06,
§2.4], J,, contains an unramified elliptic maximal torus T, over Q,. Write T} for the
torus over Z,, extending Tj,. Then Tj, is contained in some Iwahori subgroup of Ji,(Q,)
(associated with the chamber whose closure contains the facet F' in [DeB06, §2.4]).
In view of (6.1.3), we can think of (; as the map on the set of Q,-points arising from
the composite Q,-morphism

Jy — J§¥ = Mp® — G*.

Composing with T;, < Jp, we obtain a Q,-morphism Tj, — G? of unramified tori.
This uniquely extends to a Z,-morphism Tj — G2 inducing the map

To(Zp) — 9ab(Zp)-

We will be done if this map is surjective. By smoothness and Lang’s theorem over
finite fields, it is enough to check that ker(J, — G2P) is connected. To see this,
observe that T} := ker(T, — G?) is connected, since it becomes a maximal torus
of Gger after base change from Q, to @p. Thus we have a short exact sequence
1 — T} = T, — G* — 1 of unramified tori over Q,,. It follows that ker(T, — G2P) is
the torus over Z, extending T}, hence connected. O

Remark 8.2.6. In an earlier version of this paper, we incorrectly asserted that
(i) equals Gy, (Ji™). This led us to mistakenly claim that (HOJ,,
non-Q-basic b. As illustrated by Example 8.2.12 below, (HOJr

disc

) was true for

) is false in general.

Write U, (b) for the preimage of (,(Ji"*) under the projection G(Q,) — G**(Q,).
Then U,(b) is an open subgroup of G(Q,) by Lemma 8.2.5. Now we can describe H°
of every non-Q-basic central leaf and deduce the discrete part of the Hecke orbit
conjecture.

Turorem 8.2.7. Let b be as in Lemma 8.2.3. As a G(A*P)-module,

LHY(Cy, Q) ~ D dimﬂgl’(b) - rooP,
TeA1(G)

Moreover, (HO,..) holds true for all neat KP C G(A®P) and all x € Cy kv (Fp).

Proof. — According to Remark 8.2.4 we may assume that b € G(Z3")op,(p) ' S(Z2),
hence that (brl), (br2), and (br3) are satisfied by a sufficiently divisible r € Z>1. The
first assertion is a consequence of Theorem 6.1.4 and Lemma 6.1.1(1), noting that
perfection does not change cohomology. For the second assertion, let 7 € A;(G) with
7P = 1. In light of Lemma 8.2.3 it suffices to check that if [y 3y = 1, then 7 is
trivial. We have 7oo|qr), = 1 from 7 € A;(G). Thus 7 as a continuous character
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G(Q)\G(A) — C* is trivial on G(A>®P)U,(b)G(R)4. Since G(Q) — G(Q,) x G(R)
has dense image (cf. proof of Lemma 5.2.2), x is trivial. |

Remark 8.2.8. — The only fact about U,(b) used in the above proof is that U,(b) C
G(Qp) is an open subgroup. Thus the same argument shows the obvious analogue of
(HOy.) for finite-level Igusa varieties Igy, ,, x» since Jg, g» is a pro-étale J-torsor
over Ig, ., k» after perfection for an open subgroup J of Jint. Indeed, we only need to
replace Cp, with the projective limit of Ig;, ,,, j» over K7, and U, (b) with the preimage
of (,(J) in G(Qp). (This remark was suggested by the referee, whom we thank.)

In light of (1) < (2) in Lemma 8.2.3, the following theorem gives criteria for
(HOJr ). Observe that (c2) and (c3) are purely local conditions at p, depending only

disc

on the data pertaining to Gg, -

Turorem 8.2.9. Letb € G(Zy")opy(p) ' G(Zy"). Assume that b is Q-non-basic. The
following are equivalent.

(c0) (HOZ..) holds true for all neat K? C G(A®P) and all x € Cy k» (F,).

(c1) H°(Cy,Qy) ~ H(Shk,, Q) as G(A>P)-modules.
(€2) (™) = G (Zy).
(c3) The stabilizer in J,(Q)) of 1 € Xwgl(b) maps onto G**(Z,) under Cy.

Proof. — (c0) < (cl). Already shown in Lemma 8.2.3.

(c2) = (c1). For each m € A1 (G), it is enough to check the claim that Wg"(b) #0
if and only if WS(ZP) # 0. As a character m, factors through G(Q,) — G**(Q,),
condition (c2) ensures that the images of U, (b) and §(Z,) in G*P(Q,) are both equal
to Sab(Zp). The claim follows.

(c1) = (c2). Assuming (,(Ji) C G2P(Z,), it is enough to find 7 € A(G)1 such
that mp|¢, (jimey = 1 but mp|gav(z,) # 1, where m, is viewed as a character of G**(Qp).
This is proved in the same way as Lemma 2.5.4. (When reducing to the torus case,
use a z-extension which is unramified at p.)

(c2) < (c3). Clear since the stabilizer of in J,(Q,) of 1 € X, (b) is nothing but
Jint, O
Cororrary 8.2.10. (HO,

dise) @5 true on the p-ordinary Newton stratum.

Proof. — Let b = b, € G(@p) for x in the p-ordinary stratum. Choose by as in
Lemma 8.2.5 so that (y,(Ji™) = G(Z,)*. Then (HOZ...) holds true for Cy, v for
every KP, through criterion (c2) of Theorem 8.2.9. Since Cy, k» is the entire pu-

ordinary Newton stratum by Lemma 8.1.3, the proof is finished. (|

We also have a partial analogue of Theorem 8.2.9 that is isogeny-invariant, i.e.,
depending on b only through [b].

CoroLtary 8.2.11. — Let b € G(Q,). Assume that [b] € B(Gq,, k") and that b is
Q-non-basic. The following are equivalent.
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(CO) (HOL..) is true on the Newton stratum Ny v, for all neat open compact
K? C G(A®>P).
(C3) The stabilizer in Jp(Qp) of each closed point of XO_M;I(b) maps onto G**(Z,,)

under Cp.

Proof. — (C3) = (C0). Let 2 € Ny g» (F,). Then b, = g~ 'bo(g) for some g € G(Q,).
The map x — xg induces an isomorphism Xo_ugl (by) ~ Xo_#;l (b) equivariantly with
respect to the actions by the Qp-groups Jp, (Qp) ~ Jp(Qp). The latter isomorphism
comes from the conjugation by g on G(Qp), and it commutes with the maps ¢, and ¢
to G(Q,)*". Hence (c3) of Theorem 8.2.9 for b, is implied by (C3) of this corollary.
We deduce (C0) from the same theorem.

(C0) = (C3). Fix a neat subgroup K C G(A>?). Let z € N, i» (F,). Since [b,] =[b],
we may assume b = b,. Now, for each b’ € X, (b), there exists y € Ny x»(F,) such
that b = b, by [Kis10, Prop.1.4.4]. As in the proof of (c3) = (cl), the stabilizer
of b in J,(Q,) maps onto §*P(Z,) under ¢, if and only if (c3) of Theorem 8.2.9 holds
for b, (in place of b). The latter condition holds as we are assuming (C0), again via

the same theorem. Hence (C3) holds. O

Exampre 8.2.12. — Condition (C3) of the last corollary makes it convenient to gen-
1) by utilizing facts about affine Deligne Lusztig
varieties. We learned such an example from Rong Zhou in an email correspondence
together with Pol van Hoften, via a Shimura datum (G, X) of PEL type A such that
G*4 is Q-simple but (C3) is violated by some non-basic element b € B(Gq,, iy ")

It comes down to an explicit affine Deligne—Lusztig variety associated with GLo which

erate a counterexample to (HO

is a union of irreducible components isomorphic to projective lines. In this case, it can
be shown that some component contains a closed point whose stabilizer is too small
to satisfy (C3). See [vHX21, §6.3] for details.
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