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CANTOR SETS WITH ABSOLUTELY CONTINUOUS

HARMONIC MEASURE

by Guy David, Cole Jeznach & Antoine Julia

Abstract. — We construct Ahlfors regular Cantor sets K of small dimension in the plane,
such that the Hausdorff measure on K is equivalent to the harmonic measure associated to its
complement. In particular Green’s function in R2 ∖ K satisfies Gp(x) ≃ dist(x,K)δ whenever
dist(x,K) ⩽ 1 and p is far from K.

Résumé (Ensembles de Cantor avec une mesure harmonique absolument continue)
Nous construisons des ensembles de Cantor K, Ahlfors-réguliers de petite dimension dans

le plan, tels que la mesure de Hausdorff sur K est équivalente à la mesure harmonique associée
à son complémentaire. En particulier, la fonction de Green dans R2 ∖ K satisfait Gp(x) ≃
dist(x,K)δ lorsque dist(x,K) ⩽ 1 et p est loin de K.
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1. Introduction

Given a connected domain Ω in the plane whose complement has positive capacity
and a point x ∈ Ω, a fundamental question of harmonic analysis is whether the
harmonic measure ωx of Ω with pole at x is comparable to the Hausdorff measure
on the boundary of Ω, σ := H δ ∂Ω, where δ > 0 is the dimension of ∂Ω. It can
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1278 G. David, C. Jeznach & A. Julia

mean several things for measures to be comparable: do they have the same dimension?
Are they mutually absolutely continuous? If so, is the density dωx/dσ bounded from
above and away from zero?

Jones and Wolff proved in [JW88] that the dimension of ωx is at most one, i.e.,
there exists a set of Hausdorff dimension one which has full ωx measure. This answers
the question in case ∂Ω has a dimension larger than one (for instance if the set is
bounded by a Koch snowflake). In higher ambient dimensions, the question is more
subtle, but Azzam recently proved in [Azz20] that if E ⊂ Rn has dimension s > n− 1

and is s-Ahlfors regular, then the harmonic measure on the complement of E has
dimension smaller than s.

When the boundary of Ω ⊂ Rn is of co-dimension 1, the absolute continuity of the
measures ωx and σ = H n−1 ∂Ω is known to be mostly a question of non-tangential
accessibility and rectifiability. There is a large collection of robust sufficient condi-
tions that imply the mutual A∞ absolute continuity of the two measures (see for
instance [Dah77] and [DJ90]), and more recently very precise conditions for the abso-
lute continuity of σ with respect to ωx have been identified for instance in [AHM+16]
and [ABHM19]. Moreover, sharp geometric conditions for quantitative absolute con-
tinuity, namely, the A∞ and so-called local weak-A∞ condition of ωx with respect
to σ are now known: see [Azz21] and [AHM+20]. Since further discussion of these
co-dimension 1 results takes us away from the aim of the current paper, we refer to
[AHM+16] for a more complete literature review.

In this note, we mostly focus on boundary sets K⊂R2 of dimensions smaller than 1.
When K = ∂Ω is a self-similar Cantor set of dimension δ ∈ (0, 1), it was shown by
Carleson [Car85], Makarov and Volberg [MV86], and Batakis [Bat96] that ωx is sup-
ported by a Borel set of dimension smaller than δ; see also [BZ15] for a generalization,
and [Vol92, Vol93, Zdu97] for similar questions related to complex dynamics. However,
restricting to a set on which the harmonic measure concentrates, Batakis constructed
a Cantor set of dimension δ for which ωx is also δ-dimensional. Furthermore, in an
unpublished letter Bishop constructed a non self-similar Cantor set of small dimension
on which σ and ω are boundedly equivalent. But these particular sets are very much
not Ahlfors regular, and it was recently conjectured by Volberg [Vol22, Conj. 1.9] that
this is impossible for Ahlfors regular sets of dimension strictly smaller than 1. Even
more recently, X. Tolsa [Tol23] proved this conjecture in the special case of a set K

contained in the line and with Hausdorff dimension at least 1/2 − ε. Tolsa’s result
and the case of self similar sets show that Volberg’s conjecture is natural. However,
we prove that it does not hold:

Theorem 1.1. — There exists δM ∈ (0, 1 ] such that for δ ∈ (0, δM ), there exists a
compact Ahlfors regular set K of dimension δ, such that for x ∈ Ω := R2 ∖ K, the
harmonic measure ωx on Ω, with pole at x, is equivalent to σ = H δ K, i.e.,

(1.1) C−1
x σ(A) ⩽ ωx(A) ⩽ Cxσ(A) for A ⊂ K,
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for some Cx ⩾ 1. In addition, Green’s function Gx of Ω with pole at x satisfies:

(1.2) C−1
x dist(y,K)δ ⩽ Gx(y) ⩽ Cx dist(y,K)δ,

for y close enough to K. Furthermore, if δ is smaller than a certain δ1 ∈ (0, 1/2) the
set K can be contained in a line.

Recall that a compact set K ⊂ Rn is called Ahlfors regular of dimension δ > 0 if
it contains at least 2 points and there is a positive measure µ on K and a constant
C0 ⩾ 1 such that

(1.3) C−1
0 ρδ ⩽ µ(B(x, ρ)) ⩽ C0ρ

δ for x ∈ K and 0 < ρ ⩽ diam(K).

It is well known that then µ is equivalent to the restriction to K of the Hausdorff
measure H δ, in the sense that

(1.4) C−1
1 H δ K ⩽ µ ⩽ C1H

δ K

for some constant C1 that depends on n, C0 and δ.
To be precise, Volberg conjectured that sets for which (1.2) holds are necessarily

of dimension δ = 1, provided their complement satisfies an accessibility condition
(Ω = R2 ∖ K should be a one-sided NTA domain, see for instance [DFM21]). Both
these conditions hold for our sets. Volberg also conjectured that it is impossible for
the ratio of two Green’s functions to be analytic on such sets. We do not know if, nor
believe that our set can provide a counterexample to that conjecture.

The two estimates (1.1) and (1.2) are related, because when K ⊂ R2 is Ahlfors
regular of dimension δ < 1, its complement is automatically connected, with non-
tangential access. See for instance [DFM21, §2] for definitions and a proof (even for
Ahlfors regular sets of dimension < n − 1 in Rn). Because of this, we can estimate
the size of Green’s function at corkscrew points in terms of the harmonic measure of
a corresponding surface ball. This is quite standard for Cantor sets (see Lemma 3.2),
but we also refer to the more general result [DFM23, Lem. 15.28], which applies to
our case and variants of the construction. This observation was used in [DM22], with
the hope that characterizations of uniform rectifiability for sets K may be easier in
terms of approximation of Green’s function by distance functions.

It should be observed that our examples are close to being self-similar, as they
are bi-Lipschitz equivalent to regular fractal sets, and that for self-similar sets ω is
singular to σ. This contrasts with the situation of co-dimension 1, in which all the
absolute continuity criteria that we know are bi-Lipschitz invariant.

In the statement above, we can make sure that the Ahlfors constant C0 stays
bounded if we restrict to δ ∈ [δmin, δM ] for some δmin > 0. We can also normalize K

so that diam(K) = 1, and then we can make sure that the constants Cx do not depend
on δ and x, provided dist(x,K) ⩾ 1, and dist(y,K) ⩽ 1/2, say.

We will prove the second part of the theorem with the dimension bound δ1 = 0.249,
which is the best we could do on the line. This can probably be improved, but by
X. Tolsa’s result there necessarily holds δ1 < 1/2, if K is contained in a line. We will
not give a detailed proof for sets not contained in the line, but only show how to
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adapt the strategy. Overall, the best lower bound we were able to obtain for δM is a
little more than 0.4.

We stated our result in terms of harmonic measure and Green’s function with a
pole x at finite distance (and then it is known that the precise choice of x hardly
matters), but the analogous result with a pole at infinity follows, and in fact this is
what we will prove first, because Green’s function with pole at infinity is easier to
construct.

For Theorem 1.1, we insist on using the usual Laplace operator. It is easier to find
other elliptic operators L adapted to K whose elliptic measure satisfies (1.1) and (1.2).
Indeed, it was proved in [DM21], that even for the standard self-similar four-corner
Cantor set of dimension 1, we can find an adapted elliptic operator L = −div a∇,
with scalar coefficients a, for which the analogue of (1.1) and (1.2) holds. The present
work is also related to the study of elliptic operators adapted to boundaries of higher
co-dimensions which has been developed in recent years (say, after [DFM21]).

We will explain in Section 4 how to prove the following analogue of Theorem 1.1
in Rn, n > 2.

Theorem 1.2. — For each n ⩾ 3, there exists δn ∈ (0, 1 ] such that for δ ∈ (0, δn),
we can find a compact Ahlfors regular set K of dimension n − 2 + δ, such that for
x ∈ Ω := R2 ∖ K, the harmonic measure ωx on Ω, with pole at x, is equivalent to
σ = H n−2+δ K, i.e.,

(1.5) C−1
x σ(A) ⩽ ωx(A) ⩽ Cxσ(A) for A ⊂ K,

for some Cx ⩾ 1. In addition, Green’s function Gx of Ω with pole at x satisfies:

(1.6) C−1
x dist(y,K)δ ⩽ Gx(y) ⩽ Cx dist(y,K)δ,

for y close enough to E.

In Theorem 1.1, we could consider sets K of any (small enough) dimension δ ∈
(0, 1), because any Ahlfors regular set of dimension δ > 0 has a positive logarithmic
capacity, and hence the harmonic measure is well defined. In Rn, n ⩾ 3, this is no
longer true, which is why we restrict to sets of dimensions larger than n− 2.

Also, the sets K provided by Theorem 1.2 are of the form K0 × S, where K0 is an
Ahlfors regular set of dimension δ in a line L, and S is the unit sphere of dimension
n − 2 in the orthogonal hyperplane L⊥. Thus K is no longer a Cantor set, but it
remains that it is not rectifiable (its dimension is not an integer).

If we really wanted to use the same sort of construction to find a Cantor set K ⊂ Rn

with the desired properties, it seems that we would need to find configurations A of N
points in (or near) the sphere, with N large enough (so that K has a dimension larger
than m − 2) and symmetry properties such that the potential created at a ∈ A by
the other points of A is the same for all a ∈ A. This looks like the Thomson problem
of optimizing the electric energy of N charges on the sphere, maybe with a bit more
flexibility, but at this point we do not know how to proceed.
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Construction strategy. — Let us now say a few words about the algorithm for proving
Theorem 1.1. A usual way to obtain an Ahlfors regular set K0 of dimension δ ∈ (0, 1)

in the line is to use a self-similar construction. We start from the unit interval I0 =

[0, 1], then replace I0 with two intervals I of length r < 1/2 contained in I0, at each
end of I0, then replace each of these two intervals by two intervals of length r2, and
so on. At the n-th generation, we get 2n intervals of length rn, and the intersection
of all the generations yields a self-similar Cantor set of dimension δ, where δ is such
that δ = − ln(2)/ ln(r).

If we allow sets K0 ⊂ R2 that are not contained in the line, we can start with a
square and keep a smaller square in each corner, or even start with a disk and keep N

equally spaced smaller disks tangent to the boundary. This leaves more flexibility, and
we shall discuss in Section 2.2 how to start from such a construction to get Cantor
sets K ⊂ R2 with slightly larger dimensions than the ones that we construct in the
line.

The set K0 ⊂ R described above is self-similar and the results of [BZ15] imply that
the harmonic measure ωx on R2 ∖K0 lives on a subset of K0 of dimension < δ. One
way to interpret this is to say that at finite scales, there will always be intervals of the
decomposition that receive a tiny bit more harmonic measure ω than their fair share.
These would typically be intervals that sit at the ’exterior’ of K0. By self-similarity,
this unbalance will grow geometrically and we expect ω to be concentrated on the
parts of K0 which are close to the ’exterior’ at many steps in the construction of K.

However, there is some room in this construction: one can translate the intervals
a little bit along the real line without losing the Ahlfors regularity. The key remark
is that if two neighboring intervals are far from the rest of the set, moving them
apart increases the probability that they will be hit by Brownian motion. (From
the analytic point of view, the logarithmic capacity of a union of two sets increases
with the distance between these two sets.) Thus, when splitting an interval that was
getting less than its share of harmonic measure we can increase the harmonic measure
of its descendants by spacing them a bit more than what is done in the rest of the
construction, and this will turn out to be enough to compensate the unbalance of the
previous step.

The problem is that computing exactly the harmonic measure is difficult and any
error should be immediately compensated, if one does not want it to grow out of
control as in the self-similar case. Fortunately, our construction allows us to compute
Green’s function. To do this, we use classical potential theory, which tells us that a
probability measure (a charge distribution) on K whose logarithmic (electric) poten-
tial is constant on K is equal to the harmonic measure with pole at infinity. This
measure is called the equilibrium distribution of K. Moreover, the corresponding po-
tential(1) is Green’s function at infinity, up to an additive constant. We just need to

(1)The potential is the convolution e ∗ µ with the fundamental solution of the Laplacian in
dimension 2, e(x) = ln(|x|) (at least up to a factor 2π, which will not matter here).
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find this measure µ and show that it is equivalent to the Hausdorff measure. We will
construct K so that the equilibrium distribution µ is precisely the measure given by
the pushforward onto K of the natural probability measure on the abstract Cantor
set {0, 1}N. Together with the fact that µ satisfies (1.3) and thus (1.4), this will allow
us to conclude.

Now let us define approximating Green’s functions. Instead of considering finite
unions of intervals, we approximate our Cantor set by finite families Kn of 2n points
(the centers of the intervals above) and estimate the electric potential created by a
probability measure µn evenly distributed on these points. For each point x ∈ Kn,
we will denote by gn(x) the potential created by all the other points in Kn. If gn is
close to constant on Kn we will construct Kn+1 so that gn+1 oscillates even less: this
is possible because given x ∈ Kn+1 the main contribution to gn+1(x) is that of the
sibling x̃ of x (the only other point in Kn+1 with the same parents), which can be
tuned by spacing x and x̃ more or less apart. This will suffice to compensate exactly
the bias inherited from the variation of gn. Of course another bias is created at step
n + 1, but it is not very large because the potential created by x and x̃ is not very
different from that created by their parent, and depends little on the spacing. It can
thus be controlled at the next step and altogether the oscillation of gn will go to 0

as n tends to infinity. The measures µn converge to a natural probability measure µ

and the corresponding potentials will converge to the potential created by µ, which is
constant on K. Thus µ is the harmonic measure and its potential is (a constant plus)
Green’s function for R2 ∖K.

We shall discuss in Section 2.2 some slightly different ways to construct Cantor
sets K ⊂ R2 that are not contained in a line, and that yield Ahlfors regular sets of
slightly larger dimensions that satisfy the properties of Theorem 1.1. We shall also
see in Section 4 how to construct examples K ⊂ Rn, n ⩾ 3. In the mean time we
explain with more detail the geometric construction of Kn and K ⊂ R (in Section 2),
then use estimates on Green’s function to prove Theorem 1.1 (in Section 3).

Acknowledgements. — The authors wish to thank the referees for a careful reading of
the paper and many useful suggestions. The second author also thanks Max Engelstein
and Svitlana Mayboroda for helpful discussions regarding Green’s function with pole
at infinity.

2. Cantor set construction

2.1. Construction on the line. — Our Cantor set K ⊂ R will be an embedding of
the “universal Cantor set” E := {−1, 1}N∖{0}. Let r ∈ (0, 1/2) and a ∈ [1, 3] be given,
to be chosen later. We define a map f : E → R by

(2.1) f(ε) :=

∞∑
k=1

ak−1(ε)

2
rk−1εk,

where for each infinite word ε = (ε1, ε2, . . . ) ∈ E and each k ⩾ 0, we chose a coefficient
ak(ε) = ak(ε1, . . . , εk) ∈ [ 1, a ]. For the first term we take a0(ε) = 1. It will be
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important that ak(ε) (to be chosen later) can depend on the k first co-ordinates of ε,
but not on the others. Then set

(2.2) K :=
{
f(ε), ε ∈ E

}
.

We will also use the approximations En := {−1, 1}{1,...,n} of E (which can be seen as
sets of words of length n) and the approximating sets K0 = {0} and, for n ⩾ 1,

Kn :=
{
fn(ε) :=

n∑
k=1

ak−1(ε)

2
rk−1εk, ε ∈ En

}
.

We will restrict our attention to

(2.3) a ∈ [1, 3] and r ∈ (0, 1/16];

for most of the construction we do not need to be that restrictive, but notice that
r = 1/16 corresponds to a dimension δ = 1/4 (because rδ = 1/2), which we found
out that we cannot reach with this construction, so we will not loose anything here.
Then

1− ar

1− r
⩾

4

5
.(2.4)

We will check soon (in Propositions 2.1 and 2.2) that changing the parameters an(ε)

in (2.1) yields bi-Lipschitz equivalent sets K, and in particular that K is bi-Lipschitz
equivalent to the self-similar Cantor set K0 obtained by taking all the an(ε) equal
to 1. Then the sets K that we can get with (2.3) are all Ahlfors-regular of dimension
δ = − ln(2)/ ln(r) ⩽ 1/4.

The verification of Ahlfors regularity for the fractal set K0 is classical and easy;
one takes the invariant measure µ that gives the same mass 2−n to each of the 2n

intervals that compose the n-th approximation of K0, and checks that µ satisfies
(1.3). But given our representation (2.2) of K, it is slightly easier to check first that E,
endowed with the following ultrametric distance, is an Ahlfors regular metric space,
and then prove that our parameterization f is bi-Lipschitz. For ε, ε′ ∈ E, let m(ε, ε′)

be the smallest integer such that εm ̸= ε′m (if ε = ε′, set m(ε, ε′) = ∞) and define
distr(ε, ε

′) := rm(ε,ε′)−1. This also defines quotient distances (which we denote the
same way) on the finite sets En. That is, for n ⩾ 1 and ε, ε′ ∈ En, ε ̸= ε′, we let
m(ε, ε′) ∈ {1, . . . , n} be the common value of m(ε, ε′), where ε starts with ε and ε′

starts with ε′, and distr(ε, ε
′) := rm(ε,ε′)−1 defines a distance on En. The following

result is classical.

Proposition 2.1. — The space E endowed with the distance distr is Ahlfors regular
of dimension δ := − ln 2/ ln r.

Proof. — In the space E, the balls are just E and the obvious cells Qn(ε), i.e., the set
of all children of ε with n ⩾ 1 and ε ∈ En. Let σ be the natural probability measure
on E (the product of the obvious probability measures on {−1, 1}); thus σ(Qn) = 2−n,
whereas Qn is a ball of radius ρ for ρ ≃ rn, so σ(Qn(ε)) ≃ ρδ. This proves that σ is
Ahlfors regular of dimension δ, as needed. □
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Proposition 2.2. — Under condition (2.4), for ε, ε′ ∈ E there holds:

(2.5)
(
1− ar

1− r

)
rm(ε,ε′)−1 ⩽ |f(ε)− f(ε′)| ⩽ arm(ε,ε′)−1

1− r
,

and the same is true of fn for n ⩾ 0. In particular, these maps are bi-Lipschitz
continuous from E (respectively En) endowed with the distance distr to their images
in R× {0} ⊂ R2.

Proof. — Given ε ̸= ε′ in E, let m = m(ε, ε′). We can write

f(ε)− f(ε′) =

∞∑
n=m

(an−1(ε)

2
εn − an−1(ε

′)

2
ε′n

)
rn−1,

and as am−1(ε) = am−1(ε
′) (since an(ε) depends only on ε1, . . . , εn) and 1 ⩽ an ⩽ a

we have ∣∣∣f(ε)− f(ε′)− am−1(ε)r
m−1

2
(εm − ε′m)

∣∣∣ ⩽ ∞∑
n=m+1

ark−1.

Using condition (2.4), we get (2.5). □

We come to the key technical point of our construction. Define g0 := 0 and for
n ∈ N∖ {0} and x ∈ Kn, define

(2.6) gn(x) := 2−n
∑

y∈Kn∖{x}

e(y − x),

where as previously, e(x) = ln |x|.

Lemma 2.3. — Assume that r, and a satisfy condition (2.4), and r is sufficiently small.
Fix an integer n ⩾ 1 and suppose that the ak(ε) have been chosen for k = 0, . . . , n− 2

and that for all x ∈ Kn−1 there holds

(2.7) cn−1 ⩽ gn−1(x) ⩽ cn−1 + 2−(n−1) ln a

2
,

for some real constant cn−1. Then one can choose the an−1(ε) ∈ [ 1, a ], depending only
on ε1, . . . , εn−1, such that there exists cn, with |cn − cn−1| ≲ n2−n ln a and satisfying

(2.8) cn ⩽ gn(x) ⩽ cn + 2−n ln a

2
for x ∈ Kn.

Note that gn(x) is typically negative, as it is a sum of logarithms of small positive
numbers, so the cn are negative as well.

Proof. — Fix x ∈ Kn, and denote by x̂ its parent in Kn−1. We can write

gn(x) = gn−1(x̂) + 2−n
(
∆1 +∆2 +∆3

)
,

where the terms ∆j are defined as follows. The first accounts for the influence of the
sibling x̃ of x (the other child of x̂):

(2.9) ∆1 = e(x̃− x).
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The term ∆2 is the difference of the potential created by the points y in Kn−1 between
the points x̂ and x, counted twice because of the 2−n+1 in the definition of gn−1:

(2.10) ∆2 = 2
∑

y∈Kn−1

y ̸=x̂

(
e(y − x)− e(y − x̂)

)
.

Finally, ∆3 collects the difference between the potential at x created by the points y

at level n− 1 and that created by the children of these points y:

(2.11) ∆3 =
∑

y∈Kn−1

y ̸=x̂

∑
z∈Ch(y)

(
e(z − x)− e(y − x)

)
.

Let us first estimate ∆1; it is the one we can tune without perturbing the rest too
much. Write x = fn(ε), for some ε ∈ En; then x̂ = fn−1(ε̂) (where we remove εn
from ε to get ε̂) and

∆1 = ln(an−1(ε)r
n−1) = βn + ln(an−1(ε)),

where βn does not depend on x. We can choose an−1(ε) ∈ [ 1, a ], depending on ε̂, i.e.,
the first coordinates ε1, . . . , εn−1 of ε, so that ∆1 takes any value between βn and
βn + ln(a). We do this so that

gn−1(x̂) + 2−n∆1 = cn−1 + 2−(n−1) ln a

2
+ 2−nβn.

So this choice of an−1(ε) compensates exactly the deviation of gn−1(x̂) from the
constant cn−1 + 2−n ln a in (2.7). Note that an−1(ε) depends only on the first n − 1

terms of ε, so the sibling of x is handled with the same choice of an−1(ε).
There remains to show that |∆2|+ |∆3| ⩽ ln(a)/4, where we divide the admissible

error by 2 because we cannot control its sign. To do this, we will use the fact that for
|u| < 1, there holds

(2.12) | ln(1 + u)| ⩽ |u|
1− |u|

.

Recall that x̂ = fn−1(ε̂), where ε̂ ∈ En−1 records the first n − 1 letters of the word
defining x; we decompose Kn−1 ∖ {x̂} into the annuli

Yℓ :=
{
y ∈ Kn−1, y = fn−1(ε

′), m(ε, ε′) = n− ℓ
}
,

where ℓ runs over {1, . . . , n− 1}. It is straightforward to check that #Yℓ = 2ℓ−1. Fix
y ∈ Yℓ; by (2.5), there holds

(2.13) |y − x̂| ⩾
(
1− ar

1− r

)
rn−ℓ−1
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and also |x− x̂| ⩽ arn−1/2. So we can write

|e(y − x)− e(y − x̂)| =
∣∣∣ ln |y − x|

|y − x̂|

∣∣∣ = ∣∣∣ ln ∣∣∣1 + x− x̂

y − x̂

∣∣∣∣∣∣
⩽

arn−1/2(
1− ar

1− r

)
rn−ℓ−1 − arn−1/2

=
arℓ

2
(
1− ar

1− r

)
− arℓ

.

Summing over ℓ and Yℓ as in ∆2, we get

(2.14) |∆2| ⩽ 2

n−1∑
ℓ=1

2ℓ−1arℓ

2
(
1− ar

1− r

)
− arℓ

.

Recall from (2.4) and (2.3) that the denominator is at least 8
5 − ar⩾ 8

5 − 3
16 >1; then

|∆2| ⩽ a
∑+∞

ℓ=1(2r)
ℓ < 4r. Taking r small makes ∆2 as small as we want (indepen-

dently of n).
In order to estimate ∆3, we will use the fact that y ∈ Kn−1 is the barycenter of

its 2 children y1, y2 ∈ Kn so the potential they create is not so different from that
created by y. Given y ∈ Kn−1 ∖ {x̂}, we write

e(x− y1) + e(x− y2)− 2e(x− ŷ) = ln
( |x− y1||x− y2|

|x− ŷ|2
)

= ln
∣∣∣ (x− ŷ + ŷ − y1)(x− ŷ + ŷ − y2)

(x− ŷ)2

∣∣∣
= ln

∣∣∣1 + ŷ − y1 + ŷ − y2
x− ŷ

+
(ŷ − y1)(ŷ − y2)

(x− ŷ)2

∣∣∣
= ln

∣∣∣1− (ŷ − y1)
2

(x− ŷ)2

∣∣∣
because ŷ − y2 = −(ŷ − y1). Hence for ŷ ∈ Yℓ, (2.12) and (2.13) yield

|e(x− y1) + e(x− y2)− 2e(x− ŷ)| = − ln
∣∣∣1− |ŷ − y1|2

|x− ŷ|2
∣∣∣

⩽
|ŷ − y1|2

|x− ŷ|2 − |ŷ − y1|2
⩽

a2r2ℓ

4
(
1− ar

1− r

)2

− a2r2ℓ
,

so simplifying and summing over y ∈ Yℓ and ℓ gives

(2.15) |∆3| ⩽
n−1∑
ℓ=1

2ℓ−1a2r2ℓ

4
(
1− ar

1− r

)2

− a2r2ℓ
.

As before, this can be made arbitrarily small (independently of n) when r is small.
Thus we can choose r so that (2.8) is satisfied.

We also said that |cn − cn−1| ≲ n2−n ln a, and this follows from the computations
above; the extra n comes from the fact that we have a ln(rn−1) hidden in ∆1. □
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We just proved that we could construct Cantor sets for which the oscillation of gn
tends to zero when n tends to infinity. We will see in Section 3 that these Cantor set
satisfy the conclusions of Theorem 1.1.

2.2. Variants of the construction. — We checked that with a = 2.217 and r =

0.0623 the estimates above yield |∆2| + |∆3| ⩽ ln a/4; this means that we can take
these values in the construction (and prove Lemma 2.3 and then Theorem 1.1). This
was obtained with some optimization on a and r, using the bounds (2.14) and (2.15)
above. For those values we get δ = − ln(2)/ ln(r) > 0.2497, so we can take δM = 0.2497

and get examples in Theorem 1.1 that are contained in the line.
We also did some computations with other constructions of K ⊂ R2, which lead to

slightly better estimates (because the sets K there are more spread out), and for some
we obtain a dimension δ > 0.4 (for variants of the four corner Cantor set, described
below). However, with these variants, we are not able to get close to δ = 1/2. Of course
this does not mean that other, more subtle constructions, cannot yield δ > 1/2, and
this would not contradict Tolsa’s theorem [Tol23].

There are several ways to obtain a Cantor set K ⊂ R2 satisfying (1.1) with larger
dimensions, leaving the line. A simple variant of the construction above consists in
replacing the universal set E = {−1, 1}N∖{0} used above with E(N) = A

N∖{0}
N , where

AN ⊂ R2 ∼ C is the set of N -th roots of unity. Then we can define f exactly as in
(2.1), but with coordinates εk ∈ An. This gives a N -adic Cantor set in the plane,
which as before is bi-Lipschitz equivalent to the fractal set obtained with ak(ε) = 2,
and which is Ahlfors regular of dimension δ = − ln(N)/ ln(r).

For such a set we can keep the statement of Lemma 2.3 as it is, with 2 replaced
with N in all occurrences; the proof goes the same way, except for the following details.
First the precise formula for ∆1 is slightly different, because now ∆1 =

∑
x̃ e(x̃− x),

where the sum runs over the N − 1 siblings of x, takes a different value. However, the
symmetry of AN implies that this value only depends on our choice of an−1(ε), and is
thus the same for x and its siblings. This allows us to choose an−1(ε) as we did before.
For ∆2 we need to estimate the e(y − x) − e(y − x̂) slightly differently (we cannot
use the precise algebra with the logs in the same way), but the main terms are still
when y ∈ Kn−1 is a sibling of x̂, and for the other terms we can use the size of
∇e(y − u). Finally ∆3, which is a term of order 2 because of the symmetry of An

(or the fact that y is the barycenter of its children), is usually somewhat smaller and
can be handled with the second derivative. We skip the computations, and merely
record that for N = 4, a = 2.63 and r = 0.033, we obtained the desired estimate
4n(∆2 +∆3) <

3
32 ln(a), which allows us to take δ > 0.406.

Taking N very large does not seem to improve the estimates. Another tempting
variant is to keep N = 2 as above, but alternatively use the sets A = {−1, 1} and
A′ = iA (turned by 90 degrees). This gives an approximation of K by rectangles whose
sidelengths are in proportion of

√
2 (and lay alternatively horizontally and vertically).

This does not seem to be much better than the squares.
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3. Estimating Green’s function and the harmonic measure

In this section, we prove the estimates (1.1) and (1.2) for the Cantor sets K con-
structed in the previous section. The main tool is the estimate (2.8) in Lemma 2.3,
from which we can obtain good estimates on Green’s function and harmonic measure
with pole at infinity in the domain Ω = R2 ∖K.

Before doing so, we state one useful boundary estimate valid for positive harmonic
functions in our domain Ω. This estimate relies on the fact that Ω is a uniform
domain, i.e., it has interior Harnack chains and interior corkscrew points. We use this
fact without proof, since it shown in [DFM21, Lem. 2.2] that this is a consequence of
the δ-Ahlfors regularity of ∂Ω with δ < 1, though in the case of our Cantor sets, one
could prove the existence of Harnack chains and interior corkscrews rather explicitly.

Theorem 3.1 ([Aik01, Th. 1]). — There exists A0 > 1 depending only on Ω so that
for any x0 ∈ ∂Ω and for all R > 0 sufficiently small, the following holds. Whenever
u, v are positive, bounded harmonic functions in Ω ∩ B(x0, A0R) vanishing on ∂Ω ∩
B(x0, A0R), then

C−1u(y)

v(y)
⩽

u(x)

v(x)
⩽ C

u(y)

v(y)
,

for all x, y ∈ Ω ∩B(x0, R). Here, C depends only on the domain Ω.

Another important result which is particularly useful for Cantor sets is the following
comparison between Green’s function and the value of the harmonic measure in parts
of the set which are separated from the rest by an annulus. We found this statement
as Lemma 3.4 in [MV86].

Lemma 3.2. — Suppose that the set K ⊂ R2 is Ahlfors regular, and that there is
an annulus A := B(x, (1 + η)R) ∖ B(x, (1 − η)R) ⊂ R2 ∖ K. Fixing x0 ∈ R2 with
dist(x0,K) ⩾ 1, for y ∈ A, there holds:

(3.1) ωx0(K ∩B(x,R)) ≃ G(x0, y),

where the constant in the inequalities depends only on η and the Ahlfors regularity
constant for K.

Proof. — Fix z ∈ ∂B(x, (1 + η/2)R), by Bourgain’s Lemma, (which in this form is
due do Ancona, [Anc86, Lem. 3], see also [AHM+16, Lem. 3.4]) we have

ωz(K ∩B(x, (1− η)R)) ≃ 1.

Fix z ∈ ∂B(x, (1 + η/2)R) and y ∈ ∂(B(x, (1− η/2)R)), by the maximum principle,
there holds Gz(y) ≳ 1. The Ahlfors regularity condition implies that K satisfies the so-
called capacity-density condition (see for instance Section 2.1, just above Lemma 2.4,
in [Tol23]), thus the logarithmic capacity of K ∩ B(x, (1− η)R) is comparable to R.
Let G̃ be Green’s function for the domain R2∖(K∩B(x, (1−η)R)) (with two variables
and where, by invariance under conformal mappings, ∞ is a point like any other).
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The capacity estimate implies that G̃(y,∞) ≲ 1. By the maximum principle and
Harnack’s inequality, for z ∈ ∂B(x, (1 + η/2)R) there holds:

G(z, y) ⩽ G̃(z, y) ≃ G̃(y,∞) ≲ 1.

We have proved that

G(z, y) ≃ ωz(K ∩B(x,R)) for y ∈ ∂B(x, (1− η/2)R) and z ∈ ∂B(x, (1 + η/2)R).

Considering both sides of the comparison as bounded nonnegative harmonic functions
of z in R2 ∖ (K ∪B(x, (1 + η/2)R)) which vanish on K ∖B(x, (1 + η/2)R), it follows
from Theorem 3.1 (and after an inversion) that (3.1) holds for x0 = z, not to close
to K. □

Denote by

(3.2) µn = 2−n
∑

x∈Kn

δx

the natural probability measure on Kn, and then let µ be the weak limit of the µn.
It is also the pushforward by f : E → K of the natural probability measure σ on E.
By Proposition 2.1 and as f is bi-Lipschitz, the Ahlfors regularity of K follows. Notice
that µ is slightly different from H δ K, but Ahlfors regularity guarantees that the
two measures are boundedly equivalent.

As a first step of the proof, we show as promised that µ is the equilibrium measure
for K, which is to say µ is the unique probability measure on K for which µ ∗ ln | · | is
constant on K. It is a classical potential theory fact that in the plane, the measure µ

and potential µ ∗ ln | · | coincide with harmonic measure and Green’s function with
pole at infinity respectively (see for instance sections III.2-III.5 in [GM05]). Since the
analogous characterization of harmonic measure (at infinity) in higher dimensions is
not so easily found in the literature, we opt to not use this fact and instead proceed
with direct arguments that easily generalize to higher dimensions.

Lemma 3.3. — The function defined by

G(y) =

∫
ln(|x− y|) dµ(x)

is continuous on R2, harmonic on R2 ∖K, and constant on K.

Proof. — First observe that the integral converges beautifully, even when y ∈ K,
because if we set Ak(y) =

{
x ∈ R2 ; 2−k ⩽ |y − x| < 2−k+1

}
for k ∈ Z, then the

Ahlfors regularity of µ yields

(3.3)
∫
Ak(y)

| ln(|x− y|)| dµ(x) ⩽ (|k|+ 1) ln(2)µ(Ak) ⩽ C(|k|+ 1)2−kδ

and the corresponding series converges (because for large negative k, Ak is empty,
so we use the first upper bound). Also G is harmonic on R2 ∖K, by the dominated
convergence theorem and because each x 7→ ln(|x− y|) is harmonic on R2 ∖ {y}.
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Next consider the potential created by the approximating probability measure µk,
i.e., set

(3.4) g̃n(y) =

∫
ln(|x− y|) dµn(x) = 2−n

∑
x∈Kn

e(y − x) for y /∈ Kn.

We claim that for any x0 ∈ Kn and any y with |y − x0| = rn−1/2 (we’ll see that
this is a way to make sure that y is far from Kn and the further Km), we have

cn + 2−n ln(rn−1/2) ⩽ g̃n(y) ⩽ cn + 2−n ln(rn−1/2) + C2−n,(3.5)

where C > 1 is some constant independent of n, x0, and y. We no longer care about
getting precise estimates for C.

Indeed, let x0 = fn(ε0) ∈ Kn and such a y be given. Set as previously

Yℓ = {x = fn(ε) ∈ Kn ∖ {x0} : m(ε0, ε) = n− ℓ}

for ℓ = 1, . . . , n. Recall that m(ε0, ε) is the first index at which the sequences ε0 and ε

disagree, that

#Yℓ = 2ℓ−1,(3.6)

and that by (2.5) and (2.4), for x ∈ Yℓ we have

|x0 − x| = |fn(ε0)− fn(ε)| ⩾
(
1− ar

1− r

)
rm(ε0,ε)−1

⩾
(
1− ar

1− r

)
rn−ℓ−1 ⩾

4

5
rn−ℓ−1(3.7)

which is much larger than |y − x0| = rn−1/2 because ℓ ⩾ 1. Now

(3.8)

g̃n(y)− gn(x0) = 2−n

(
ln(|y − x0|) +

∑
x∈Kn∖{x0}

ln
( |y − x|
|x0 − x|

))
= 2−n ln(rn−1/2) + 2−n

∑
x∈Kn∖{x0}

ln
∣∣∣ y − x

x0 − x

∣∣∣,
and we can write

1− |y − x0|
|x0 − x|

⩽
|y − x|
|x0 − x|

⩽ 1 +
|y − x0|
|x0 − x|

.

This gives for x ∈ Yℓ,

(3.9)
∣∣∣∣ |y − x|
|x0 − x|

− 1

∣∣∣∣ ⩽ |y − x0|
|x0 − x|

⩽
5

8
rℓ ⩽ r

by virtue of (3.7). Hence we estimate the second term in (3.8):

(3.10)
∣∣∣∣2−n

∑
x∈Kn∖{x0}

ln
∣∣ y − x

x0 − x

∣∣∣∣∣∣ ⩽ 2−n
n∑

ℓ=1

∑
x∈Yℓ

∣∣∣ln( |y − x|
|x0 − x|

)∣∣∣
≲ 2−n

n∑
ℓ=1

∑
x∈Yℓ

rℓ

1− rℓ
≲ 2−nr

n∑
ℓ=1

(2r)ℓ−1 ≲ 2−n,
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by (3.6) and since 2r < 1. As the first term in the difference (3.8) is constant in y,
the estimate (3.10) and the conclusion of Lemma 2.3 readily give (3.5).

Next, we claim that whenever m ⩾ n, x0 ∈ Kn, and y is such that |y−x0| = rn−1/2,
there holds

|g̃n(y)− g̃m(y)| ⩽ C2−n.(3.11)

The proof of (3.11) is much like the estimate (3.10), so we only sketch it. One first
checks that the distance estimate (3.7) still holds when replacing x ∈ Yℓ by any of its
descendants; the constant 4/5 just becomes a little smaller. The main idea is to write

g̃m(y)− g̃n(y) = 2−n

( ∑
x∈Kn

2−(m−n)
∑

z∈Chm(x)

ln
∣∣∣ y − z

y − x

∣∣∣),
where Chm(x) are the descendants z ∈ Km of x ∈ Kn (there are 2m−n of them).
We first take care of the descendants z of x0. Notice that by (2.1) and (2.4), they
satisfy

|z − x0| ⩽
∑
ℓ>n

a

2
rℓ−1 ⩽ arn ≪ |y − x0|/2

so ln
∣∣ y − z

y − x0

∣∣ ⩽ 2 and the total contribution to |g̃n(y) − g̃m(y)| of all these terms is

at most C2−n. The rest of the sum can be split into the Yℓ for ℓ = 1, . . . , n, and then
one notices again that |z − x| ≪ |y − x| to conclude as before. So (3.11) holds.

We are ready to prove that G = e ∗ µ is continuous on R2 and constant on K. For
the continuity at the point y, we observe that for t > 0 and z in B(y, t),

G(y)−G(z) =

∫
B(y,2t)

[e(x− y)− e(x− z)]dµ(x)

+

∫
K∖B(y,2t)

[e(x− y)− e(x− z)]dµ(x).

The first term is less than C ln(1 + t)tδ by (3.3), and (with t fixed) the second term
tends to 0 when z tends to y, by the dominated convergence theorem. So G is con-
tinuous; a look at the proof would even show that it is Cα for any α ∈ (0, δ) but we
do not need this.

We now prove that G is constant on K. Fix x0=f(ε0)∈K, and let xn=fn(ε0)∈Kn

be the finite approximation of x0. Then fix any yn with |yn − xn| = rn−1/2. We can
write for m > n,

(3.12) |G(x0)− cn| ⩽ |G(x0)−G(yn)|+ |G(yn)− g̃m(yn)|
+ |g̃m(yn)− g̃n(yn)|+ |g̃n − cn|.

For n large, the first, third, and fourth terms in (3.12) can be made arbitrarily small,
by the continuity of G, (3.11), and (3.5), respectively. Once n is fixed, the second term
in (3.12) can be made arbitrarily small when m is large, since µ is the weak limit of
the probability measures µn of (3.2). In view of this estimate, we see simultaneously
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that limn→∞ cn = c∞ exists, and that G is constant and equal to c∞ on K. This
completes the proof of Lemma 3.3. □

Define G∞ on R2 by

G∞(y) = G(y)− c∞,(3.13)

where c∞ is the constant value of G on K. Then G∞ is continuous on R2 and harmonic
on R2 ∖ K. It is also equivalent to ln(|y|) at infinity, and the maximum principle
(applied to large balls B(0, R) so that G > 0 on ∂B(0, R)) show that G∞(y) > 0 on
Ω = R2 ∖K. Because of this, G∞ is equal (maybe modulo a multiplicative constant)
to Green’s function on Ω, with pole at infinity. The uniqueness of Green’s function
here is a consequence of the Ahlfors regularity and good nontangential access to K,
through the Hölder variant of the comparison principle in Theorem 3.1. We refer to
[DEM21], where we know that this is done, for lack of a better reference. We first
prove the estimate (1.2) for G∞.

Lemma 3.4. — The Green’s function G∞ defined by (3.13) satisfies for dist(y,K) ⩽ 1,

G∞(y) ≃ dist(y,K)δ,(3.14)

where as before, δ is the Hausdorff dimension of K.

Proof. — We give a specific argument, which exploits the fact that K is contained
in the line. Fix R ∈ (0, 1 ], and a point y with dist(y,K) = R. Also choose x0 ∈ K

such that |x− x0| = R. Then consider the corkscrew point y0 = x0 ± (0, R). There is
a Harnack chain from y0 to y, which we can make very simple here (because K ⊂ R,
and this is even easier if we choose the sign so that y0 on the same side of R as y), and
since the Harnack inequality shows that G(y) and G(y0) are comparable, it is enough
to prove (3.14) for y0. Let us assume, without loss of generality, that y0 = x0+(0, R),
and write

G∞(y0) = G(y0)− c∞ = G(y0)−G(x0) =

∫
ln

|y0 − z|
|x0 − z|

dµ(z).

For the lower bound, observe that ln(|y0 − z|/|x0 − z|) ⩾ 0 for z ∈ K, because z0 lies
directly above x0. Then, even with the sole contribution of B = B(x0, R/2), we get
that

G∞(y0) ⩾
∫
B

ln
|y0 − z|
|x0 − z|

dµ(z) ⩾ (ln 2)µ(B) ≳ Rδ,

because µ is Ahlfors regular.
For the upper bound, we proceed as for the continuity of G, and cut K into the

annuli Ak := K ∩ (B(x0, 2
kR)∖ B(x0, 2

k−1R)), k ∈ Z. We start with k ⩽ 2 and say
that ∑

k⩽2

∫
Ak

ln
|y0 − z|
|x0 − z|

dµ(z) ≲
∑
k⩽2

(|k|+ 1)µ(Ak) ≲
∑
k⩽2

(|k|+ 1)(2kR)δ ≲ Rδ
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by Ahlfors regularity. For k > 2 and z ∈ Ak, it is easy to see that since y0 = x0+(0, R)

and |z − x0| ⩾ 2k−1R ⩾ 2R, we have
1 ⩽ |y0 − z|/|x0 − z| ⩽ 1 + C2−k,

which yields 0 ⩽ ln(|y0 − z|/|x0 − z|) ⩽ 2−k and∑
k>2

∫
Ak

ln
|y0 − z|
|x0 − z|

dµ(z) ≲
∑
k>2

2−kµ(Ak) ≲ Rδ
∑
k>2

2k(1−δ) ≲ Rδ,

where again we have used the δ-Ahlfors regularity of µ and now the fact that δ < 1.
We sum all the terms and G∞(y) ≲ Rδ, as in (3.14).

When K is obtained with slightly more complicated constructions, as in Section 2.2,
we need to adapt the proof. Only the lower bound looks dangerous, and we need to
find some corkscrew points y0 where G(y0) is not too small. For instance, working with
a modified four corner Cantor set, one starts from the corner of a “cube” (or square)
of K. At this point, G vanishes. One then moves straight away from the square to
reach a corkscrew point for this cube, this is possible as the cubes are very far from
each other. Noting that ∇G(y) =

∫
K

y−x
|y−x|2 dµ(x), with main contributions coming

from the cube, one integrates the gradient on the path. We leave the details to the
reader. □

It is a simple consequence of Theorem 3.1 that (3.14) also holds for Green’s function
for Ω with far enough pole x ∈ Ω:

Corollary 3.5. — There is a constant C ⩾ 1, which depends only on δ (and for
the next section, the ambient dimension n), such that if x ∈ Ω = R2 ∖ K, with
dist(x,K) > C, then for all y with dist(y,K) ⩽ 1, we have

C−1 dist(y,K)δ ⩽ Gx(y) ⩽ C dist(y,K)δ,

where Gx(y) denotes Green’s function for Ω (and −∆) with pole at x.

Proof. — Let A0 be the constant from Theorem 3.1. Let z ∈ Ω be a fixed point with
dist(z,K) = 1 and w ∈ K with |z−w| = 1. Fix x ∈ Ω with |z−x| > A0(2+diam K)+2.
Now for any y ∈ Ω with dist(y,K) ⩽ 1, the functions G∞ and Gx are positive
and harmonic in Ω ∩ B(w,A0(2 + diam K) + 1) that vanish on K. Moreover, z, y ∈
B(w,diam K + 2) so that applying Theorem 3.1 implies that

G∞(y)

Gx(y)
≃ G∞(z)

Gx(z)
,

which is just a constant (since z is a fixed point). Using (3.14) we obtain Gx(y) ≃
G∞(y) ≃ dist(y,K)δ. The constant depends on the geometric constants in the proof,
which we can control uniformly as long as δ stays away from 0. □

Corollary 3.6. — There is a constant C ⩾ 1, which depends only on δ (and for
the next section, the ambient dimension n), such that if x ∈ Ω = R2 ∖ K, with
dist(x,K) > C, then
(3.15) C−1µ ⩽ ωx ⩽ Cµ,

where ωx denotes the harmonic measure on K, with pole at x.
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Notice that µ is equivalent to H δ K, so ωx is also equivalent to H δ K.

Proof. — It suffices to prove that C−1(B)µ ⩽ ωx(B) ⩽ Cµ(B) for balls B such that
B ∩ K = f(Qn(ε)), where n ⩾ 1 and ε is small enough. For these balls, B ∩ K is
separated from K∖B by an annulus of bounded modulus, so we can apply Lemma 3.2
to obtain

ωx(B) ≃ Gx(y),

where y is a point on the boundary of said annulus. In particular dist(y,K) ≃ R,
where R is the radius of the ball. Thus Gx(y) ≃ Rδ. In turn ωx(B) ≃ Rδ and as a
consequence of the Ahlfors regularity of µ, ωx ≃ µ. □

4. Ahlfors regular examples in Rn

For n ⩾ 2, we construct a set E = K × Sn−2, where K is a Cantor subset on the
line R defined as in (2.1) and Sn−2 is the sphere of radius 1 centered at the origin in
the orthogonal plane Rn−1. As in Section (2.1), we will prove that for r > 0 small
enough, there is a choice of parameters a(ε) ∈ [ 1, a ] for every ε ∈ E, such that the
set E satisfies the conditions of Theorem 1.2.

The steps of the proof are the same as in Section 2.1, the main difference being
that at step m in the construction of the set, we replace the discrete sum of Dirac
masses by the probability measure

µm := 2−mC(n)−1
∑
ε∈Em

H n−2 ({f(ε)} × Sn−2),

where C(n) stands for the (n− 2) dimensional Hausdorff measure of the unit sphere
Sn−2. We need to replace the fundamental solution ln |x− y| by |x− y|2−n. We first
compute the potential e(x) created at a point x ∈ Rn by H n−2 Sn−2. By symmetry,
e(x) depends only on the two quantities t = x1 ∈ R and R = |x′| ∈ R+ (where x′

stands for the last n− 1 coordinates of x). And (with a minor abuse of notation)

e(t, R) = C(n)−1

∫
y∈Sn−2

dH n−2(y)

(t2 + |x′ − y|2)(n−2)/2

= C(n)−1

∫
y=(y1,y2)∈Sn−2

dH n−2(y)

(t2 + |R− y1|2 + |y2|2)(n−2)/2
.

We shall continue to use the notation y = (y1, y2) ∈ Sn−2 where y1 ∈ R and y2 ∈ Rn−2

as in the above. Notice that e(t, R) has a singularity (which will be controlled) when
R = 1 and t = 0. We start by recording the properties of the function e(t, R) which
we will need.

Proposition 4.1. — There holds:
(i) the function t 7→ e(t, 1) is even, continuous and strictly decreasing for t > 0;

furthermore
e(t, 1)− e(t′, 1) ≳ 1 for 0 < 2t < t′;

(ii) |∇e(t, R)| ≲ (t2 + (R− 1)2)−1/2 for t ∈ R and R ⩾ 0;
(iii) |∂2

t e(t, 1)| ≲ t−2 for small t.
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Proof. — Let us start with (i). The only hard part is the increment bound. For
0 < 2t < t′ < 1, we have

e(t, 1)− e(t′, 1) =

∫
y∈Sn−2

( 1

(t2 + |1− y1|2 + |y2|2)(n−2)/2

− 1

((t′)2 + |1− y1|2 + |y2|2)(n−2)/2

)
dH n−2(y)

⩾
∫
Sn−2∩{|y−(1,0)|⩽t/2}

( 1

(t2 + |1− y1|2 + |y2|2)(n−2)/2

− 1

((t′)
2
+ |1− y1|2 + |y2|2)(n−2)/2

)
dH n−2(y)

⩾
∫
Sn−2∩{|y−(1,0)|⩽t/2}

( 1

(t2 + t2/4)(n−2)/2
− 1

t′(n−2)

)
dH n−2(y)

≳
(4
5

)(n−2)/2 −
( t
t′
)n−2

≳ 1.

We now turn the bound (ii). At the point p = (t, R, 0, . . . , 0) we estimate,

|∇e(t, R)| ≲
∫
y∈Sn−2

dH n−2(y)

|p− y|n−1
.

Let r0 := (t2 + (R − 1)2)1/2 be the distance between p and {0} × Sn−2 (note that
this distance is attained at the point p0 := (0, 1, 0, . . . , 0)). We decompose Sn−2 into
annuli Ak := {y : |p − y| ∈ [ 2kr0, 2

k+1r0 )}, where 0 ⩽ k ⩽ − log2 r0 + 10 (i.e., k is
large enough to exhaust the whole sphere). There holds H n−2(Ak) ≲ (2kr0)

n−2, and
if y ∈ Ak, we have |p− y| ≳ 2kr0, so summing over the annuli, we get

|∇e(t, R)| ≲
∞∑
k=0

(2kr0)
n−2

(2kr0)n−1
≲

1

r0
.

For the bound (iii) on the second derivative, we proceed similarly. □

Let us now start with the variant of the main lemma.

4.1. Main Lemma, choice of the parameters. — In this paragraph, we fix R = 1 and
forget the dependence of e in the second variable. Indeed, we are only interested in
the potential created by the spheres of radius 1 and evaluated on these spheres so we
work in dimension 1, exactly as for the planar result. At a step m ⩾ 1 of construction
of our set E, we can define the “approximate Green function” for x ∈ Km ⊂ R by

g̃m(x) := 2−m
∑

y∈Km∖{x}

e(x− y).

Lemma 4.2. — Assume that r, and a satisfy condition (2.4), and that r is sufficiently
small. Then there exists A > 0 so that the following holds. Fix an integer m ⩾ 1

and suppose that the ak(ε) have been chosen for k = 0, . . . , n − 2 and that for all
x ∈ Km−1,

(4.1) cm−1 ⩽ g̃m−1(x) ⩽ cm−1 + 2−(m−1)A,
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for some real constant cm−1. Then one can chose the am−1(ε) ∈ (1, a), depending
only on ε1, . . . , εm−1, such that there exists cm satisfying

(4.2) cm ⩽ g̃m(x) ⩽ cm + 2−mA for x ∈ Km.

Proof. — Here we shall not try to optimize, so the reader may take a = 2 if they
want. As in the 2-dimensional case, we assume (4.1) and cut the next g̃m into pieces.
If x ∈ Km has parent x̂ ∈ Km−1, we can write:

g̃m(x) = g̃m−1(x̂) + 2−m(∆1 +∆2 +∆3),

where, letting x̃ be the sibling of x,

∆1 = e(x− x̃),

∆2 = 2
∑

y∈Km−1∖{x̂}

(
e(y − x)− e(y − x̂)

)
,

∆3 =
∑

y∈Km−1∖{x̂}

∑
z∈Ch(y)

(
e(z − x)− e(y − x)

)
.and

There are two things to check: we will start by proving that the right choice of a(ε)
for x̂ = f(ε) yields

(4.3) g̃m−1(x̂) + 2−m∆1 = cm−1 + 2−(m−1)A+ 2−mβm,

with βm independent of x. This will tell us what A can be. We will then show that
for r small enough:

(4.4) |∆2|+ |∆3| ⩽ A/2.

To prove (4.3), we use part (i) of Proposition 4.1, which implies that varying
|x− x̃| between rm and arm, ∆1 can take any value between e(rm) and e(arm).
As 0 < 2rm ⩽ arm, there is a constant A > 0 such that e(rm)− e(arm) ⩾ 2A.

To prove (4.4), we proceed as in Section 2.1, replacing the formulas involving
logarithms with first and second derivatives of t 7→ e(t). More precisely, for ∆2, we
use the fact that

|e(y − x)− e(y − x̂)| ≲ |∂te(y − x̂)||x− x̂| ≲ |x− x̂|
|y − x̂|

and sum over annuli as above, which yields an arbitrarily small term when r goes
to 0. On the other hand, for ∆3, we use the estimate

|e(y1 − x) + e(y2 − x)− 2e(ŷ − x)| ≲ |∂2
t e(ŷ − x)||y1 − ŷ|2 ≲

|y1 − ŷ|2

|ŷ − x|2
,

and this can be handled in the same way.
Note that since we have (4.3) with a fixed A, and we have bounds for ∆2 and ∆3,

we also get that |cm − cm−1| ⩽ C2−m(e(rm, 1)), as in Lemma 2.3. Indeed it is easy
to see deduce from ii in Proposition 4.1 that e(rm, 1) ⩽ C(m+1), so we can estimate
the main piece of ∆1, i.e., e(rm)− e(arm), as in Lemma 2.3. □
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4.2. Control of Green’s function. — To conclude, the proof goes as in Section 3,
using Taylor estimates with the gradient of e(t, R) instead of differences of logarithms.
The only real change is that there is no immediate equivalent of Lemma 3.2 to compare
Green’s function and the harmonic measure. However, we can use the very general
Lemma 15.28 in [DFM23], which provides us with just the right estimate at corkscrew
points and with poles far enough away. By the way, the one sided accessibility of K
follows from [DFM21, Lem. 2.2], but it is not harder to prove by hand than in the
planar case.

The lower bound in Lemma 3.4 is easier to prove. Indeed, by the Harnack inequality
it is enough to prove it for corkscrew points, which can be chosen of the form (t, x′)

with x′ ∈ Sn−2. For those points we can use the symmetry of G and the decreasing
property of e(t, R), and proceed as before.

This completes our description of the proof of Theorem 1.2.
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