Let be the Grassmannian consisting of -dimensional vector subspaces of , let be the Lebesgue measure in , let be the -dimensional Hausdorff measure in , and let be the Lebesgue measure of the Euclidean unit ball of . We establish that, if is Borel measurable and is Lipschitzian, then
for -almost every . In particular, it follows that is -negligible if and only if , for -almost every .
On désigne par la grassmannienne constituée des sous-espaces vectoriels de dimension dans , par la mesure de Lebesgue dans , par la mesure de Hausdorff -dimensionnelle dans et par la mesure de Lebesgue de la boule euclidienne unité de . Nous montrons que si est borélien et est lipschitzien, alors
pour -presque tout . Il en résulte en particulier que est -négligeable si et seulement si , pour -presque tout .
Accepted:
Published online:
Keywords: Lebesgue measure, Nikodým set, negligible set, derivation basis, Zygmund conjecture, Lipschitz differentiation
Mot clés : Mesure de Lebesgue, ensemble de Nikodým, ensemble négligeable, base de derivation, conjecture de Zygmund, differentiation lipschitzienne
Thierry De Pauw 1
@article{JEP_2022__9__1473_0, author = {Thierry De Pauw}, title = {Density estimate from below in relation to a~conjecture of {A.} {Zygmund} on {Lipschitz~differentiation}}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {1473--1512}, publisher = {\'Ecole polytechnique}, volume = {9}, year = {2022}, doi = {10.5802/jep.211}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.211/} }
TY - JOUR AU - Thierry De Pauw TI - Density estimate from below in relation to a conjecture of A. Zygmund on Lipschitz differentiation JO - Journal de l’École polytechnique — Mathématiques PY - 2022 SP - 1473 EP - 1512 VL - 9 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.211/ DO - 10.5802/jep.211 LA - en ID - JEP_2022__9__1473_0 ER -
%0 Journal Article %A Thierry De Pauw %T Density estimate from below in relation to a conjecture of A. Zygmund on Lipschitz differentiation %J Journal de l’École polytechnique — Mathématiques %D 2022 %P 1473-1512 %V 9 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.211/ %R 10.5802/jep.211 %G en %F JEP_2022__9__1473_0
Thierry De Pauw. Density estimate from below in relation to a conjecture of A. Zygmund on Lipschitz differentiation. Journal de l’École polytechnique — Mathématiques, Volume 9 (2022), pp. 1473-1512. doi : 10.5802/jep.211. https://jep.centre-mersenne.org/articles/10.5802/jep.211/
[1] - “A remark on the maximal function associated to an analytic vector field”, in Analysis at Urbana, Vol. I (Urbana, IL, 1986–1987), London Math. Soc. Lecture Note Ser., vol. 137, Cambridge Univ. Press, Cambridge, 1989, p. 111-132 | MR | Zbl
[2] - “Differentiation of integrals”, Amer. Math. Monthly 78 (1971) no. 9, part 2, p. 1-51 | MR | Zbl
[3] - Measure theory, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser/Springer, New York, 2013 | DOI | MR
[4] - “Concentrated, nearly monotonic, epiperimetric measures in Euclidean space”, J. Differential Geom. 77 (2007) no. 1, p. 77-134 | MR | Zbl
[5] - Measure theory and fine properties of functions, Textbooks in Math., CRC Press, Boca Raton, FL, 2015
[6] - “Sets with prescribed projections and Nikodým sets”, Proc. London Math. Soc. (3) 53 (1986) no. 1, p. 48-64 | DOI | Zbl
[7] - “Curvature measures”, Trans. Amer. Math. Soc. 93 (1959), p. 418-491 | DOI | MR | Zbl
[8] - Geometric measure theory, Grundlehren Math. Wiss., vol. 153, Springer-Verlag New York, Inc., New York, 1969
[9] - Real variable methods in Fourier analysis, Notas de Matemática, vol. 75, North-Holland Publishing Co., Amsterdam-New York, 1981
[10] - Nonmeasurable sets and functions, North-Holland Math. Studies, vol. 195, Elsevier Science B.V., Amsterdam, 2004
[11] - On a conjecture of E. M. Stein on the Hilbert transform on vector fields, Mem. Amer. Math. Soc., vol. 205, no. 965, American Mathematical Society, Providence, RI, 2010 | DOI
[12] - “Sur la mesure des ensembles plans dont tous les points sont rectilinéairement accessibles”, Fund. Math. 10 (1927), p. 116-168 | DOI | Zbl
[13] - A course on Borel sets, Graduate Texts in Math., vol. 180, Springer-Verlag, New York, 1998 | DOI
Cited by Sources: