Density estimate from below in relation to a conjecture of A. Zygmund on Lipschitz differentiation
[Borne inférieure de densité en lien avec une conjecture de A. Zygmund sur des bases de dérivation à variation lipschitzienne]
Journal de l’École polytechnique — Mathématiques, Tome 9 (2022), pp. 1473-1512.

On désigne par 𝔾(n,m) la grassmannienne constituée des sous-espaces vectoriels de dimension m dans n , par n la mesure de Lebesgue dans n , par m la mesure de Hausdorff m-dimensionnelle dans n et par α(m)= m (B(0,1)) la mesure de Lebesgue de la boule euclidienne unité de m . Nous montrons que si A n est borélien et W 0 :A𝔾(n,m) est lipschitzien, alors

lim sup r0 + m AB(x,r)(x+W 0 (x)) α(m)r m 1 2 n ,

pour n -presque tout xA. Il en résulte en particulier que A est n -négligeable si et seulement si m (A(x+W 0 (x))=0, pour n -presque tout xA.

Let 𝔾(n,m) be the Grassmannian consisting of m-dimensional vector subspaces of  n , let n be the Lebesgue measure in n , let m be the m-dimensional Hausdorff measure in n , and let α(m)= m (B(0,1)) be the Lebesgue measure of the Euclidean unit ball of  m . We establish that, if A n is Borel measurable and W 0 :A𝔾(n,m) is Lipschitzian, then

lim sup r0 + m AB(x,r)(x+W 0 (x)) α(m)r m 1 2 n ,

for n -almost every xA. In particular, it follows that A is n -negligible if and only if m (A(x+W 0 (x))=0, for n -almost every xA.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.211
Classification : 28A75, 26B15
Keywords: Lebesgue measure, Nikodým set, negligible set, derivation basis, Zygmund conjecture, Lipschitz differentiation
Mot clés : Mesure de Lebesgue, ensemble de Nikodým, ensemble négligeable, base de derivation, conjecture de Zygmund, differentiation lipschitzienne

Thierry De Pauw 1

1 Université Paris Cité and Sorbonne Université, CNRS, IMJ-PRG F-75013 Paris, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2022__9__1473_0,
     author = {Thierry De Pauw},
     title = {Density estimate from below in relation to a~conjecture of {A.} {Zygmund} on {Lipschitz~differentiation}},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {1473--1512},
     publisher = {\'Ecole polytechnique},
     volume = {9},
     year = {2022},
     doi = {10.5802/jep.211},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.211/}
}
TY  - JOUR
AU  - Thierry De Pauw
TI  - Density estimate from below in relation to a conjecture of A. Zygmund on Lipschitz differentiation
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2022
SP  - 1473
EP  - 1512
VL  - 9
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.211/
DO  - 10.5802/jep.211
LA  - en
ID  - JEP_2022__9__1473_0
ER  - 
%0 Journal Article
%A Thierry De Pauw
%T Density estimate from below in relation to a conjecture of A. Zygmund on Lipschitz differentiation
%J Journal de l’École polytechnique — Mathématiques
%D 2022
%P 1473-1512
%V 9
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.211/
%R 10.5802/jep.211
%G en
%F JEP_2022__9__1473_0
Thierry De Pauw. Density estimate from below in relation to a conjecture of A. Zygmund on Lipschitz differentiation. Journal de l’École polytechnique — Mathématiques, Tome 9 (2022), pp. 1473-1512. doi : 10.5802/jep.211. https://jep.centre-mersenne.org/articles/10.5802/jep.211/

[1] J. Bourgain - “A remark on the maximal function associated to an analytic vector field”, in Analysis at Urbana, Vol. I (Urbana, IL, 1986–1987), London Math. Soc. Lecture Note Ser., vol. 137, Cambridge Univ. Press, Cambridge, 1989, p. 111-132 | MR | Zbl

[2] A. M. Bruckner - “Differentiation of integrals”, Amer. Math. Monthly 78 (1971) no. 9, part 2, p. 1-51 | MR | Zbl

[3] D. L. Cohn - Measure theory, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser/Springer, New York, 2013 | DOI | MR

[4] T. De Pauw - “Concentrated, nearly monotonic, epiperimetric measures in Euclidean space”, J. Differential Geom. 77 (2007) no. 1, p. 77-134 | MR | Zbl

[5] L. C. Evans & R. F. Gariepy - Measure theory and fine properties of functions, Textbooks in Math., CRC Press, Boca Raton, FL, 2015

[6] K. J. Falconer - “Sets with prescribed projections and Nikodým sets”, Proc. London Math. Soc. (3) 53 (1986) no. 1, p. 48-64 | DOI | Zbl

[7] H. Federer - “Curvature measures”, Trans. Amer. Math. Soc. 93 (1959), p. 418-491 | DOI | MR | Zbl

[8] H. Federer - Geometric measure theory, Grundlehren Math. Wiss., vol. 153, Springer-Verlag New York, Inc., New York, 1969

[9] M. de Guzmán - Real variable methods in Fourier analysis, Notas de Matemática, vol. 75, North-Holland Publishing Co., Amsterdam-New York, 1981

[10] A. B. Kharazishvili - Nonmeasurable sets and functions, North-Holland Math. Studies, vol. 195, Elsevier Science B.V., Amsterdam, 2004

[11] M. Lacey & X. Li - On a conjecture of E. M. Stein on the Hilbert transform on vector fields, Mem. Amer. Math. Soc., vol. 205, no. 965, American Mathematical Society, Providence, RI, 2010 | DOI

[12] O. Nikodým - “Sur la mesure des ensembles plans dont tous les points sont rectilinéairement accessibles”, Fund. Math. 10 (1927), p. 116-168 | DOI | Zbl

[13] S. M. Srivastava - A course on Borel sets, Graduate Texts in Math., vol. 180, Springer-Verlag, New York, 1998 | DOI

Cité par Sources :