[Contrôles PI pour les équations de Saint-Venant générales]
Nous étudions la stabilité exponentielle en norme
We study the exponential stability in the
Accepté le :
Publié le :
Keywords: Saint-Venant equations, proportional integral control, exponential stability, input-to-state stability, nonlinear systems, partial differential equations
Mots-clés : Équations de Saint-Venant, contrôle proportionnel intégral, stabilité exponentielle, stabilité de l’entrée à l’état, systèmes non-linéaires, équations aux dérivées partielles
Amaury Hayat 1

@article{JEP_2022__9__1431_0, author = {Amaury Hayat}, title = {PI controllers for the general {Saint-Venant} equations}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {1431--1472}, publisher = {\'Ecole polytechnique}, volume = {9}, year = {2022}, doi = {10.5802/jep.210}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.210/} }
TY - JOUR AU - Amaury Hayat TI - PI controllers for the general Saint-Venant equations JO - Journal de l’École polytechnique — Mathématiques PY - 2022 SP - 1431 EP - 1472 VL - 9 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.210/ DO - 10.5802/jep.210 LA - en ID - JEP_2022__9__1431_0 ER -
%0 Journal Article %A Amaury Hayat %T PI controllers for the general Saint-Venant equations %J Journal de l’École polytechnique — Mathématiques %D 2022 %P 1431-1472 %V 9 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.210/ %R 10.5802/jep.210 %G en %F JEP_2022__9__1431_0
Amaury Hayat. PI controllers for the general Saint-Venant equations. Journal de l’École polytechnique — Mathématiques, Tome 9 (2022), pp. 1431-1472. doi : 10.5802/jep.210. https://jep.centre-mersenne.org/articles/10.5802/jep.210/
[1] - “Some results on the boundary control of systems of conservation laws”, in Hyperbolic problems: Theory, numerics, applications. Proc. of the ninth intern. conf. on hyperbolic problems (Pasadena, CA, 2002), Springer, Berlin, 2003, p. 255-264 | Zbl
[2] - Feedback systems—An introduction for scientists and engineers, Princeton University Press, Princeton, NJ, 2008
[3] - “On boundary feedback stabilization of non-uniform linear 2
[4] - “Exponential stability of networks of density-flow conservation laws under PI boundary control”, IFAC Proceedings Volumes 46 (2013) no. 26, p. 221-226 | DOI
[5] - Stability and boundary stabilization of 1-D hyperbolic systems, Progress in Nonlinear Differential Equations and their Appl., vol. 88, Birkhäuser/Springer, Cham, 2016 | DOI
[6] - “A quadratic Lyapunov function for hyperbolic density-velocity systems with nonuniform steady states”, Systems Control Lett. 104 (2017), p. 66-71 | DOI | MR | Zbl
[7] - “Exponential stability of PI control for Saint-Venant equations with a friction term”, Methods Appl. Anal. 26 (2019) no. 2, p. 101-112 | DOI | MR | Zbl
[8] - “Boundary feedback stabilization of hydraulic jumps”, IFAC J. Systems and Control 7 (2019), article ID 100026, 10 pages | DOI | MR
[9] - “Stability of linear density-flow hyperbolic systems under PI boundary control”, Automatica J. IFAC 53 (2015), p. 37-42 | DOI | MR | Zbl
[10] - “On the boundary control of systems of conservation laws”, SIAM J. Control Optim. 41 (2002) no. 2, p. 607-622 | DOI | MR | Zbl
[11] - “A Lyapunov approach to control irrigation canals modeled by Saint-Venant equations”, in CD-Rom Proceedings, ECC99 (Karlsruhe), 1999, p. 3178-3183
[12] - “PI controllers for 1-D nonlinear transport equation”, IEEE Trans. Automatic Control 64 (2019) no. 11, p. 4570-4582 | DOI | MR | Zbl
[13] - “Finite-time boundary stabilization of general linear hyperbolic balance laws via Fredholm backstepping transformation”, Automatica J. IFAC 84 (2017), p. 95-100 | DOI | MR | Zbl
[14] - “Feedback stabilization for a scalar conservation law with PID boundary control”, Chinese Ann. Math. Ser. B 36 (2015) no. 5, p. 763-776 | DOI | MR | Zbl
[15] - “Local exponential
[16] - “Boundary control with integral action for hyperbolic systems of conservation laws: stability and experiments”, Automatica J. IFAC 44 (2008) no. 5, p. 1310-1318 | DOI | MR
[17] - “Boundary control of open channels with numerical and experimental validations”, IEEE Trans. Control systems technology 16 (2008) no. 6, p. 1252-1264 | DOI
[18] - Ordinary differential equations, John Wiley & Sons, Inc., New York-London-Sydney, 1964
[19] - “Boundary stability of 1-D nonlinear inhomogeneous hyperbolic systems for the
[20] - “On boundary stability of inhomogeneous 2
[21] - “A quadratic Lyapunov function for Saint-Venant equations with arbitrary friction and space-varying slope”, Automatica J. IFAC 100 (2019), p. 52-60 | DOI | MR | Zbl
[22] - “Minimal time for the exact controllability of one-dimensional first-order linear hyperbolic systems by one-sided boundary controls”, J. Math. Pures Appl. (9) 148 (2021), p. 24-74 | DOI | MR | Zbl
[23] - Input-to-state stability for PDEs, Communications and Control Engineering Series, Springer, Cham, 2019 | DOI
[24] - Boundary control of PDEs: A course on backstepping designs, Advances in Design and Control, vol. 16, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2008 | DOI
[25] - “Spectral mapping theorem for linear hyperbolic systems”, Proc. Amer. Math. Soc. 136 (2008) no. 6, p. 2091-2101 | DOI | MR | Zbl
[26] - “On the spectrum of evolution operators generated by hyperbolic systems”, J. Funct. Anal. 67 (1986) no. 3, p. 320-344 | DOI | MR | Zbl
[27] - “ISS-Lyapunov functions for time-varying hyperbolic systems of balance laws”, Math. Control Signals Systems 24 (2012) no. 1-2, p. 111-134 | DOI | MR | Zbl
[28] - “Théorie du mouvement non permanent des eaux, avec application aux crues des rivières et à l’introduction des marées dans leurs lits”, C. R. Acad. Sci. Paris 73 (1871), p. 237-240
[29] - “Input-to-state stability: basic concepts and results”, in Nonlinear and optimal control theory, Lect. Notes in Math., vol. 1932, Springer, Berlin, 2008, p. 163-220 | DOI | MR | Zbl
[30] - “Adding integral action for open-loop exponentially stable semigroups and application to boundary control of PDE systems”, IEEE Trans. Automatic Control 65 (2020) no. 11, p. 4481-4492 | DOI | MR | Zbl
[31] - “PI regulation control of a fluid flow model governed by hyperbolic partial differential equations”, in Proceeding of the International Conference on System Engineering (Coventry), 2015
[32] - “Exact controllability for nonautonomous first order quasilinear hyperbolic systems”, Chinese Ann. Math. Ser. B 27 (2006) no. 6, p. 643-656 | DOI | MR | Zbl
[33] - “Proportional and integral regulation of irrigation canal systems governed by the Saint-Venant equation”, IFAC Proceedings Volumes 32 (1999) no. 2, p. 2274-2279 | DOI
[34] - “Multivariable boundary PI control and regulation of a fluid flow system”, Math. Control Relat. Fields 4 (2014) no. 4, p. 501-520 | DOI | MR | Zbl
[35] - “Finite-time internal stabilization of a linear 1-D transport equation”, Systems Control Lett. 133 (2019), article ID 104529, 8 pages | DOI | MR | Zbl
[36] - “Internal rapid stabilization of a 1-D linear transport equation with a scalar feedback”, Math. Control Relat. Fields 12 (2022) no. 1, p. 169-200 | DOI | MR | Zbl
Cité par Sources :