We prove that nonlinear Gibbs measures can be obtained from the corresponding many-body, grand-canonical, quantum Gibbs states, in a mean-field limit where the temperature diverges and the interaction strength behaves as . We proceed by characterizing the interacting Gibbs state as minimizing a functional counting the free-energy relatively to the non-interacting case. We then perform an infinite-dimensional analogue of phase-space semiclassical analysis, using fine properties of the quantum relative entropy, the link between quantum de Finetti measures and upper/lower symbols in a coherent state basis, as well as Berezin-Lieb type inequalities. Our results cover the measure built on the defocusing nonlinear Schrödinger functional on a finite interval, as well as smoother interactions in dimensions .
Nous prouvons que certaines mesures de Gibbs non linéaires peuvent être obtenues à partir des états de Gibbs grand-canoniques du problème à corps, dans une limite de champ moyen où la température diverge et la constante de couplage se comporte comme . Nous commençons par caractériser les états de Gibbs en présence d’interactions comme minimiseurs d’une fonctionnelle comptant l’énergie libre relativement au cas sans interaction. Nous procédons ensuite à un analogue en dimension infinie d’une analyse semi-classique, en utilisant des propriétés fines de l’entropie relative quantique, le lien entre mesures de de Finetti et symboles supérieurs/inférieurs dans une base d’états cohérents, ainsi que des inégalités de type Berezin-Lieb. Nos résultats couvrent la mesure construite à partir de la fonctionnelle de Schrödinger non linéaire défocalisante sur un intervalle fini, ainsi que le cas d’interactions plus régulières en dimension supérieure.
Accepted:
DOI: 10.5802/jep.18
Keywords: Many-body quantum mechanics, Bose-Einstein condensation, mean-field limit, non-linear Schrödinger equation, non-linear Gibbs measure, quantum de Finetti theorem
Mot clés : Mécanique quantique à $N$ corps, condensation de Bose-Einstein, limite de champ moyen, équation de Schrödinger non linéaire, mesure de Gibbs non linéaire, théorème de de Finetti quantique
Mathieu Lewin 1; Phan Thành Nam 2; Nicolas Rougerie 3
@article{JEP_2015__2__65_0, author = {Mathieu Lewin and Phan Th\`anh Nam and Nicolas Rougerie}, title = {Derivation of nonlinear {Gibbs} measures from many-body quantum mechanics}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {65--115}, publisher = {\'Ecole polytechnique}, volume = {2}, year = {2015}, doi = {10.5802/jep.18}, mrnumber = {3366672}, zbl = {1322.81082}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.18/} }
TY - JOUR AU - Mathieu Lewin AU - Phan Thành Nam AU - Nicolas Rougerie TI - Derivation of nonlinear Gibbs measures from many-body quantum mechanics JO - Journal de l’École polytechnique — Mathématiques PY - 2015 SP - 65 EP - 115 VL - 2 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.18/ DO - 10.5802/jep.18 LA - en ID - JEP_2015__2__65_0 ER -
%0 Journal Article %A Mathieu Lewin %A Phan Thành Nam %A Nicolas Rougerie %T Derivation of nonlinear Gibbs measures from many-body quantum mechanics %J Journal de l’École polytechnique — Mathématiques %D 2015 %P 65-115 %V 2 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.18/ %R 10.5802/jep.18 %G en %F JEP_2015__2__65_0
Mathieu Lewin; Phan Thành Nam; Nicolas Rougerie. Derivation of nonlinear Gibbs measures from many-body quantum mechanics. Journal de l’École polytechnique — Mathématiques, Volume 2 (2015), pp. 65-115. doi : 10.5802/jep.18. https://jep.centre-mersenne.org/articles/10.5802/jep.18/
[1] - “The Wightman axioms and the mass gap for strong interactions of exponential type in two-dimensional space-time”, J. Functional Analysis 16 (1974), p. 39-82 | DOI | MR | Zbl
[2] - “Systèmes hamiltoniens en théorie quantique des champs : dynamique asymptotique et limite classique” (2013), Habilitation à diriger des recherches, Université de Rennes I
[3] - “Mean field limit for bosons and infinite dimensional phase-space analysis”, Ann. Henri Poincaré 9 (2008), p. 1503-1574 | DOI | MR | Zbl
[4] - “Mean field limit for bosons and propagation of Wigner measures”, J. Math. Phys. 50 (2009) no. 4, 042107 pages | DOI | MR | Zbl
[5] - “Mean field propagation of Wigner measures and BBGKY hierarchies for general bosonic states”, J. Math. Pures Appl. 95 (2011) no. 6, p. 585-626 | DOI | MR | Zbl
[6] - “Generalized Hartree-Fock theory and the Hubbard model”, J. Statist. Phys. 76 (1994) no. 1-2, p. 3-89 | DOI | MR | Zbl
[7] - “Proof of the stability of highly negative ions in the absence of the Pauli principle”, Phys. Rev. Lett. 50 (1983), p. 1771-1774 | DOI
[8] - “Convex functions of operators”, Mat. Sb. (N.S.) 88(130) (1972), p. 268-276 | MR
[9] - Gaussian measures, Mathematical Surveys and Monographs, vol. 62, American Mathematical Society, Providence, RI, 1998 | MR
[10] - “Periodic nonlinear Schrödinger equation and invariant measures”, Comm. Math. Phys. 166 (1994) no. 1, p. 1-26 | Zbl
[11] - “Invariant measures for the 2D-defocusing nonlinear Schrödinger equation”, Comm. Math. Phys. 176 (1996), p. 421-445 | DOI | Zbl
[12] - “Invariant measures for the Gross-Piatevskii equation”, J. Math. Pures Appl. 76 (1997) no. 8, p. 649-02 | DOI | MR | Zbl
[13] - “Invariant measures for NLS in infinite volume”, Comm. Math. Phys. 210 (2000) no. 3, p. 605-620 | DOI | MR | Zbl
[14] - “Long time dynamics for the one dimensional non linear Schrödinger equation”, Ann. Inst. Fourier (Grenoble) 63 (2013) no. 6, p. 2137-2198 | DOI | Numdam | Zbl
[15] - “Random data Cauchy theory for supercritical wave equations. I. Local theory”, Invent. Math. 173 (2008) no. 3, p. 449-475 | DOI | MR | Zbl
[16] - “Trace inequalities and quantum entropy: an introductory course”, in Entropy and the Quantum (R. Sims & D. Ueltschi, eds.), Contemp. Math., vol. 529, American Mathematical Society, Providence, RI, 2010, p. 73-140 | DOI | MR
[17] - “Exponential relaxation to equilibrium for a one-dimensional focusing non-linear Schrödinger equation with noise” (2014), arXiv:1409.2327
[18] - “On quantum estimation, quantum cloning and finite quantum de Finetti theorems”, in Theory of Quantum Computation, Communication, and Cryptography, Lect. Notes in Computer Science, vol. 6519, Springer, 2011 | DOI | MR | Zbl
[19] - “One-and-a-half quantum de Finetti theorems”, Comm. Math. Phys. 273 (2007) no. 2, p. 473-498 | DOI | MR | Zbl
[20] - “Almost sure well-posedness of the cubic nonlinear Schrödinger equation below ”, Duke Math. J. 161 (2012) no. 3, p. 367-414 | DOI | Zbl
[21] - Coherent states and applications in mathematical physics, Theoretical and Mathematical Physics, Springer, Dordrecht, 2012 | DOI | Zbl
[22] - “Invariant measure for the cubic wave equation on the unit ball of ”, Dyn. Partial Differ. Equ. 8 (2011) no. 2, p. 127-147 | MR | Zbl
[23] - “Lieb-Thirring type inequalities and Gagliardo-Nirenberg inequalities for systems”, J. Funct. Anal. 238 (2006) no. 1, p. 193-220 | DOI | MR | Zbl
[24] - Quantum physics: a functional integral point of view, Springer-Verlag, 1987
[25] - “Examples of bosonic de Finetti states over finite dimensional Hilbert spaces”, J. Statist. Phys. 121 (2005) no. 3-4, p. 497-509 | DOI | MR | Zbl
[26] - “Quantum noise thermometry for bosonic Josephson junctions in the mean-field regime”, Phys. Rev. A 79 (2009), 063601 pages | DOI
[27] - “The excitation spectrum for weakly interacting bosons in a trap”, Comm. Math. Phys. 322 (2013) no. 2, p. 559-591 | DOI | MR | Zbl
[28] - “The Euclidean quantum field theory as classical statistical mechanics. I, II”, Ann. of Math. (2) 101 (1975), p. 111-189; ibid. (2) 101 (1975), 191–259 | DOI | MR
[29] - “The thermodynamic limit of quantum Coulomb systems. Part II. Applications”, Adv. Math. 221 (2009), p. 488-546 | DOI | Zbl
[30] - “The church of the symmetric subspace” (2013), arXiv:1308.6595
[31] - “Locally normal symmetric states and an analogue of de Finetti’s theorem”, Z. Wahrsch. Verw. Gebiete 33 (1975/76) no. 4, p. 343-351 | DOI | MR
[32] - “Quantum and thermal fluctuations in bosonic Josephson junctions”, Phys. Rev. A 88 (2013), 033601 pages | DOI
[33] - “Limiting dynamics in large quantum systems”, Doctoral thesis, ETH Zürich, 2009
[34] - “Statistical mechanics of the nonlinear Schrödinger equation”, J. Statist. Phys. 50 (1988) no. 3-4, p. 657-687 | DOI | Zbl
[35] - “Geometric methods for nonlinear many-body quantum systems”, J. Funct. Anal. 260 (2011), p. 3535-3595 | DOI | MR | Zbl
[36] - “Derivation of Hartree’s theory for generic mean-field Bose systems”, Adv. Math. 254 (2014), p. 570-621 | DOI | MR | Zbl
[37] - “The mean-field approximation and the non-linear Schrödinger functional for trapped Bose gases” (2014), to appear in TRAAM, http://arxiv.org/abs/1405.3220
[38] - “Remarks on the quantum de Finetti theorem for bosonic systems”, Appl. Math. Res. Express. AMRX 1 (2015), p. 48-63 | DOI | MR | Zbl
[39] - “A family of monotone quantum relative entropies”, Lett. Math. Phys. 104 (2014) no. 6, p. 691-705 | DOI | MR | Zbl
[40] - “The classical limit of quantum spin systems”, Comm. Math. Phys. 31 (1973), p. 327-340 | DOI | MR | Zbl
[41] - “Convex trace functions and the Wigner-Yanase-Dyson conjecture”, Adv. Math. 11 (1973), p. 267-288 | DOI | MR | Zbl
[42] - “A fundamental property of quantum-mechanical entropy”, Phys. Rev. Lett. 30 (1973), p. 434-436 | DOI | MR
[43] - “Proof of the strong subadditivity of quantum-mechanical entropy”, J. Math. Phys. 14 (1973), p. 1938-1941, With an appendix by B. Simon | DOI | MR
[44] - The mathematics of the Bose gas and its condensation, Oberwolfach Seminars, Birkhäuser, 2005 | Zbl
[45] - “Justification of -number substitutions in bosonic Hamiltonians”, Phys. Rev. Lett. 94 (2005), 080401 pages | DOI
[46] - “The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics”, Comm. Math. Phys. 112 (1987) no. 1, p. 147-174 | MR | Zbl
[47] - Feynman-Kac-type theorems and Gibbs measures on path space: with applications to rigorous quantum field theory, de Gruyter Studies in Math., Walter de Gruyter, 2011 | DOI | Zbl
[48] - “Construction of quantum fields from Markoff fields”, J. Funct. Anal. 12 (1973) no. 1, p. 97 -112 | DOI | MR | Zbl
[49] - “The free Markoff field”, J. Funct. Anal. 12 (1973), p. 211-227 | DOI | MR | Zbl
[50] - “On invariant Gibbs measures conditioned on mass and momentum”, J. Math. Soc. Japan 65 (2013) no. 1, p. 13-35 | DOI | MR | Zbl
[51] - Quantum entropy and its use, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1993 | DOI | Zbl
[52] - “Monotonicity of quantum relative entropy revisited”, Rev. Math. Phys. 15 (2003) no. 1, p. 79-91 | DOI | MR | Zbl
[53] - “Théorèmes de de Finetti, limites de champ moyen et condensation de Bose-Einstein” (2014), Lecture notes
[54] - Statistical mechanics. Rigorous results, World Scientific & Imperial College Press, 1999 | Zbl
[55] - The Euclidean (quantum) field theory, Princeton University Press, Princeton, N.J., 1974, Princeton Series in Physics | Zbl
[56] - Trace ideals and their applications, LMS Lecture Note Series, vol. 35, Cambridge University Press, Cambridge, 1979 | MR | Zbl
[57] - “The classical limit of quantum partition functions”, Comm. Math. Phys. 71 (1980) no. 3, p. 247-276 | DOI | MR | Zbl
[58] - Integration in Hilbert space, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag, 1974 | Zbl
[59] - “Positive functions on -algebras”, Proc. Amer. Math. Soc. 6 (1955) no. 2, p. 211-216 | MR | Zbl
[60] - “Symmetric states of infinite tensor products of -algebras”, J. Funct. Anal. 3 (1969), p. 48-68 | DOI | MR
[61] - “A perspective on constructive quantum field theory” (2012), arXiv:1203.3991
[62] - “Gibbs measure for the periodic derivative nonlinear Schrödinger equation”, Nonlinearity 23 (2010) no. 11, 2771 pages | DOI | Zbl
[63] - “Invariant measures for the defocusing nonlinear Schrödinger equation”, Ann. Inst. Fourier (Grenoble) 58 (2008) no. 7, p. 2543-2604 | DOI | Numdam | Zbl
[64] - Constructive quantum field theory: The 1973 Ettore Majorana international school of mathematical physics (G. Velo & A. S. Wightman, eds.), Lect. Notes in Physics, Springer-Verlag, 1973 | Zbl
[65] - “General properties of entropy”, Rev. Modern Phys. 50 (1978) no. 2, p. 221-260 | MR
Cited by Sources: