Derivation of nonlinear Gibbs measures from many-body quantum mechanics
Journal de l’École polytechnique — Mathématiques, Volume 2 (2015), pp. 65-115.

We prove that nonlinear Gibbs measures can be obtained from the corresponding many-body, grand-canonical, quantum Gibbs states, in a mean-field limit where the temperature T diverges and the interaction strength behaves as 1/T. We proceed by characterizing the interacting Gibbs state as minimizing a functional counting the free-energy relatively to the non-interacting case. We then perform an infinite-dimensional analogue of phase-space semiclassical analysis, using fine properties of the quantum relative entropy, the link between quantum de Finetti measures and upper/lower symbols in a coherent state basis, as well as Berezin-Lieb type inequalities. Our results cover the measure built on the defocusing nonlinear Schrödinger functional on a finite interval, as well as smoother interactions in dimensions d2.

Nous prouvons que certaines mesures de Gibbs non linéaires peuvent être obtenues à partir des états de Gibbs grand-canoniques du problème à N corps, dans une limite de champ moyen où la température T diverge et la constante de couplage se comporte comme 1/T. Nous commençons par caractériser les états de Gibbs en présence d’interactions comme minimiseurs d’une fonctionnelle comptant l’énergie libre relativement au cas sans interaction. Nous procédons ensuite à un analogue en dimension infinie d’une analyse semi-classique, en utilisant des propriétés fines de l’entropie relative quantique, le lien entre mesures de de Finetti et symboles supérieurs/inférieurs dans une base d’états cohérents, ainsi que des inégalités de type Berezin-Lieb. Nos résultats couvrent la mesure construite à partir de la fonctionnelle de Schrödinger non linéaire défocalisante sur un intervalle fini, ainsi que le cas d’interactions plus régulières en dimension supérieure.

Received:
Accepted:
DOI: 10.5802/jep.18
Classification: 81V70, 35Q40
Keywords: Many-body quantum mechanics, Bose-Einstein condensation, mean-field limit, non-linear Schrödinger equation, non-linear Gibbs measure, quantum de Finetti theorem
Mot clés : Mécanique quantique à $N$ corps, condensation de Bose-Einstein, limite de champ moyen, équation de Schrödinger non linéaire, mesure de Gibbs non linéaire, théorème de de Finetti quantique

Mathieu Lewin 1; Phan Thành Nam 2; Nicolas Rougerie 3

1 CNRS & Université Paris-Dauphine, CEREMADE (UMR 7534) Place de Lattre de Tassigny, F-75775 Paris Cedex 16, France
2 IST Austria Am Campus 1, 3400 Klosterneuburg, Austria
3 Université Grenoble 1 & CNRS, LPMMC (UMR 5493) B.P. 166, F-38042 Grenoble, France
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{JEP_2015__2__65_0,
     author = {Mathieu Lewin and Phan Th\`anh Nam and Nicolas Rougerie},
     title = {Derivation of nonlinear {Gibbs} measures from many-body quantum mechanics},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {65--115},
     publisher = {\'Ecole polytechnique},
     volume = {2},
     year = {2015},
     doi = {10.5802/jep.18},
     mrnumber = {3366672},
     zbl = {1322.81082},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.18/}
}
TY  - JOUR
AU  - Mathieu Lewin
AU  - Phan Thành Nam
AU  - Nicolas Rougerie
TI  - Derivation of nonlinear Gibbs measures from many-body quantum mechanics
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2015
SP  - 65
EP  - 115
VL  - 2
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.18/
DO  - 10.5802/jep.18
LA  - en
ID  - JEP_2015__2__65_0
ER  - 
%0 Journal Article
%A Mathieu Lewin
%A Phan Thành Nam
%A Nicolas Rougerie
%T Derivation of nonlinear Gibbs measures from many-body quantum mechanics
%J Journal de l’École polytechnique — Mathématiques
%D 2015
%P 65-115
%V 2
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.18/
%R 10.5802/jep.18
%G en
%F JEP_2015__2__65_0
Mathieu Lewin; Phan Thành Nam; Nicolas Rougerie. Derivation of nonlinear Gibbs measures from many-body quantum mechanics. Journal de l’École polytechnique — Mathématiques, Volume 2 (2015), pp. 65-115. doi : 10.5802/jep.18. https://jep.centre-mersenne.org/articles/10.5802/jep.18/

[1] S. Albeverio & R. Høegh-Krohn - “The Wightman axioms and the mass gap for strong interactions of exponential type in two-dimensional space-time”, J. Functional Analysis 16 (1974), p. 39-82 | DOI | MR | Zbl

[2] Z. Ammari - “Systèmes hamiltoniens en théorie quantique des champs : dynamique asymptotique et limite classique” (2013), Habilitation à diriger des recherches, Université de Rennes I

[3] Z. Ammari & F. Nier - “Mean field limit for bosons and infinite dimensional phase-space analysis”, Ann. Henri Poincaré 9 (2008), p. 1503-1574 | DOI | MR | Zbl

[4] Z. Ammari & F. Nier - “Mean field limit for bosons and propagation of Wigner measures”, J. Math. Phys. 50 (2009) no. 4, 042107 pages | DOI | MR | Zbl

[5] Z. Ammari & F. Nier - “Mean field propagation of Wigner measures and BBGKY hierarchies for general bosonic states”, J. Math. Pures Appl. 95 (2011) no. 6, p. 585-626 | DOI | MR | Zbl

[6] V. Bach, E. H. Lieb & J. P. Solovej - “Generalized Hartree-Fock theory and the Hubbard model”, J. Statist. Phys. 76 (1994) no. 1-2, p. 3-89 | DOI | MR | Zbl

[7] R. Benguria & E. H. Lieb - “Proof of the stability of highly negative ions in the absence of the Pauli principle”, Phys. Rev. Lett. 50 (1983), p. 1771-1774 | DOI

[8] F. A. Berezin - “Convex functions of operators”, Mat. Sb. (N.S.) 88(130) (1972), p. 268-276 | MR

[9] V. I. Bogachev - Gaussian measures, Mathematical Surveys and Monographs, vol. 62, American Mathematical Society, Providence, RI, 1998 | MR

[10] J. Bourgain - “Periodic nonlinear Schrödinger equation and invariant measures”, Comm. Math. Phys. 166 (1994) no. 1, p. 1-26 | Zbl

[11] J. Bourgain - “Invariant measures for the 2D-defocusing nonlinear Schrödinger equation”, Comm. Math. Phys. 176 (1996), p. 421-445 | DOI | Zbl

[12] J. Bourgain - “Invariant measures for the Gross-Piatevskii equation”, J. Math. Pures Appl. 76 (1997) no. 8, p. 649-02 | DOI | MR | Zbl

[13] J. Bourgain - “Invariant measures for NLS in infinite volume”, Comm. Math. Phys. 210 (2000) no. 3, p. 605-620 | DOI | MR | Zbl

[14] N. Burq, L. Thomann & N. Tzvetkov - “Long time dynamics for the one dimensional non linear Schrödinger equation”, Ann. Inst. Fourier (Grenoble) 63 (2013) no. 6, p. 2137-2198 | DOI | Numdam | Zbl

[15] N. Burq & N. Tzvetkov - “Random data Cauchy theory for supercritical wave equations. I. Local theory”, Invent. Math. 173 (2008) no. 3, p. 449-475 | DOI | MR | Zbl

[16] E. Carlen - “Trace inequalities and quantum entropy: an introductory course”, in Entropy and the Quantum (R. Sims & D. Ueltschi, eds.), Contemp. Math., vol. 529, American Mathematical Society, Providence, RI, 2010, p. 73-140 | DOI | MR

[17] E. Carlen, J. Fröhlich & J. L. Lebowitz - “Exponential relaxation to equilibrium for a one-dimensional focusing non-linear Schrödinger equation with noise” (2014), arXiv:1409.2327

[18] G. Chiribella - “On quantum estimation, quantum cloning and finite quantum de Finetti theorems”, in Theory of Quantum Computation, Communication, and Cryptography, Lect. Notes in Computer Science, vol. 6519, Springer, 2011 | DOI | MR | Zbl

[19] M. Christandl, R. König, G. Mitchison & R. Renner - “One-and-a-half quantum de Finetti theorems”, Comm. Math. Phys. 273 (2007) no. 2, p. 473-498 | DOI | MR | Zbl

[20] J. Colliander & T. Oh - “Almost sure well-posedness of the cubic nonlinear Schrödinger equation below L 2 (𝕋), Duke Math. J. 161 (2012) no. 3, p. 367-414 | DOI | Zbl

[21] M. Combescure & D. Robert - Coherent states and applications in mathematical physics, Theoretical and Mathematical Physics, Springer, Dordrecht, 2012 | DOI | Zbl

[22] A.-S. de Suzzoni - “Invariant measure for the cubic wave equation on the unit ball of 3 , Dyn. Partial Differ. Equ. 8 (2011) no. 2, p. 127-147 | MR | Zbl

[23] J. Dolbeault, P. Felmer, M. Loss & E. Paturel - “Lieb-Thirring type inequalities and Gagliardo-Nirenberg inequalities for systems”, J. Funct. Anal. 238 (2006) no. 1, p. 193-220 | DOI | MR | Zbl

[24] J. Glimm & A. Jaffe - Quantum physics: a functional integral point of view, Springer-Verlag, 1987

[25] A. D. Gottlieb - “Examples of bosonic de Finetti states over finite dimensional Hilbert spaces”, J. Statist. Phys. 121 (2005) no. 3-4, p. 497-509 | DOI | MR | Zbl

[26] A. D. Gottlieb & T. Schumm - “Quantum noise thermometry for bosonic Josephson junctions in the mean-field regime”, Phys. Rev. A 79 (2009), 063601 pages | DOI

[27] P. Grech & R. Seiringer - “The excitation spectrum for weakly interacting bosons in a trap”, Comm. Math. Phys. 322 (2013) no. 2, p. 559-591 | DOI | MR | Zbl

[28] F. Guerra, L. Rosen & B. Simon - “The P(φ) 2 Euclidean quantum field theory as classical statistical mechanics. I, II”, Ann. of Math. (2) 101 (1975), p. 111-189; ibid. (2) 101 (1975), 191–259 | DOI | MR

[29] C. Hainzl, M. Lewin & J. P. Solovej - “The thermodynamic limit of quantum Coulomb systems. Part II. Applications”, Adv. Math. 221 (2009), p. 488-546 | DOI | Zbl

[30] A. Harrow - “The church of the symmetric subspace” (2013), arXiv:1308.6595

[31] R. L. Hudson & G. R. Moody - “Locally normal symmetric states and an analogue of de Finetti’s theorem”, Z. Wahrsch. Verw. Gebiete 33 (1975/76) no. 4, p. 343-351 | DOI | MR

[32] B. Juliá-Díaz, A. D. Gottlieb, J. Martorell & A. Polls - “Quantum and thermal fluctuations in bosonic Josephson junctions”, Phys. Rev. A 88 (2013), 033601 pages | DOI

[33] A. Knowles - “Limiting dynamics in large quantum systems”, Doctoral thesis, ETH Zürich, 2009

[34] J. L. Lebowitz, H. A. Rose & E. R. Speer - “Statistical mechanics of the nonlinear Schrödinger equation”, J. Statist. Phys. 50 (1988) no. 3-4, p. 657-687 | DOI | Zbl

[35] M. Lewin - “Geometric methods for nonlinear many-body quantum systems”, J. Funct. Anal. 260 (2011), p. 3535-3595 | DOI | MR | Zbl

[36] M. Lewin, P. T. Nam & N. Rougerie - “Derivation of Hartree’s theory for generic mean-field Bose systems”, Adv. Math. 254 (2014), p. 570-621 | DOI | MR | Zbl

[37] M. Lewin, P. T. Nam & N. Rougerie - “The mean-field approximation and the non-linear Schrödinger functional for trapped Bose gases” (2014), to appear in TRAAM, http://arxiv.org/abs/1405.3220

[38] M. Lewin, P. T. Nam & N. Rougerie - “Remarks on the quantum de Finetti theorem for bosonic systems”, Appl. Math. Res. Express. AMRX 1 (2015), p. 48-63 | DOI | MR | Zbl

[39] M. Lewin & J. Sabin - “A family of monotone quantum relative entropies”, Lett. Math. Phys. 104 (2014) no. 6, p. 691-705 | DOI | MR | Zbl

[40] E. H. Lieb - “The classical limit of quantum spin systems”, Comm. Math. Phys. 31 (1973), p. 327-340 | DOI | MR | Zbl

[41] E. H. Lieb - “Convex trace functions and the Wigner-Yanase-Dyson conjecture”, Adv. Math. 11 (1973), p. 267-288 | DOI | MR | Zbl

[42] E. H. Lieb & M. B. Ruskai - “A fundamental property of quantum-mechanical entropy”, Phys. Rev. Lett. 30 (1973), p. 434-436 | DOI | MR

[43] E. H. Lieb & M. B. Ruskai - “Proof of the strong subadditivity of quantum-mechanical entropy”, J. Math. Phys. 14 (1973), p. 1938-1941, With an appendix by B. Simon | DOI | MR

[44] E. H. Lieb, R. Seiringer, J. P. Solovej & J. Yngvason - The mathematics of the Bose gas and its condensation, Oberwolfach Seminars, Birkhäuser, 2005 | Zbl

[45] E. H. Lieb, R. Seiringer & J. Yngvason - “Justification of c-number substitutions in bosonic Hamiltonians”, Phys. Rev. Lett. 94 (2005), 080401 pages | DOI

[46] E. H. Lieb & H.-T. Yau - “The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics”, Comm. Math. Phys. 112 (1987) no. 1, p. 147-174 | MR | Zbl

[47] J. Lörinczi, F. Hiroshima & V. Betz - Feynman-Kac-type theorems and Gibbs measures on path space: with applications to rigorous quantum field theory, de Gruyter Studies in Math., Walter de Gruyter, 2011 | DOI | Zbl

[48] E. Nelson - “Construction of quantum fields from Markoff fields”, J. Funct. Anal. 12 (1973) no. 1, p. 97 -112 | DOI | MR | Zbl

[49] E. Nelson - “The free Markoff field”, J. Funct. Anal. 12 (1973), p. 211-227 | DOI | MR | Zbl

[50] T. Oh & J. Quastel - “On invariant Gibbs measures conditioned on mass and momentum”, J. Math. Soc. Japan 65 (2013) no. 1, p. 13-35 | DOI | MR | Zbl

[51] M. Ohya & D. Petz - Quantum entropy and its use, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1993 | DOI | Zbl

[52] D. Petz - “Monotonicity of quantum relative entropy revisited”, Rev. Math. Phys. 15 (2003) no. 1, p. 79-91 | DOI | MR | Zbl

[53] N. Rougerie - “Théorèmes de de Finetti, limites de champ moyen et condensation de Bose-Einstein” (2014), Lecture notes

[54] D. Ruelle - Statistical mechanics. Rigorous results, World Scientific & Imperial College Press, 1999 | Zbl

[55] B. Simon - The P(φ) 2 Euclidean (quantum) field theory, Princeton University Press, Princeton, N.J., 1974, Princeton Series in Physics | Zbl

[56] B. Simon - Trace ideals and their applications, LMS Lecture Note Series, vol. 35, Cambridge University Press, Cambridge, 1979 | MR | Zbl

[57] B. Simon - “The classical limit of quantum partition functions”, Comm. Math. Phys. 71 (1980) no. 3, p. 247-276 | DOI | MR | Zbl

[58] A. V. Skorokhod - Integration in Hilbert space, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag, 1974 | Zbl

[59] W. F. Stinespring - “Positive functions on C * -algebras”, Proc. Amer. Math. Soc. 6 (1955) no. 2, p. 211-216 | MR | Zbl

[60] E. Størmer - “Symmetric states of infinite tensor products of C * -algebras”, J. Funct. Anal. 3 (1969), p. 48-68 | DOI | MR

[61] S. J. Summers - “A perspective on constructive quantum field theory” (2012), arXiv:1203.3991

[62] L. Thomann & N. Tzvetkov - “Gibbs measure for the periodic derivative nonlinear Schrödinger equation”, Nonlinearity 23 (2010) no. 11, 2771 pages | DOI | Zbl

[63] N. Tzvetkov - “Invariant measures for the defocusing nonlinear Schrödinger equation”, Ann. Inst. Fourier (Grenoble) 58 (2008) no. 7, p. 2543-2604 | DOI | Numdam | Zbl

[64] - Constructive quantum field theory: The 1973 Ettore Majorana international school of mathematical physics (G. Velo & A. S. Wightman, eds.), Lect. Notes in Physics, Springer-Verlag, 1973 | Zbl

[65] A. Wehrl - “General properties of entropy”, Rev. Modern Phys. 50 (1978) no. 2, p. 221-260 | MR

Cited by Sources: