Approximate subgroups
Journal de l’École polytechnique — Mathématiques, Volume 2 (2015), pp. 55-63.

Given a definably amenable approximate subgroup A of a (local) group in some first-order structure, there is a type-definable subgroup H normalized by A and contained in A 4 such that every definable superset of H has positive measure.

Étant donné un sous-groupe approximatif A définissablement moyennable d’un groupe (local) dans une structure du premier ordre, il y a un sous-groupe H type-définissable normalisé par A et contenu dans A 4 tel que tout ensemble définissable contenant H est de mesure positive.

Received:
Accepted:
DOI: 10.5802/jep.17
Classification: 11B30, 20N99, 03C98, 20A15
Keywords: Approximate subgroup, definability, definable amenability
Mot clés : Sous-groupe approximatif, moyennable, sous-groupe type-définissable
Jean-Cyrille Massicot 1; Frank O. Wagner 2

1 tabacckludge ’Ecole normale supérieure de Rennes, Campus de Ker lann Avenue Robert Schuman, 35170 Bruz, France
2 Université Lyon 1, CNRS, Institut Camille Jordan UMR 5208 21 avenue Claude Bernard, 69622 Villeurbanne cedex, France
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{JEP_2015__2__55_0,
     author = {Jean-Cyrille Massicot and Frank O. Wagner},
     title = {Approximate subgroups},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {55--63},
     publisher = {\'Ecole polytechnique},
     volume = {2},
     year = {2015},
     doi = {10.5802/jep.17},
     mrnumber = {3345797},
     zbl = {1379.03008},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.17/}
}
TY  - JOUR
AU  - Jean-Cyrille Massicot
AU  - Frank O. Wagner
TI  - Approximate subgroups
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2015
SP  - 55
EP  - 63
VL  - 2
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.17/
DO  - 10.5802/jep.17
LA  - en
ID  - JEP_2015__2__55_0
ER  - 
%0 Journal Article
%A Jean-Cyrille Massicot
%A Frank O. Wagner
%T Approximate subgroups
%J Journal de l’École polytechnique — Mathématiques
%D 2015
%P 55-63
%V 2
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.17/
%R 10.5802/jep.17
%G en
%F JEP_2015__2__55_0
Jean-Cyrille Massicot; Frank O. Wagner. Approximate subgroups. Journal de l’École polytechnique — Mathématiques, Volume 2 (2015), pp. 55-63. doi : 10.5802/jep.17. https://jep.centre-mersenne.org/articles/10.5802/jep.17/

[1] E. Breuillard, B. Green & T. Tao - “The structure of approximate groups”, Publ. Math. Inst. Hautes Études Sci. 116 (2012), p. 115-221 | DOI | MR

[2] L. van den Dries - “Approximate groups [after Hrushovski, and Breuillard, Green, Tao]”, in Séminaire Bourbaki (2013/14), Astérisque, Société Mathématique de France, Exp. no 1077, to appear | Zbl

[3] P. E. Eleftheriou & Y. Peterzil - “Definable quotients of locally definable groups”, Selecta Math. (N.S.) 18 (2012) no. 4, p. 885-903 | DOI | MR | Zbl

[4] A. M. Gleason - “Groups without small subgroups”, Ann. of Math. (2) 56 (1952), p. 193-212 | DOI | MR | Zbl

[5] I. Goldbring - “Hilbert’s fifth problem for local groups”, Ann. of Math. (2) 172 (2010) no. 2, p. 1269-1314 | DOI | MR | Zbl

[6] E. Hrushovski - “Stable group theory and approximate subgroups”, J. Amer. Math. Soc. 25 (2012) no. 1, p. 189-243 | DOI | MR | Zbl

[7] E. Hrushovski & A. Pillay - “On NIP and invariant measures”, J. Eur. Math. Soc. (JEMS) 13 (2011) no. 4, p. 1005-1061 | DOI | MR | Zbl

[8] A. Pillay, Private communication, 2014

[9] T. Sanders - “On a nonabelian Balog-Szemerédi-type lemma”, J. Aust. Math. Soc. 89 (2010) no. 1, p. 127-132 | DOI | MR | Zbl

[10] H. Yamabe - “A generalization of a theorem of Gleason”, Ann. of Math. (2) 58 (1953), p. 351-365 | DOI | MR | Zbl

Cited by Sources: