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DERIVATION OF NONLINEAR GIBBS MEASURES FROM
MANY-BODY QUANTUM MECHANICS

BY Marnieu LEwin, Puan TaAna Nam & Nicoras RouGeRik

AsTrACT. — We prove that nonlinear Gibbs measures can be obtained from the corresponding
many-body, grand-canonical, quantum Gibbs states, in a mean-field limit where the tempera-
ture T diverges and the interaction strength behaves as 1/7". We proceed by characterizing the
interacting Gibbs state as minimizing a functional counting the free-energy relatively to the
non-interacting case. We then perform an infinite-dimensional analogue of phase-space semiclas-
sical analysis, using fine properties of the quantum relative entropy, the link between quantum
de Finetti measures and upper/lower symbols in a coherent state basis, as well as Berezin-Lieb
type inequalities. Our results cover the measure built on the defocusing nonlinear Schrédinger
functional on a finite interval, as well as smoother interactions in dimensions d > 2.

Résumi (Dérivation de mesures de Gibbs non linéaires comme limites d’un modéle de mécanique
quantique & N corps)

Nous prouvons que certaines mesures de Gibbs non linéaires peuvent étre obtenues a par-
tir des états de Gibbs grand-canoniques du probléme & N corps, dans une limite de champ
moyen ol la température T diverge et la constante de couplage se comporte comme 1/T. Nous
commencons par caractériser les états de Gibbs en présence d’interactions comme minimiseurs
d’une fonctionnelle comptant 1’énergie libre relativement au cas sans interaction. Nous procé-
dons ensuite & un analogue en dimension infinie d’une analyse semi-classique, en utilisant des
propriétés fines de ’entropie relative quantique, le lien entre mesures de de Finetti et symboles
supérieurs/inférieurs dans une base d’états cohérents, ainsi que des inégalités de type Berezin-
Lieb. Nos résultats couvrent la mesure construite a partir de la fonctionnelle de Schrédinger
non linéaire défocalisante sur un intervalle fini, ainsi que le cas d’interactions plus réguliéres en
dimension supérieure.
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1. INnTRODUCTION

Nonlinear Gibbs measures have recently become a useful tool to construct solutions
to time-dependent nonlinear Schrédinger equations with rough initial data, see for
instance [34, 10, 11, 12, 13, 63, 15, 14, 62, 22, 20, 50]. These are probability measures
which are formally defined by

(1.1) dp(u) = z7 e qu,

where &(u) is the Hamiltonian nonlinear energy and z is an infinite normalization
factor. The precise definition of p will be discussed below. For bosons interacting
through a potential w, the energy is

(12) &)= / Vu(w)? de + - //Q @) ) Pute — y) dedy,

with Q a bounded domain in R? and with chosen boundary conditions. The cubic
nonlinear Schrédinger equation corresponds to w = ¢dp, a Dirac delta. For nicer
potentials (say, w € L>*(R%)), the model is often called Hartree’s functional. The
derivation of such functionals from many-body quantum mechanics has a long history,
see for example [7, 46, 44, 27, 36, 37] and references therein.

Our purpose here is to prove that the above nonlinear measures p in (1.1) arise
naturally from the corresponding linear many-particle (bosonic) Gibbs states, in a
mean-field limit where the temperature 7' — oo and the interaction intensity is of
order 1/T. We work in the grand-canonical ensemble where the particle number is not
fixed, but similar results are expected to hold in the canonical setting, in dimension
d = 1. In this introduction, we will discuss the non-interacting case w = 0 in any
dimension d > 1, but we will consider the interacting case w # 0 (including w = d)
mostly in dimension d = 1, where the measure p is better understood. In dimensions
d > 2 our result will require strong assumptions on the interaction w which do not
include a translation invariant function w(xz — y) and we defer the full statement to
Section 5.

In recent papers [36, 37], we have studied another mean-field regime where the tem-
perature T is fixed"). We worked in the canonical ensemble with a given, diverging,

(1)Equal to 0 most of the time, but see [36, Sec. 3.2] for generalization to fixed T' > 0.
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number of particles N — oo and an interaction of intensity 1/N. In this case almost
all the particles condense on the minimizers of the energy &. More precisely, the limit
is a measure ;i which has its support in the set .# of minimizers for & in the unit
sphere of L?(Q). The regime we consider here amounts to taking the temperature
T — oo at the same time as the average number of particles N — oo, and we end up
with the nonlinear Gibbs measure p. The employed techniques are related to what
we have done in [36, 37], but dealing with the large temperature limit requires several
new tools.

In the core of this article, we consider an abstract situation with a nonlinear energy
of the form

1
u— (u, hu) o + §<u®u,wu®u>ﬁ®m

on an abstract Hilbert space $. Here h > 0 a self-adjoint operator with compact
resolvent on $) and w > 0 is self-adjoint on the symmetric tensor product ) ®; 9.
In this introduction we describe our results informally, focusing for simplicity on the
example of the physical energy & in (1.2), corresponding to $ = L?(Q), h = —A and
w=w(r —7y).

The nonlinear Gibbs measures. — In order to properly define the measure pu, it is
customary to start with the non-interacting case w = 0. Then the formal probability
measure

dpo(u) = 25 te™ Ja IVl gy

is an infinite-dimensional gaussian measure. Indeed, since (2 is a bounded set, let (A;)
and (u;) be a corresponding set of eigenvalues and normalized eigenfunctions of —A
with chosen boundary conditions(®. Letting a; = (u;,u) € C then pg is the infinite
tensor product
do = ® (ﬁe—*ﬂ%‘lz daj).
=1 T
This measure is well-defined in L?(€) in dimension d = 1 only. In higher dimensions,
po lives on negative Sobolev spaces and it is supported outside of L?(Q), which largely
complicates the analysis. In this introduction we will most always assume d = 1 for
simplicity (then Q = (a,b) is a finite interval), and only discuss the case d > 2 in the
end.
With the non-interacting measure g at hand, it is possible to define

(1.3) dp(u) = z7 e PN g (u),
where
(1.4 At =g [ @ )Pt —y) dedy

(2)We assume here min o(—A) = min(\;) > 0 which is for instance the case of the Dirichlet
Laplacian. Other boundary conditions (e.g. Neumann or periodic) may be used but —A must then
be replaced everywhere by —A + C with C > 0.
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68 M. Lewin, P. T. Nam & N. RouGERIE

is the nonlinear term in the energy, and
(1.5) Zr = / e N gy (u)
L2(Q)

is the appropriate normalization factor, called the relative partition function. In the
defocusing case Fyp, > 0, the number z, is always well-defined in [0, 1]. In order to
properly define the measure u, we however need 2, > 0 and this requires that Fn,
is finite on a set of positive pg-measure. This is the case if, for instance, d = 1 and
0 <w e L®(R?%) or w = . Note that z, is formally equal to z/zp, the ratio of the
partition functions of the interacting and non-interacting cases. But both z and zg
are infinite, only 2, makes sense.

The quantum model and the mean-field limit. — We now quickly describe the quantum
mechanical model which is going to converge to the nonlinear Gibbs measure u. The
proper setting is that of Fock spaces and k-particle density matrices, but we defer the
discussion of these concepts to the next section. We define the n-particle Hamiltonian

n
Hy, = Z(_A)””i + A Z w(xg — )
j=1 1<k<t<n
which describes a system of n non-relativistic bosons in 2, interacting via the poten-
tial w. This operator acts on the bosonic space @' L*(2), that is, on L2(Q"), the
subspace of L?(Q") containing the functions which are symmetric with respect to
permutations of their variables. The parameter A is used to vary the intensity of the
interaction. Here we will take
A~1/T

with T being the temperature of the sample, which places us in a mean-field regime,
as will be explained later.

At temperature T' > 0, in the grand-canonical setting where the number of particles
is not fixed but considered as a random variable, the partition function is

ZT)=1+ Z Tr[exp(f H}’n)],

n>1

where the trace is taken on the space @7 L?(£2), but we do not emphasize it in our
notation. The free-energy of the system is then —T log Z(T). On the other hand the
non-interacting partition function is

Zo(T) =1+ Tr[exp(—%)}.

When €2 is bounded, Zy(T) is finite for every T > 0. If 0 < w € L*>°(Q) or if w = Jy
and d = 1, then Z,(T) is also a well-defined number. Both Z,(T) and Zy(T) diverge
very fast when T'— oo. One of our results (see Theorem 5.3 below) says that

. 2\T)
(1.6) A 70T T
AT—1
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where z, is the nonlinear relative partition function, defined in (1.5) above. The
result (1.6) is in agreement with the intuitive formula z, = z/zy explained before. The
limit (1.6) will be valid in a general situation which includes the cases 0 < w € L (R)
and w = g in dimension d = 1.

The limit (1.6) does not characterize the measure p uniquely, but in the case d = 1
we are able to prove convergence of the density matrices of the grand-canonical Gibbs
state. Those are obtained by tracing out all variables but a finite number. Namely,
for any fixed k& > 1, we will show that

. 1 7’L' H,\)n
(17 Hm Tsz(T)Z(nfk)!m“%[e"p(_ )]
AT —1 n>=
= [ dutu),
L2(Q)

strongly in the trace-class, where Try11_,, is a notation for the partial trace (see (2.6)
below). It will be shown that there can be only one measure p for which the limit (1.7)
holds for all k& > 1, and our statement is that this measure is the nonlinear Gibbs
measure introduced above in (1.3).

Strategy of proof: the variational formulation. — Our method for proving (1.6)
and (1.7) is variational, based on Gibbs’ principle. The latter states that, for a
self-adjoint operator A on a Hilbert space R,

—_A .
(1.8) —log(Trgle™]) = Ogj\l/}lsz*{Tr[AM] + Tr [M log M]}

Trg M=1

with infimum uniquely achieved by the Gibbs state My = e=4/Trg e™4. The reader
can simply think of a finite dimensional space £, in which case A and M are just
Hermitian matrices. The two terms in the functional to be minimized are respectively
interpreted as the energy and the opposite of the entropy. Using (1.8) for A and A+ B
allows us to write

Trele 4Py
Trg M=1
where

A (M, My) = Trg [M (log M — log My)]
is the (von Neumann) quantum relative entropy.
In our particular setting, (1.8) becomes

(110)  —Tlog(Z\(T)) = jnf {Tr[fAF(l)] + ATr[wl®)] + TTr [ log F}},
Tr =1
where T' is varied over all trace-class operators on the Fock space and I'™)| ') are

its one-particle and two-particle density matrices respectively (this will be explained
in details below). Just as in (1.9), this variational principle may be rewritten as

(1.11) - log(§2§§§> - Oq%ig;_f_r;{%(r, To) + %Tr nem }
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ie., =T'log(Zx(T)/Zy(T)) is the free energy of the interacting system, counted rela-
tively to the non-interacting one. The grand-canonical Gibbs state 'z is the unique
state achieving the above infimum.

In a similar manner, we have

(1.12) —log(z) = inf {Jfa(u, Ho) —|—/
v probability L2(Q)
measure on L2(£2)

P () du<u>},

where

Ha(v, pio) = /Lz(g)<j:o> log(%)duo

is the classical relative entropy of two measures. Relating the variational princi-
ples (1.11) and (1.12) is now a semiclassical problem, reminiscent of situations that
are well-studied in finite dimensional spaces, see e.g. [41, 57, 25]. The main difficulty
here is that we are dealing with the infinite dimensional phase-space L?(). It will be
crucial for our method to study the relative free-energy (1.11) and not the original
free-energy directly.

Our strategy is based on a measure v which can be constructed from the sequence
of infinite-dimensional quantum Gibbs states [2, 3, 4, 5, 60, 31, 36, 53], in the same
fashion as semi-classical measures in finite dimension [21]. This so-called de Finetti
measure has already played a crucial role in our previous works [36, 37] and it will be
properly defined in Section 4. The idea is to prove that v must solve the variational
principle (1.12). Then, by uniqueness it must be equal to p and the result follows.

Roughly speaking, the philosophy is that the grand-canonical quantum Gibbs state
behaves as

Iy ~ / (VT u)/(E(VTw)| d(u)

in a suitable weak sense, where £(v) is the coherent state in the Fock space built
on v, which has expected particle number ||vH2 In particular, for the reduced density
matrices, one should have in mind that

W "
) H/|u®’€><u®’f|du(u).

Higher dimensions. As we said the convergence results (1.6) and (1.7) will be
proved in an abstract situation which includes the defocusing NLS and Hartree
cases (1.2) when d = 1, but not d > 2. When d > 2, several difficulties occur.
The first is that the free Gibbs measure ug does not live over L?(£2), but rather over
negative Sobolev spaces H~*(2) with s > d/2 — 1. Because the nonlinear interaction
term Fnp, in (1.4) usually does not make any sense in negative Sobolev spaces, the
Gibbs measure p is also ill-defined and a regularization has to be introduced.

In this paper we do not consider the problem of renormalizing translation-invariant
interactions w(z — y). For simplicity, we assume that w is a smooth enough, say
finite rank, operator on L?(Q) ®4 L?(Q2), which can be thought of as a regularization
of more physical potentials. Under this assumption, we are able to prove the same

JIEP. — M., 2015, tome 2
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convergence (1.6) of the relative partition function (see Theorem 5.4 below). However,
we are only able to prove the convergence (1.7) for kK = 1. We in fact prove that the
de Finetti measure of the quantum Gibbs state is p, but the convergence of higher
density matrices does not follow easily. The difficulty comes from the divergence of the
average particle number which grows much faster than 7', in contrast to the case d = 1
where it behaves like T'. In particular, the density matrices (divided by an appropriate
power of T') are all unbounded in the trace-class. We believe they are bounded in a
higher Schatten space, a claim we could prove for any & in the non-interacting case
but only for £ = 1 in the interacting case. It is an interesting open problem to extend
our result to more physical interactions and to k& > 2.

Open problems and the link with QFT. — Nonlinear Gibbs measures have also played
an important role in constructive quantum field theory (QFT) [24, 47, 64]. By an
argument similar to the Feynman-Kac formula, one can write the (formal) grand-
canonical partition function of a quantum field in space dimension d, by means of a
(classical) nonlinear Gibbs measure in dimension d + 1, where the additional variable
plays the role of time [48, 49]. The rigorous construction of quantum fields then
sometimes boils down to the proper definition of the corresponding nonlinear measure.
This so-called Fuclidean approach to QFT was very successful for some particular
models and the literature on the subject is very vast (see, e.g., [48, 1, 55, 28] for a few
famous examples and [61] for a recent review). Like here, the problem becomes more
and more difficult when the dimension grows. The main difficulties are to define the
measures in the whole space and to renormalize the (divergent) physical interactions.
We have not yet tried to renormalize physical interactions in our context or to take
the thermodynamic limit at the same time as T" — oo. These questions are however
important and some tools from constructive QFT could then be useful.

In the present paper, the situation is different from that of QFT, since we derive
the d-dimensional classical Gibbs measure from the d-dimensional quantum problem
in a mean-field type limit. Our goal is not to address the delicate construction of the
measure for rough interactions, and we always put sufficiently strong assumptions
on w in order to avoid any renormalization issue.

Some specific tools are required in order to put the aforementioned semiclassical
intuition on a rigorous basis and we shall need:

« To revisit the construction of the de Finetti measures, beyond what has been done
in [3, 4, 5, 36]. Our approach uses some fine properties of a particular construction of
the de Finetti measure, following [19, 18, 30, 38].

« To relate de Finetti measures to lower symbols (or Husimi functions) in a coherent
state basis, again following [19, 18, 30, 38].

« To prove a version of the semiclassical (first) Berezin-Lieb inequality [8, 41, 57]
adapted to the relative entropy. This uses fundamental properties of the quantum
relative entropy.

In our paper we always assume that the interaction is repulsive, w > 0, and another
open problem is to derive the nonlinear Gibbs measures when w has no particular sign.

JE.P.— M., 2015, tome 2



72 M. Lewin, P. T. Nam & N. Roucerie

For instance, in dimension d = 1 one could obtain the focusing nonlinear Schrédinger
model of [17, 34].

Organization of the paper. In the next section we quickly review the necessary
formalism of Fock spaces and density matrices. In Section 3, we consider the non-
interacting case w = 0. After having defined de Finetti measures in Section 4, we turn
to the statement of our main result (1.7) when w # 0 in Section 5. Sections 6 and 7
are devoted to the practical construction of de Finetti measures using coherent states
and a link between the quantum and classical relative entropies. Finally, in Section 8§,
we provide the proofs of the main theorems.

Acknowledgments. We thank Jirg Frohlich, Alessandro Giuliani, Sylvia Serfaty,
Anne-Sophie de Suzzoni and Nikolay Tzvetkov for stimulating discussions. Part of
this work has been carried out during visits at the Institut Henri Poincaré (Paris)
and the Institut Mittag-Leffler (Stockholm).

2. GRA\JI)-CAN()NICAL ENSEMBLE 1

In this section we quickly describe the grand-canonical theory based on Fock spaces,
which is necessary to state our result. We follow here the presentation of [35, Sec. 1].
Some more involved results on Fock spaces which are used in the core of the paper
are described in Section 6.1.

Fock spaces. — Let $) be any fixed separable Hilbert space. To deal with systems with
a large number of particles, it is often convenient to work in the (bosonic) Fock space

oo n

F($H) = 690®Y3=<C@53@ (HR:H) B,

n= S
where @7 $ is the symmetric tensor product of n copies of . In the applications
$H = L*(Q) and @ $ is the subspace of L?(2") containing the functions which
are symmetric with respect to exchanges of variables. We always consider ®Z.§§ as
a subspace of ®" $ and, for every f1,...,f, € 9, we define the symmetric tensor
product as

1
[1®s 0 @5 fn = ﬁ;fd(l)(@'”@fa(n)'
For functions, we have for instance

(f®@g)(z,y) = f(z)g(y)
and

(f ®4 0)(z,y) = % (F@)g() + F)a(@)).

We recall that any orthonormal basis {u;} of $ furnishes an orthogonal basis
{wi, @5+ @5 ui, bir<oo<in, Of @ H. The norms of the basis vectors are

(2.1) s, @ -+ B s, ||> = malmal -+ -
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Here m; is the number of indices which are equal to i1, that is, i1 = -+ - = i, < im,+1,
and mg is the number of indices that are equal to i,,, 11 (if m; < n). The other m;’s
are defined similarly.

All the operators in this paper will be implicitly restricted to the symmetric tensor
product @ §. For instance, if A is a bounded operator on §), then A®™ denotes the
restriction of the corresponding operator, initially defined on @" $), to the bosonic
subspace @' §. It acts as

A®nf1 R " Qs fn = (Afl) Rs - Qs (Afn)
We remark that if A > 0 with eigenvalues a; > 0, then
(2.2) Treng [A%"] < Trgng [A®"] = [Tr(4)]"

with equality if and only if A has rank 1. Similarly, for A an operator on ®§5’J,
we define the operator on @

(2.3) Ak@glnk::<z>l S A

1<i1 < <ip<n
where (Ag)i, .. i, acts on the iq,...,i,th variables. If A > 0, then

n_k —kt+d-1
(24) Trays [Ar @s Tnoi] < Trgeg [Ar] dim @ $ = (n d irl ) Trgeg [Ak]

with d = dim($)).
It is useful to introduce the number operator

k

(2.5) N =001028---= P nlgng
n=1
which counts how many particles are in the system.

States and associated density matrices. — A (mixed) quantum state is a self-adjoint
operator I' > 0 on .7 ($)) with Trz)I' = 1. A state is called pure when it is a rank-
one orthogonal projection, denoted as I' = |U)(¥| with ||\I'||29(f)) = 1. In particular,
the vacuum state |0)(0] with [0) = 1@ 0@ 0--- is the state with no particle at all.
In principle, states do not necessarily commute with the number operator .4, that is,
they are not diagonal with respect to the direct sum decomposition of % (). In this
paper, we will however only deal with states commuting with .4”, which can therefore
be written as a (infinite) block-diagonal operator

F:GO@GI@"'>

where each G,, > 0 acts on ®7;~6 For such a quantum state I' on #(£)) commut-
ing with .4 and for every k = 0,1,2,..., we then introduce the k-particle density

(B)Rank(A) = 1 is also a necessary and sufficient condition for A®™ to be completely supported
on the bosonic subspace. A reformulation is that the only bosonic factorized states over ®" § are
pure [31, Sec.4].
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matrix T'(®) | which is an operator acting on ®f $. A definition of T'® in terms of cre-
ation and annihilation operators is provided in Section 6.1. Here we give an equivalent
definition based on partial traces:

(2.6) e =y (’,j) Trgs 10 (Ga).

n>k

The notation Trgy1_,, stands here for the partial trace associated with the n —k — 1
variables. A different way to write (2.6) is by duality:

TI'®1;;3 (Akl“(k)) = Z (Z) Tr®g,;3(Ak R ]ln,an)

n>k

for any bounded operator A on ®§ 9, where A, ®;1,,_j was introduced in (2.3). The
density matrices I'*) are only well-defined under suitable assumptions on the state I,
because of the divergent factor (Z) in the series. For instance, under the assumption

that ' has a finite moment of order k,
TI‘g(y_,)(:/VkF) < 00,

then T'®) is a well-defined non-negative trace-class operator, with

n A Trz(5) [4*T]
(2.7) Trgrg I = Z (k) Tr(Gn) = Trz () [( k )F} < - < o0.

n>k

We remark that the density matrices are defined in the same manner if I' does not
commute with .4, that is, by definition I'*) does not depend on the off-diagonal
blocks of T'.

Observables. — An observable is a self-adjoint operator H on % (%)) and the corre-
sponding expectation value in a state I' is Tr(HI'"). For a pure state I' = |U)(¥| we
find (U, HW).

Several natural observables on the Fock space may be constructed from simpler
operators on $) and ) ® 9. For instance, if we are given a self-adjoint operator i on
the one-particle space $), then we usually denote by

hj =nh®g1,_1
1

J

the operator which acts on @ . On the Fock space .7 (), we can gather all these
into one operator

n

(2.8) Ho=0& P (: hj)

n>1

which is often written as dT'(h) in the literature (this notation should not be confused
with our choice of T for the quantum state). Since Hy is a sum of operators acting on
one particle at a time, it is often called a one-particle operator. A simple calculation
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S

shows that the expectation value of any state can be expressed in terms of the one-
particle density matrix as

Trz () (Hol') = Trg (hTW).

Similarly, if we are given a self-adjoint operator w on the two-particle space $®; 9,
we may introduce its second-quantization

n(n—1
W::O@O@@( E wij):O@O@@((Q)w®sﬂn_2),
n22 \1<j<k<n n>2

where w;; acts on the ith and jth particles. The corresponding expectation value can
then be expressed in terms of the two-particle density matrix as

Trz(sy) (WD) = Trge, s (wl@).
Gibbs states and relative entropy . The Gibbs state associated with a Hamiltonian H
on .# (%) at temperature T' > 0 is defined by
Iy = Z" " exp(~H/T),

where

Z = Trg(s) [exp(—H/T)]
is the corresponding partition function. Of course, this requires to have

Try(ﬁ) [exp(—H/T)] < oQ.

Gibbs’ variational principle states that I'r is the unique minimizer of the free energy,
that is, solves the minimization problem

inf {Trs o) (FID) + T Trgs) (PlogT) |
Trg(b) I'=1

Indeed, we have, for any state T,

Trg(ﬁ) (HF) + TTI‘LQ(.@) (F log F) - TI‘LQ(.@) (HFT) - TTI‘LQ(.@) (FT log FT)
=T Trg () ([(logT —logT'r)) :==TH#(I',I'r) >0
which is called the relative entropy of I' and I'y. In this paper we will use several
important properties of the relative entropy, that will be recalled later in Section 7.
The first is that 52 (A, B) > 0 with equality if and only if A = B, which corresponds
to the property that I'z is the unique minimizer of the free energy. A proof of this
may be found in [16, Th. 2.13], for instance.

Free Gibbs states. An important role is played by Gibbs states associated with one-
particle Hamiltonians Hy in (2.8). It is possible to compute the partition function and
the density matrices of such states, as summarized in the following well-known

Levmma 2.1 (Free Gibbs states)
Let T >0 and h > 0 be a self-adjoint operator on §) such that

Trglexp(—h/T)] < oo.
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Then the partition function of the Gibbs state associated with Hy in (2.8) is

(2.9) — log Tr # (&) [exp(de(h)/T)} = Trq {log(l - e*h/T)]
and the corresponding density matrices are given by
e—dT(h)/T (k) 1 ok
(2.10) Zdr(h)/T - ( h/T ) :
Tr g () (e-dT(/T) eh/T —1

We recall that A®¥ is by definition restricted to the symmetric subspace ®%$3. The
proof uses some algebraic properties of Fock spaces and it is recalled in Appendix A.
Note that the free Gibbs states belong to the class of quasi-free states and that a
generalization of Lemma 2.1, Wick’s theorem, holds for this larger class of states [6].

3. DERIVATION OF THE FREE GIBBS MEASURES

After these preparations, we start by studying in this section the limit T — oo
in the non-interacting case w = 0. The argument is based on a calculation using the
properties of quasi-free states in Fock spaces, that we have recalled in Lemma 2.1.

3.1. Non-INTERACTING (GAUSSIAN MEASURE. — Here we review the construction of
Gaussian measures. Most of the material in this section is well-known (see for
instance [58, 9], [24, 64, 55] in Constructive Quantum Field Theory, or [63] for the
nonlinear Schrédinger equation), but we give some details for the convenience of the
reader.

Let h > 0 be a self-adjoint operator with compact resolvent on a separable Hilbert
space 9. Let {\;}; be the eigenvalues of h and let {u;}; be the corresponding eigen-
vectors. We introduce a scale of spaces of Sobolev type defined by

(31)  $°:=D(h*/?) = {“ =210t ¢ [lullfe =300 Ajlag|? < OO} c9

for s > 0, and by $° = (§°)’ otherwise. The Hilbert space $(= $°) can be identified
with ¢2(N,C) through the unitary mapping u + {a;};>1, with o; = (u;,u). The
spaces $° are then isomorphic to weighted ¢? spaces,

H° ~ {{aj}j>1 CC: Yy Xloyl? < oo}, s € R,
and we will always make this identification for simplicity. Here we implicitly assumed

that dim $) = oo; in principle $ could also be finite-dimensional, which is even simpler.
We can now associate with h a Gaussian probability measure pg defined by

(3.2) dpo(u) = (§ (ﬁe*/\""o"'l2 dai).

i=1 T

Here da = dR(a)dS(a) is the Lebesgue measure on C ~ R2. The formula (3.2)
must be interpreted in the sense that the cylindrical projection pg g of po on the

finite-dimensional space Vi spanned by ug, ..., ux is the probability measure on Vi
Ly 2
o) = [T (e 1o o).

i=1
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for every K > 1. By [58, Lem. 1], this defines a unique measure g if and only if the
to,i’s satisfy the tightness condition

(3.3) lim sup puo,x ({u € Vi : |lul| = R}) =0.
R—oo g

This condition is not always verified in the Hilbert space ), hence the need to change
the norm used in (3.3). A simple calculation shows that
K
ol € Vi = Nullyir > B < B [ ullcy duosc(a) = R 3207
K j=1

Therefore, if we assume that
1 1
) ¥ ( ) <0
i>1 Aj

for some p > 0, the tightness condition (3.3) is verified in =7 and g is well defined
in this space.

The so-defined measure pg satisfies a zero-one law, in the sense that, for a subspace
H'71C H'7P with ¢ < p, we have either 1o(H'79) =1 or [[ul|g:1—, = +00 po-almost
surely. Indeed,

lullg1-a = 400 po-almost surely

2
- efllulli—g do(u) = 400 for some € > 0
H1-p

¢$/1Hw%wwwo=%aw%=+w
f_)—:D

(3.4)

which is called Fernique’s theorem.

In particular, taking ¢ = 0, we see that the energy is always infinite: (u, hu) = 400
po-almost surely. On the other hand, taking ¢ = 1, we see that the mass ||ullg = +00,
po-almost surely, if and only if Tr(h™1) = +o0.

Examrre 3.1 (Laplacian in a bounded domain Q C RY [34, 63])

Let $ = L?(Q) with © a bounded open subset of R? and h = —A + C with chosen
boundary conditions and C' > 0 such that A > 0. Then we have Tr(h™?) < oo for all
p > d/2, and therefore ug is well-defined on the Sobolev spaces of order < 1 — d/2.
The kinetic energy is always infinite: [, |[Vu|? = 400 pg-almost surely. For d > 2, the
mass is also infinite: [ul| ;2 = +00, po-almost surely.

ExampLe 3.2 ((An)Harmonic oscillator)

For the harmonic-type oscillators, $ = L?(R%) and h = —A + |z|*, we have
Tr(h™?) < oo for all p > d/2 + d/s. This follows from the Lieb-Thirring inequality
of [23, Th. 1] which gives us

dz dk

Trh™ < 2P Tr(h 4+ A1) / / < 00,
( ) 27T Rd JR4 |k“2+‘x|s+)\1)p

where A1 > 0 is the first eigenvalue of h. In particular, for the harmonic oscillator
s = 2 we have Tr(h™P) < oo for all p > d. When d = 1, the trace-class case p = 1,
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which we will often refer to below, requires s > 2, which just fails to include the 1D
harmonic oscillator.

3.2. NON-INTERACTING k-PARTICLE DENSITY MATRICES. — In this section we consider the
k-particle density matrices of the Gibbs state described by the measure pg. These are
formally defined by

(3.5) A = /ﬁ N dpola).

Note that each |[u®*)(u®*| is bounded from ®]Z $HP~ 1 to ®]: $H17P with corresponding
norm ||u||%’ﬁ,p For a p > 1 such that Tr(h™?) < oo, by Fernique’s theorem (3.4),
the measure jo has an exponential decay in the Hilbert space $'~P and therefore
the integral (3.5) is convergent in those spaces. Note that each |[u®*)(u®*| can be
unbounded pp-almost surely on ®]:5§ (if p > 1 and Tr(h™!) = +o0). The following
says that, after averaging with the measure pg, the resulting operator 'y(()k) is actually
always compact (hence bounded) on the original Hilbert space ®]: 9.

Lemwa 3.3 (Density matrices of the non-interacting Gibbs state)
Let h > 0 be a self-adjoint operator on $ such that Trg (h_p) < oo for some
1< p<oo. For every k > 1, we have

(3.6) A = k(R R,

In particular, 'y(()k) extends to a unique compact operator on ®I:5§, with

Trgrs (15F)7 < (R)P[ Trg(h7)]" < oc.

This lemma tells us that the k-particle density matrices of the Gibbs state ug are
all compact operators on (tensor products of) the original Hilbert space $), even if the
measure /g itself lives over the bigger space $! 7.

Proof. — Assume that h has eigenvalues A1, Ao, ... with the corresponding eigenfunc-
tions w1, us,... We claim that

[ 14w du(w)
k
(37) — k' ( ) 1 k 1 k
> g :

. 2
11 <2 S Sk b Hu“ ®s -+ B Uiy, ”

= k! (h1)®".

We recall that (u;, ®; -+ Qs Uiy )iy <ia<--<i), forms an orthogonal basis of ®]: . The
proof that the second line in (3.7) equals the third can be done by simply applying h®*
on the right, which gives k! times the identity. The bound on the trace then follows
from (2.2).
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Let us now derive the first line in (3.7). Each u;, ®; -+ ®; u;, belongs to ®f HP
for every p, and therefore we can compute its expectation with the k-particle density
matrix vF. Usi h h.

Yo - Using then that
f(C |O[‘2m€7>\|a‘2d04 fooo rMe=AT dp m!
Joe Mol da N fooo e=Ardr ™

and introducing the same integers mj, ma, ... as in (2.1), we find

<u R+ @ Uiy, (/ u®kY (u®F| duo(u))uil ®s -+ Ds u>
9

k 2
Klmal-- K |ugy, Qs -+ Qs uy
:M/lhwmmwmwz s AN
=1 ITe—1 A, [T X

If we put different indices on the right and on the left, then we get 0. Using the
orthogonality of the u;, ®; -+ ®s u;,, this ends the proof of (3.7). O

3.3. HiGH-TEMPERATURE LIMIT. In this section we explain how the Gibbs mea-
sure o and the density matrices vék) defined above in (3.5) arise in the high-
temperature limit of the grand-canonical many-body quantum system. We define the
non-interacting Hamiltonian in the Fock space .% (§)) by

Hy = 0@ él(ih)
n=L4 =1

The corresponding Gibbs state is

(3.8) Tor = Zo(1) ™ exp(—2),

where
@9 2=y o )] <1 ey (- E)
n>1

is the associated partition function. The state I'g 7 is quasi-free and Lemma 2.1 tells
us that

(3.10) —log Zo(T) = Trg log(1 — e~ /T,

which is finite if and only if Trg e~ /T

(3.11) Try (R7P) < o0

< 00. We always assume that

for some 1 < p < oo, which of course implies Tryg e MT < ooforall T > 0. Lemma 2.1
also gives us the formula

k) 1 Rk
(3.12) w87 = (1)

for the k-particle density matrix of I'g 7.
We recall that the Schatten space GP(R) of a Hilbert space £ is

SP(R) = {A: 8 — & : A&y = Tr|A]" = Tr(A"A)P/? < oo}.
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Lemma 3.4 (Convergence to Gaussian measures)
Let h > 0 be a self-adjoint operator on $ such that Trg (h*p) <oo for somep>1.
(k)

Let po be the Gaussian measure defined in (3.2) with k-particle density matriz -,
defined in (3.5). Then, we have

T—o0

k! Lk k _
TS o = [ ol = b (h)e*
—-P

strongly in the Schatten space 6p(®§ 9), for every fized k > 1. Moreover, the number
of particles in the system behaves as

Tr g4 e/VF
(3.13) lim 2z A Tor) Trs, h! < 0.
T— 00 T

Proof. — We have

1
— h1
T(eMT —1)
and the proof follows immediately from the dominated convergence theorem in Schat-
ten spaces [56, Th. 2.16]. O

Due to the definition (2.6) of the density matrix F(()]f%, the convergence is the re-
sult (1.7) that was claimed in the introduction, in the non-interacting case. In concrete
models, all physical quantities may be expressed in terms of the I'®)s. For instance,
when § = L?(I) with I a bounded interval and h = —d?/dx? with Dirichlet boundary
conditions, we obtain for the free Bose gas in {2 convergence of the density

Lo (e, ) )
T ok /W) ful@)l” diolw)

and of the density of kinetic energy

I8 (p.p) )
s 7 3 n d
T T—o0 /Lz(I) |U(p)| MO(U)7

strongly in L'(I). These quantities can be measured in experiments. The claimed
convergence follows from the continuity of the linear map v € & (L?(1)) — y(x,z) €
LY(I).

4. DE FINETTI MEASURES

It is possible to reformulate the previous result in terms of de Finetti measures.
We give a definition here, as we will need it to state our main results for the interacting
model in the next section. All the technical details will be provided in Section 6 below.

As usual for problems settled in Fock spaces, the argument is based on coherent
states which are defined for every u € $) by

u) = e lu*/2 Lu@ 7(9).
(4.1) §(u) j@;om €7(9)
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Here u € $ is not necessarily normalized in §), but the exponential factor makes &(u)
a state on Z($)). An important tool is the resolution of the identity on any finite-
dimensional subspace V C $:

(4.2) /v 1€ (w)) (€ (u)|du = (/V €_u|2du> Lzwy = 1V g0,

which follows from rotational invariance of the normalized uniform measure du on
the sphere of V' (Schur’s lemma). Here .7 (V) is identified to a subspace of % ($)) and
1.7 (v) is the associated orthogonal projection. This formula is the starting point of
all the following arguments. For any given sequence 0 < &, — 0 (playing the role
of a semi-classical parameter), we define the anti-Wick quantization of a function
be CP(V) at scale ,, with V an arbitrary finite-dimensional subspace of §, by

(4.3) B., = (cum)” 4 /V b(u) [€(u/v/Em)) €E(u/v/Em)| du.

The de Finetti measure of a sequence of states is then obtained by looking at
the weak limits against the anti-Wick quantization of any function b, similarly to
the semi-classical measures in finite-dimensional semi-classical analysis (see, e.g., [21,
Sec. 2.6.2]).

Derinirion 4.1 (de Finetti measures [3])

Let h > 0 be a self-adjoint operator with compact resolvent and let £° be the scale
of Sobolev spaces defined in Section 3. Let {I',,} be a sequence of states on the Fock
space .Z () (that is, I',, >0 and Tr[I',]=1) and 0<e,, —0. We say that a measure v
on H'7P with p > 1 is the de Finetti measure of the sequence {I',} at scale g, if
we have
(4.4) lim Tr [Be, ] = / b(u) dv(u)

Hi-r

n—oo
for every finite-dimensional subspace V C §) and every b € Cp (V).
When v exists, then it is unique, since a measure in a Hilbert space is characterized

by its expectation against bounded continuous functions living over an arbitrary finite-
dimensional subspace [58]. Also, due to the uniform bound

(4.5) I Be,,

S bl e vy »

a density argument shows that it suffices to require (4.4) for all b € Cp(V;) with
Vy = span(u1,...,uy) and {u;} a chosen orthonormal basis of $ (which, in our case,
will always be a basis of eigenvectors of the one-particle operator h).

The above definition of v based on coherent states is taken from [3]. The anti-Wick
quantization is not the only possible choice and we refer to [3] for a discussion of
the Weyl quantization. Another definition related to the Wick quantization relies on
density matrices and requires that

(4.6) k! (en)F TR [u®F) (u®*| du(u)

n
Hi-p
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weakly in ®*$P~1 for all k > 1, where the weak convergence means that

k! (en,) (U, T W) — 1 (W )2 dv(u), Ve okart
f:) —-p
The latter approach was used in [36] and in the previous section. We remark that
the convergence (4.6) of all density matrices is sufficient to characterize the limiting
measure v uniquely since, by an argument of [36, Sec. 2], a measure v is determined
completely by all of its moments [, _, [u®k) (u®*| dv(u).

When it applies, the Wick approach (4.6) is useful to understand the basic principle
at work. In particular, in the trace class case p = 1, it suggests that the expectation
value of 4% in T, behaves as (¢,)”% — oo when n — oo, so that we are dealing
with states essentially living on sectors containing O(e;; ') — oo bosonic particles.
In the general case p > 1, the expectation value of 4% in T',, may grow much faster
than (g,,) ™%, but the existence of the de Finetti measure is nevertheless a fundamental
consequence of the large size of the system under consideration [19, 31, 53, 60] and it
is therefore reasonable to expect it to hold for our states in the limit n — oc.

Because the density matrices are not always bounded for an arbitrary sequence of
states, an appropriate control is then needed. The Wick quantization requires some
bounds on all density matrices. When p > 1 these bounds are difficult to prove
and it will therefore be more convenient to base our arguments on the anti-Wick
quantization. In the same spirit as in [3, Th.6.2] and [36, Th.2.2], we are able to
prove that any sequence {T',,} satisfying suitable estimates has a de Finetti measure v
after extraction of a subsequence.

Turorem 4.2 (Existence of de Finetti measures)

Let h > 0 be a self-adjoint operator with compact resolvent and let $° be the scale
of Sobolev spaces defined in Section 3. Let 0 < T',, be a sequence of states on the Fock
space F($)), with Trz(s) 'y = 1. Assume that there exists a real number 1 < k < 00
and a sequence 0 < &, — 0 such that

(4.7) Tr[(e,dD(A' 7)) T, < Cs < o0

for some 1 < p< oo, and fors=k if k < oo (for all1 < s< Kk if Kk = +0).

Then there exists a Borel probability measure v on $§' P (invariant under multi-
plication by a phase factor) which is the de Finetti measure of a subsequence I'y; at
scale ;. More precisely,

(4.8) njhinoo Trz(g) (Fn].IB%Enj) = /ﬁlp b(u) dv(u)
for all b € CY(V) with V an arbitrary finite-dimensional subspace of $ (here B., is
the anti-Wick quantization of b that was introduced above in (4.3)). Moreover,

(4.9) ke, )" F;’j,) - [u®") (u®k| dv(u)
H1-p

weakly in ®]: P~ for every integer 1 < k < K.
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The weak convergence (4.9) in the statement means that

(4.10) Kl (en,) (U, T W) — |(u®F W) 2dv(u), VU erar L
Hl-p

This theorem generalizes existing results in several directions. First, we emphasize
that the moment bound (4.7) is only assumed to hold for 1 < s < k (here k does
not have to be an integer) and that the limit for the density matrices is then only
valid a priori for 1 < k < k. Note that if k < oo, then the convergence (4.9) does
not characterize the measure v uniquely, but the anti-Wick quantization (4.8) always
does. When p = 1 the operator h plays no role in the statement and the result is [3,
Th.6.2] when £ = +o0o. When p > 1, the bound involves dI'(h'~P) instead of the
number operator .4 and the final measure lives over $'~P instead of §. The proof
nevertheless goes along the lines of [3, 36] and it will be provided in Section 6.3 below.

In particular, in the non-interacting case we are able to reformulate the results of
the previous section, using Lemma 3.4 and Theorem 4.2.

Cororrary 4.3 (de Finetti measure in the non-interacting case)

Let h > 0 be a self-adjoint operator on § such that Trg (h_p) < oo for some
p = 1. Then ugy (the Gaussian measure defined in (3.2)) is the (unique) de Finetti
measure of the sequence of quantum Gibbs states (Lo 1) at scale 1/T.

Proof. We have proved the convergence of all density matrices in Lemma 3.4. As
we remarked before, this determines the de Finetti measure uniquely. O

5. DERIVATION OF THE NONLINEAR (GIBBS MEASURES: STATEMENTS

In this section we state our main result concerning the high temperature limit of
interacting quantum particles and the occurrence of the nonlinear Gibbs measure.

As before we fix a self-adjoint operator A > 0 on a separable Hilbert space $), such
that Tr(h™P) < oo for some 1 < p < co. We use the same notation $° as in the
previous section for the Sobolev-like spaces based on h. In particular, we consider
the non-interacting Gaussian measure jig on $'~P and the corresponding k-particle
density matrices vék) which are given by (3.6) and belong to the Schatten space
67(®" 9), by Lemma 3.3.

Now we state our main theorems and, for clarity, we first discuss the simpler case
p = 1 which, for concrete models involving the Laplacian, corresponds to space di-
mension d = 1.

5.1. THE TRACE-CLASS CASE. In this section we assume that
Tr(h™!) < oo,

which implies in particular that the measure g lives over the original Hilbert space $).
We then consider a non-negative self-adjoint operator w on ) ®, § such that

(5.1) / (u®u,wu®u)duog(u) = Trezg [wh™' ®h™'] < oo.
9

It is for example sufficient to assume that w is bounded.
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Exampre 5.1 (Laplacian in 1D)
When = (0,7) is a bounded interval in R and h = —d?/dz? with Dirichlet
boundary conditions (recall Example 3.1), the assumption (5.1) is satisfied for

[qu[}}(z?y) = W(I - yW(% y)

with W € LP((—m,7),R;) and 1 < p < oo or, more generally, W = W; + W, with Wy
a positive measure with finite mass on (—m,7) and Wa € L™ ((—m, ), Ry ). Indeed,

(52) Trizaxay Wz — y)(—d/da®) " (~d?/dy?) "]
=3A A W — y)Glx, )Gy, ) de dy,

where
2 1
G(z,y) = — Z —5 sin(nx) sin(ny)
n

s
n>1

is the integral kernel of (—d?/dz?)~!. From this formula it is clear that = — G(z,x)
is in L'(0,7) N L®(0,7), and (5.2) is finite under the previous assumptions on W.
The delta function W = ¢y is allowed, which leads to the Gibbs measure built on
the defocusing non-linear Schrédinger functional. The situation is of course exactly
the same in an arbitrary bounded interval 2 = (a,b) in R, with any other boundary
condition, but —d?/dz? then has to be replaced by —d?/dx? + C in order to ensure
h > 0.

Examrre 5.2 ((An)Harmonic oscillator in 1D)
We have mentioned in Example 3.2 that h = —d?/dx? + |z|* on L?(R) satisfies
Tr(h™') < oo for s > 2.

As in the previous example, the assumption (5.1) is then satisfied for W € LP(R,R)
with 1 < p < 0o or, more generally, W = W + W5 with W a positive measure with
finite mass on R and W5 € L (R, R, ). The argument is the same as in Example (5.1)
with, this time,

Glr,y) == (— d*/da® + |- ) (z.y).
‘We have

and, using that

for all e < A1 /(14 A1) where Ay is the first eigenvalue of h, we deduce
1 dk
< — -
G(x,x)\zﬂ_s Rk2+l<oo

Therefore z +— G(z,) is in L*(R) N L>°(R) and the conclusion follows.
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We remark that (5.1) implies that (u ® u, wu ®@ u) > 0 is finite pp-almost surely,
and therefore it makes sense to define the relative partition function

(5.3) Zp = /ﬁexp(—(u@u,wu@u» dpg(u),

which is a number in (0, 1]. The nonlinear Gibbs measure is then

(5.4) dp(u) = 2z, " exp(—(u ® u, wu @ u)) duo(u).

Like for pg, the corresponding k-particle density matrices are in the trace-class since
we have the operator inequality

(5.5) /ﬁ i) (¥ dp(u) < (z) " /ﬁ [ (4] dpg () = (20) kL (h™1)8".

The many-particle interacting quantum system is described by the Hamiltonian

(5.6) HAH0+)\WO@h@®(Zhi+)\ > w])

m=2\;=1 1<i<j<m

on the Fock space % (). Similarly to the non-interacting case, we consider the Gibbs
state

— H)\ . HA
(5.7) Iar = 2Z\(T) ! eXp(—?) with  Z)(T) = Trlg(m{exp(—T) }
That Z,(T) is finite follows from the fact that Hy > Hy since W > 0, which gives
Hg
ZA(T) < Trg(ﬁ){exp(—?>} = Zo(T) < oQ.
Our main theorem states that the density matrices of the interacting quantum state

converge to that given by the nonlinear Gibbs measure, provided that the coupling
constant scales as

A~ 1/T,
which, as will be explained below, places us in the mean-field regime.
Turorem 5.3 (Convergence to nonlinear Gibbs measures, p = 1)

Let h > 0 and w = 0 be two self-adjoint operators on ) and $H Qs $H respectively,
such that

(5.8) Trg (b)) + Trae.s (wh™ ' @h™!) < .

Let T'x 1 be the grand-canonical quantum Gibbs state defined in (5.7) and let Zx(T)
be the corresponding partition function. Then we have

. Z\(T)
(59) NN
TA—1

= Zr,

where z. is the nonlinear relative partition function defined in (5.3). Furthermore,
the nonlinear Gibbs measure p defined in (5.4) is the (unique) de Finetti measure
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of Tar) at scale 1/T: we have the convergence

(510) Trlg(f)) (F/\,TBI/T) T—> b(u) d,u(u)

for every b € CY(V) with V an arbitrary finite-dimensional subspace of § and By/r
its anti- Wick quantization (4.3), as well as

k' &
(5.11) 2 o [ duta)
> J9
TXx—1

strongly in the trace-class for every fixed k > 1.

When § is a finite-dimensional space, a version of this theorem was proved in [25],
in a canonical setting (see also [26, 32]). A grand-canonical analogue is treated in [33,
Chap. 3], where also the time-dependent correlation functions of the Gibbs states are
considered. We refer to [53, App. B| for a discussion of the finite dimensional setting
more related to that we shall do here. Before turning to the more general case p > 1,
we discuss the scaling of the coupling constant A.

Intuitive picture: the semi-classical regime. — For simplicity of notation, let us assume
that $ = L?(I) with I a bounded interval in R, that h = —d?/dz? and that w is the
multiplication operator by W (xz — y). In physics, the operator H is then often written
using the creation and annihilation operators a(x) and a(x)! of a particle at = € I.
These are operator-valued distributions which are such that

aUV=[ﬂ@M@W%

where a(f)T is the usual creation operator recalled in Section 6.1 below. They satisfy
the canonical commutation relations

a(y) a(z)t — a(z)'aly) = 6(x — y).

Then one may write
A
(5.12) H)y = /IVa(a:)Jr -Va(x)dz + 5 / - W(z —y)a(z) a(y) aly)a(z) dz dy.

The convergence of the non-interacting density matrices in Lemma 3.4 can be refor-
mulated by saying that

(a'(f1)---a(fr)algr) -~ algr))
Tk

admits a limit as T" — oo for every k > 1 and every functions f;,g;. We expect

the same to be true for the interacting Gibbs state. Therefore, we want to think of

To,r

(5.13)

1/VT as a semi-classical parameter and we introduce new creation and annihilation
operators

b:=a/VT, b :=d"/VT.
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We expect that the operators b and b! are bounded independently of T' when tested
against our Gibbs state I'y p, similarly as in (5.13). The choice A ~ 1/T is then
natural to make the two terms of the same order in (5.12). When Tr(h™!) < co the
interacting Gibbs state will be proved to have O(T) particles in average, which then
confirms the previous intuition. As we will explain in the next section, the situation
is more involved if Tr(h~!) = oco.

The commutator between the new operators tends to zero in the limit:

b(y) b(z)t — b(z) b(y) = w

This will lead to the effective nonlinear classical model. The latter is obtained by

— 0.

replacing b(x) by a function u(z), b(x)" by its adjoint u(x), leading to the nonlinear
Hartree energy

s = [ V@B e+ [ Wia—plu@Pluw) dedy.

The formal semi-classical limit is obtained by replacing the trace by an integral over
the phase space (here $ = L2(I)):

(5.14) Trg(ﬁ){exp<—H}/T)} o (T)dimﬁ/ﬁexp(—é"(u)) du.

™

Usually, dim §) is infinite and the previous expression does not make sense. Fortu-
nately, the infinite constant (7'/7)%™% cancels when we consider the relative parti-
tion function Z)(T')/Zo(T') and this is how the nonlinear relative partition function z,
arises.

In a finite dimensional space ), the limit (5.14) can be justified by well-known
semi-classical techniques, and this provides an alternative proof of the main result
in [25], details of which may be found in [53, App. B]. In that case Z»(T') and Zy(T')
may be studied separately and there is no need to consider the ratio Z)(T)/Zy(T).
Our goal in the next section will be to adapt these methods to the case of an infinite-
dimensional space $). The main idea is of course to always deal with relative quantities
instead of dangerous expressions like in (5.14).

5.2. THE GENERAL CASE. When
Tr(h™) = 400 but Tr(h™?) < oo for some p > 1,

we are forced to consider the negative Sobolev type space $'~P, where our final
nonlinear Gibbs measure lives. The intuitive picture discussed above is more involved:
even if we still expect that the new creation and annihilation operators b and bf are of
order one (when tested against I'y r), the average particle number itself grows faster
than T,

Trz(5) (A Tar) _/

T <bT($> b(m)>r)\,T dx T—> +00,

—00
AT—1
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leading to a state with infinitely many particles in the limit. The main difficulty is
then the lack of control on the density matrices, which are all unbounded in the trace
class.

In order to deal with this pathological case, we will put strong assumptions on the
interaction operator w which do not cover anymore functions of the form W(x — y)
when § = L2(2). We would like to think of w as a regularized interaction and we
do not discuss here how the regularization could be removed by using renormaliza-
tion techniques. We therefore assume that w is a bounded non-negative self-adjoint
operator on $) ®, § which satisfies an estimate of the form

(5.15) 0<w< Ch" @ht?

for some p’ > p. Under this assumption, w naturally extends to an operator from
7P @4 H17P to its predual H”~1 ®; HP~! and we have, similarly as before,

/ (u @ u, wu @ u) dpo(u) = Trgeg (w hteh™!) < C’[Tlr(ifp/)]2 < 0.
Hl-p

In particular, (u ® u, wu ® u) (interpreted as a duality product on $7~! @, HP71) is

finite po-almost surely and this allows us to define the interacting measure y on $ =P

by the same formula (5.4) as in the previous section. The typical example we have in

mind is that of w a finite rank operator, with smooth eigenvectors in $* ~! @, $2' 1.
Our result in the case p > 1 is similar but weaker than Theorem 5.3.

Tueorewm 5.4 (Convergence to nonlinear Gibbs measures, p > 1)
Let h > 0 and w > 0 be two self-adjoint operators on $) and $H ®s $H respectively.
We assume that
o Trg (h_p) < 00 for some 1 < p < o0,
c0<w<Ch P @pl-P for some p' > p.
Let Ty 1 be the grand-canonical quantum Gibbs state defined in (5.7) and let Zx(T') be
the corresponding partition function. Then i is the unique de Finetti measure of I'x

at scale 1/T and we have the same convergence results (5.9) and (5.10) as in Theo-
rem 5.3 (with $ replaced by $H'~P). Furthermore,

5
(5.16) 2o [ tuldet)
— 00 le—p
TAx—1

strongly in the Schatten space GP($)).

The limit for the partition functions and for the anti-Wick observables is the same
as in Theorem 5.3, but we are only able to deal with the one-particle density matrix,
in the Schatten space GP. Unfortunately, although the limiting density matrices

1= [ )

belong to Gp(®]§5§) for all k& > 2 by the same argument as in (5.5), we are not

able to derive the appropriate estimates on FE\k; in &P, when k£ > 2, and obtain the
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convergence of higher density matrices. We hope to come back to this problem in the
future.

The rest of the paper is devoted to the proof of our results. Our approach is based
on de Finetti measures (that we have already defined before), in the same spirit as
in [3, 36], and on a Berezin-Lieb type inequality for the relative entropy. These tools
are introduced in the next two sections, before we turn to the actual proof of the main
results.

6. CONSTRUCTION OF DE FINETTI MEASURES VIA COHERENT STATES

In this section we provide the proof of Theorem 4.2 and we discuss in details the
construction of de Finetti measures. We follow here ideas from [3, 36] and we start
with a complement to Section 2 on the classical properties of Fock spaces, which
include those of coherent states.

6.1. Granp canonicaL ExsEMBLE II. — We start by defining creation and annihilation
operators, which are useful when dealing with coherent states.

Creation and annihilation operators. — In the Fock space .# ($)), it is useful to intro-
duce operators relating the different n-particle sectors. The creation operator af(f)
on .7 ($) is defined for every f € $ by

a ()o@ 1 @) =08 (Yof) B (f @5 01) B --- .

In particular, it maps an n-particle state to an (n + 1)-particle state. Its (formal)
adjoint is denoted by a(f) and it is anti-linear with respect to f. Its action on a
n-particle vector is

a(f)(gl s - Qs gn) = <f7gl>92 Qs Qs 9n +- 4+ <f7gn>gl Qs Qs In—1-
These operators satisfy the canonical commutation relations
{a(g)aw) —af(falg) = (9, /)Ls(s)
a(g)a(f) —a(f)a(g) = 0.

The creation and annihilation operators are useful to express some relevant physical
quantities. For instance, the k-particle density matrix of a state I', defined in (2.6), is
characterized by the property that

(6.1) (f1®s- @5 fi, T g1 @5+ @4 i) = Trz(sy) (a (gx) -~ al(g1)alf1) - a(fi)T)
for all f1,..., fx,91,---,9x € 9.

Localization in Fock spaces. — 1f the one-particle Hilbert space $) is a direct sum of
two subspaces, $ = 1 B Ho, then the corresponding Fock spaces satisfy the factor-
ization property

(6.2) F(H) = F(91) @ F(92)
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in the sense of unitary equivalence. For basis sets (f;) and (g;) of $; and 9 respec-
tively, the unitary map is simply

fl®s"'®sfn®sgl®s"'®sgm’—>(fl®s"'®sfn)®(gl®s"'®sgm)~

The two corresponding annihilation operators on .Z (£)1) and % (9)2) are just a1 (f) ~
a(Pyf) and az(g) ~ a(Pg), where 1 = P; + P, are the corresponding orthogonal
projections. Then, for any state I' on (), we define its localization T'p, in Py
(which we also sometimes denote by 'y, ) as the partial trace

FPI = Trf)z [F]
or, equivalently,
Trz ) [Alp] = Trz) [A® Lg (s,

for every bounded operator A on #(£)1). The localized state is always a state, that is,
it satisfies I'p, > 0 and Trz(5,) ', = 1. For a state commuting with .4 and having
finite moments to any order®), T'p is characterized by the property that the density
matrices are localized in a usual sense:

(Tp)*) = pekpRI pek g > 1,

This can be used to provide an explicit formula for I'p, see [35, Rem. 13 & Ex. 10].
Localization is a fundamental concept for many-particle quantum systems. See for in-
stance [29, App. A] for its link with entropy and [35] for the associated weak topology.

Coherent states. — For every vector u in $) (which is not necessarily normalized), we
denote the Weyl unitary operator on % (£)) by

W(u) = eXp(aT(u) —a(u)).

A coherent state is a Weyl-rotation of the vacuum:

u) = U = exp(a’(v) — au = eI’/ LU
(u) = W(w)|0) := exp(al (u) — a(w)[0) ® =

We have already mentioned the resolution of the identity on any finite-dimensional
subspace V C $:

63 [ wamommr = ([ e a) Ly =m0,
Vv Vv

With the identification .7 ($) = .Z(V)®.Z (V+), #(V) is identified to .Z (V) ® [0y 1)
where |0y, 1) is the vacuum of . (V+). Coherent states satisfy many interesting alge-

Xn

braic properties. For instance, creation and annihilation operators are translated by
a constant when rotated by a Weyl unitary:

6.4)  W(f)a'(@W(f) =d'(9) + (f.9), W(f)*alg)W(f) = alg) + (g, f)-

1., Tr 2 (5)[4“T] < Cq for any a > 0.
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From this we conclude that coherent states are eigenfunctions of the annihilation
operator:

(6.5) a(9)é(f) = (g9, NHHE(f), VI gen.
Similarly, the k-particle density matrix of &(u) is
(6.6) [lE) )] = [u*) (u®H).

6.2. FINITE-DIMENSIONAL LOWER sYMBOLS. — For any state I on .% (§)) and any finite-
dimensional subspace V' C $), we define the lower symbol (or Husimi function) on V
by

(6.7) () 2= ()~ ™ () VE), T E(u/VE)) 5

where I'y; = Trg 1) (T') is the associated localized state defined using the isomor-
phism of Fock spaces .Z () ~ .Z (V) ® % (V1) recalled above.

Lemma 6.1 (Cylindrical projections)
The cylindrical projection of Ky, r onto a subspace Vo C Vi is py, p.

Proof. We denote u = vy + vy with vy € Vo and vy € V55 = V; © Vi, Then we
remark that W(u) = W (v2)W (vy) due to the fact that a(vs) and a(vy) commute
and, therefore,

[€(u)) (€ (u)] = [€(v2)) (€ (v2)| @ [€(vz)) € (v )]

In particular,

00 [ (e + o e(en + o) do = (em)= 0D e(ua)) €Coo)
and the result follows. O

Link with density matrices. — With the Husimi function {1 at hand, it is natural to
consider the state in the Fock space # (V)

/V € (u/ VO (E ) VE)| iy (u)

and its k-particle density matrix

et [ (0.

A natural question is to ask whether these density matrices approximate the density
matrices IT'®) of the original state T', in the limit ¢ — 0. We have the following explicit
formula.

Lemma 6.2 (Lower symbols and density matrices)
We have on ®’: Vv

k
k\ e
(6.8) /V [u®F) (u®F| dpyr(u) = klek Z (£>1—‘§/) ®s Lgr—ey,
=0
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where we recall the convention (2.3) and where I‘%f) = (P)®TO(Py)® is the
{-particle density matriz of the localized state T'yy on V. In particular, we have the
upper bound

(69 et (PP TO (P < [ ) (0 di ()
v
as operators on ®’: V.
The lemma is similar to [18, Eq. (6)] and [38, Th. 2.2], see also [30].

Proof. — By [38, Lem. 4.1], expectations against Hartree products determine the state
and it therefore suffices to prove that

[ Vo et —WZ( Joetre),

From the definition of the f-particle density matrix, we have

(o TOv20) Tr [af (v)a(v)T]

4 £

On the other hand, using (6.5) we can write

S AL
= (om0 [ 0) PHe(u/VE). e/ VE)
= (em)= 0 [ (al0)* 0/ V). Talo) €/ vE) du
=Tr [a(v)kaf(v)kf].

Therefore the result follows from the formula

k
(6.10) a(v)kal(v)* = Z (E) IZ: al(v)fa(v)’,

£=0

<v®é’ Fg)v®e> _

see for instance [38, Lem. 4.2]. O

Remark 6.3 (Moments estimates)
It is clear from formula (6.8) that in any finite-dimensional space V', we have

(6.11) [ Tl diipw) < Cuy Tez [(e4)°T]
\%
for any state I' and all integers s > 1 (the constant C,y only depends on s and

dim(V')). By complex interpolation, we deduce that the same holds for any real num-
ber s > 1.
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Remark 6.4 (A quantitative bound)
In the same spirit as [18, 38], from (6.8) and (2.4) we deduce the following quan-
titative estimate

k! /c]_—\(k) _/ Rk Rk dus
[t = | e,

_ gkk 1(’;) (F“ ®s Ly ’fv)

=0
(6.12) k—1
E\ (k—{(+d—1 Yy
< kleF g) ( P ) Tr [1{]
=0
k— 2
B\ (k- €+d )
k ¢

with d = dim (V). We remark that if " is an N-particle state and ¢ = 1/N, then the

error term is
1 ’“z‘:l kN G+d)! 1
Nj:0 j+1) (d=1)!NJ°
For fixed k,d > 1 the latter behaves as k?d/N in the limit N — oo. This is similar to

the bound 4kd/N proved in [19] and reviewed in [38], which was based on a resolution
of the identity involving Hartree states instead of coherent states.

We are now able to provide the proof of Theorem 4.2.

6.3. CoNsTRUCTION OF DE FINETTI MEASURES: PROOF OF THEOREM 4.2. — We have
1—p\Qk(k
(6.13) Tr ((e,h' P)®FTM) < €y,

forall 1 < k < k (all 1 < k < k if K = 400), due to our assumption (4.7).
Let {u;} be a basis of eigenvectors of h. First we fix the finite-dimensional space
V = V; := span(uy,...,uy) with corresponding orthogonal projection P = Pj.
Let {I';,} p be the P-localized state in the Fock space .#(V'), whose density matrices
are (Fn)gf) P®kI‘(k)P®k and we denote by /f" the Husimi function as defined in
Section 6.2. Inserting Formula (6.8) and arguing as in (6.12), we find that

(000 | [ Iul3hes diize, 0 = KR T [(817) (P T ()] < Cuve,

with a constant that depends on V' and on the constants in (6.13). In particular, we
have

(6.15) / Hu||51 » duyrr, (u) < Ck + Gy ven, V1< k<K

This is for integer k but, as in (6.11), we have a similar estimate

(6.16) [ Iz, () < oy
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forall1 < s <k (1 <s<kif k=400). Therefore the sequence uf}‘rn is tight and we
may assume, after extraction of a subsequence, that /L“{}"Fn converges to a probability
measure vy on V. From the moment estimates (6.16), we also have

(6.17) | 1) iz, ) — [ 1 vy ()

(the convergence is in a finite-dimensional space, hence strong). By a diagonal argu-
ment, we can assume convergence to a measure vy, for every J > 1
From the bound (6.15) we get

[ 1l dvw) <
|4

with a constant depending on k& but not on V. Using this for £ = 1, we deduce
immediately from [58, Lem. 1] that there exists a measure v on §!~7 whose cylindrical
projections are vy, since

Ry ({ueV : Julgiy > R)) </ lul3ey diy(u) < C.
1%

Finally, recalling (4.3), we can write for every b € CP (V)
| swduizy, =[BT
\Z} o

and therefore the convergence against anti-Wick observables as in (4.4) follows im-
mediately from the convergence of the Husimi measures, if V' = V; for some J. As
we have already mentioned in Section 4, the case of a general V follows from (4.5) by
density.

As for (4.9), we note that the bound (4.7) implies that, after possibly a further
extraction,

Kl(en, ) (0, 1) 0)

has alimit forall 1 <k < xand ¥ € ®’;fop*1. The identification of the limit as given
by the right-hand side of (4.10) proceeds by arguments similar as above. (|

7. A LOWER BOUND ON THE RELATIVE ENTROPY

We recall that the relative entropy of two states I' and I on .Z () is defined by

H(T,T") = Trz(g) [[(log —logI')] .

It is a positive number which can in principle be equal to +00. An important property
of the relative entropy is its monotonicity under two-positive trace-preserving maps.
That is, if we have a linear map ® : Z(R;) — Z(R2) which satisfies

(Au Au) ( (A1) @ Au)) >0
Aoy Ago P (A1) P(A22)
for all operators A;; on & and Tr(P(A)) = Tr(A) for all A, then

%(‘P(A)7¢(B)) < (A B),
see [51, 52].
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An important two-positive trace-preserving map is the localization I' — T'y to a
subspace V C §, which is defined by using the isomorphism .7 () ~ .Z (V) ® % (V+)
and by taking the partial trace with respect to the second Fock space, as recalled in
Section 6.1. In particular, we deduce that

(7.1) A (D, T") > #(Ty,TY).
It can be shown that
FAUNNE lerr;O %”(I‘Vk, /Vk)

if V4 is any increasing sequence of subspaces of §) such that the corresponding or-
thogonal projections P, — 1 strongly (see [51, Cor.5.12], as well as [39, Th. 2] for a
similar result).

In a similar fashion, the relative entropy of two probability measures on a Hilbert
space R is defined by

Aty = [ wion () aw'tw),

where dp/dp’ is the density of p relatively to p'. If u is not absolutely continuous with
respect to ', then 5 (u, p') = +o00. The classical relative entropy is also monotone
in the sense that

(7.2) Ha(p, 1) = Ha(pv, 1y)

for any subspace V' C R, where uy and uf, are the associated cylindrical projections

of p and p'. Similarly as in the quantum case, one has
(7.3) Halp, ') = i (v, 1y, )-

Our next result gives a lower bound on the relative entropy of two quantum states
in terms of the corresponding de Finetti measures constructed in Theorem 4.2.

Turorem 7.1 (Relative entropy: quantum to classical)
Let T' and TV be two states on F($) and let V. C $ be a finite dimensional-
subspace. Then we have

(74) %(Fa F/) 2 %(FVa F%/) 2 %I(N;j/,r, ,u'%/,l"')a

where piy, - and p5, 1, are the Husimi measures defined in Section 6.2.
In particular, if we have €, — 0 and two sequences of states {I'y,} and {I'}}
satisfying the assumptions of Theorem 4.2, then

(7.5) lim inf (T, ) > Ao, i),

n— oo

where p and ' are the de Finetti probability measures of {I',,} and (I')) respectively,
on HP (after extraction of a subsequence).

JE.P.— M., 2015, tome 2



96 M. Lewin, P. T. Nam & N. Roucerie

Proof. — We have already explained that 7 (I',I") > ¢ (T'y,I",), since localization
is a 2-positive trace-preserving map. To prove the second inequality in (7.4), we can
work in the finite-dimensional space V. We are going to use a Berezin-Lieb type
inequality for the relative entropy, which is the equivalent of well-known techniques
for the entropy [8, 40, 57].

Lemma 7.2 (Berezin-Lieb inequality for the relative entropy)
Assume that we have a resolution of the identity in a Hilbert space R, of the form

(7.6) /M 2} (] dC(z) = 15,

where ¢ is a positive Borel measure on M C RN and v € M +— n, € SR =
{u € R, ||u|| =1} is continuous. For a trace-class operator A > 0 on R, we define
the corresponding Husimi Borel measure (or lower symbol) on M by

dma(z) = (x, Az) d((x).
Then we have

(7.7) | (A, B) > Ha(ma,mp)]

for any states A, B > 0 on K.

We postpone the proof of this result and apply it directly to our situation. In the
Fock space .% (V') we have the resolution of the identity (4.2) and the Husimi function
pry is exactly defined as in the lemma. Therefore we immediately conclude that
ALy, Iy) 2 HAa(y,r Wy )-

In order to prove (7.5), we first localize to the finite dimensional space V' C $) C
$H17P spanned by the J first eigenfunctions of h. By monotonicity of the relative
entropy and (7.4), we find that

liminf 72 (T, T7,) > liminf 22 ({T}v, {T} }v) > liminf o 67y s i, ).
By definition of the de Finetti measures in the proof of Theorem 4.2, we have
,ui}:rn — py and uf}"r; — 4. The relative entropy is jointly convex, hence lower
semi-continuous and we get
liminf 52(T,,,T)) > Ha(py, 1)

n—oo

To conclude (7.5) we remove the localization by passing to the limit J — oo us-
ing (7.3). O

It remains to provide the

Proofof Lemma 7.2. — We write the proof for a discrete resolution of the identity in
a finite-dimensional space R:

K
ka|$k><$k| = ]., mpg 2 0.
k=1
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The general case can be proved by passing to the limit. The map

my (xq1, Axy)

mg (w2, Azg)
A—

mg <IK, A.Z’K>

is two-positive [59] and trace-preserving, from %(8) to (CX). So we get immediately
from the monotonicity that

K K
Ty, Az
H(A,B) = Z%(mk(xk,Axk>,mk<xk,Bxk)) = ka@ck,Axk) 1og(§m:B$’;i),
k=1 k=1 ’
which is what we wanted. |

In this section we have used that the relative entropy is both monotone with respect
to two-positive trace-preserving maps, and jointly convex. These are two (equivalent)
properties which play an important role in statistical physics and quantum informa-
tion theory [65, 51, 16]. They are indeed also equivalent to the strong subadditivity of
the entropy, which was proved by Lieb and Ruskai in [42, 43].

8. DERIVATION OF THE NONLINEAR (GIBBS MEASURES: PROOFS

In this final section we provide the proof of Theorems 5.3 and 5.4. Some of our
arguments are common to the two results and they will be written in the general case
p = 1. Some other parts are much simper in the case p = 1 and will then be singled
out. We will prove that

; Z\(T) . ®2 ®2
(8.1) Tll_r)r;o Z0(T) =z, = /ﬁlp exp (—(u®?, wu®?)) duo(u)
AT—1
by showing
. INT)N _
(8.2) - )7:1%0? 10g<Z0(T)) = —log(z).

We recall Gibbs’ variational principle which states that
—Tlog(Tr(e=4/T)) = Tr(AT 4) + T Tr T 4 log(T' )
min {Tr(AT) + TTrI'log(I") }

TrI=1
with Ty := e=4/T/Tr(e=4/T). Also, we recall that
Z\(T) A )
(83) —log Zo(T) H(Tar,Tor) + 7 I (wI'Xr)
. A
(84) = o {%(FaFO,T) t7 I (“’F(z))},
TrI'=1
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where 2 is the relative entropy. In a similar manner, we have

(85)  —log(z) = min {ﬁfcl(l/, to) + 1/51_,, (u ® u, wu @ u)du(u)}

v proba. 2
measure on 1P

with p being the unique minimizer. Our proof goes as follows:

Step 1. — We derive some estimates on the one-particle density matrix of the Gibbs
state I'y p, which allow to define the limiting de Finetti measure v (after extraction
of a subsequence), via Theorem 4.2.

Step 2. We prove the upper bound

. Z5\(T)
8.6 limsup — lo < —log(z,
(8.6) m s g(zom) g(zr)
AT —1

by using a suitable trial state and finite-dimensional semi-classical analysis.

Steps 3—4. We show that
(87) lim inf %”(FA’T, FO,T) 2 %1(% ,uo)
T—00
AT—1
using Theorem 7.1 and that
Tr F(Q) w 1
(8.8) lim inf M > - (u® u, wu @ uydr(u)
T—o00 T2 2 Hl-p
AT—1
using the definition of the de Finetti measure. This is the more difficult step when
p > 1, because of the lack of control of T‘QFS\%)T. The lower estimates (8.7) and (8.8)
together with the variational principle provide the lower bound

(i) > -t

(8.9) lim inf — log

T—o0
AT —1
and the equality v = pu.
Steps 5-6. — We discuss the strong convergence of the density matrices.
Now we provide the details of the proofs.
Steps 1-2: some uniform bounds. — Before starting the proof of (8.2), we establish

some uniform bounds on Z)(T')/Zy(T) and on the one-particle density matrix I‘E\l)T,
that will be useful throughout the proof.

Lemma 8.1 (A priori bounds)
Let h > 0 and w = 0 be two self-adjoint operators on $) and $H ®s $H respectively,
such that
Tra(e 7)) + Trag. o(wh™ P @ A7) < cc.
Let T'x 1 be the grand-canonical quantum Gibbs state defined in (5.7) and let Zx(T)
be the corresponding partition function. Then we have

(8.10) o OT) Trse, s (wh'on 1) < Z\(T) <1
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and

(8.11) Trae.s (W) < T2 Trag,q (wh™' @ k™).

Proof of Lemma 8.1. — First we remark that
ZN\(T) = Trg ) e FT L Tr gy eV = Zy(T).
since w > 0 by assumption. On the other hand, we have by (8.4) with I' = T'g 7,

Z\(T) A (2) -1 -1
< =Trgg, T < (AT T .
Z(] (T) T rf)@aﬁ (w O,T) ()\ ) rf)@sf) (wh‘ ® h‘ )

—log

Here we have used that

1 ®2
r@ — (7) <Th 'oh !
0,T 6h/T 1 ®

by Lemma 2.1. Hence we have proved that

Z\(T)
Zy(T)

(8.12) 0< —log < (A\T) Trag.s (wh™' @ h™Y)

which may as well be rewritten as in (8.10). The bound (8.11) follows from (8.12) and
the fact that

Z\(T
—log AT _ AU, Do) + (MT) Trsg, s (')
Zy(T) ’
2
> (\/T) Trag, s (wI'r)
due to the non-negativity of the relative entropy. |

After having considered the partition function, we now prove that essentially
F&% <C Fgf%« when A\ ~ T71.

Lemma 8.2 (Bounds on the one-particle density matrix)
Under the assumptions of Lemma 8.1, we have

(8.13) 0 < I 2T (1 + AT Trge, o (wh ™t @ h™1)) b,
In particular we get

Trz(g) [dT (R 7P)0] = Trg [} 7T

(8.14) 1 _
2T (14 AT Trgg, 5 (wh ™" @ b)) Trg (R7P).

Proofof Lemma 8.2. — The proof is reminiscent of a Feynman-Hellmann argument.
Let z € D(h) be a fixed normalized vector and A := h'/2P,h'/? with P, = |z)(z|.
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Note then that 0 < A < h. Using Lemma 8.1, we write

1
(AT) T (wh™" @ h™") = = Tr AT}

Z2(T) 1 (1)
> -1 — —Tr AT
B Zo(T) 21 AT

A 1
= (Tar,Tor) + 7 I (wr(Az)T) ~ 57 TrAF(Al’)T

1
> / _ / (1)}
> g{%(r Tor) = 57 T A(T)
1

=7 Try, (log(1 — e~ (h=A/D/TY _og(1 — e_h/T)).

The function f(z) = —log(1 — e~*) being convex, we have Klein’s inequality
Tr (f(A) - f(B)) = Tr f/(B)(A - B)

for any self-adjoint operators A, B (see, e.g., [51, Prop.3.16] and [54, Th.2.5.2]).
Therefore we obtain

1

(AT) Tr (wh™' @ h™) 5T

@ 1 1
TeAT() > - Tr(A—e(h_A/Q)/T - 1)

> —% Tr (A(h— A/2)71)
>—Tr(Ar7") = —1.
The conclusion is that
)
(2, W20 2y <14 (D) Tr (wh™ @ 27
for every normalized x, which means that
hlm&hlﬂ <1+ D) Tr (wh™ ' @h™?)
2T
in the sense of quadratic forms. Multiplying by A~/ on both sides gives (8.13). O

Here we prove the upper bound by means of a trial state argument. We treat the
cases p =1 and p > 1 at once.

LLemma 8.3 (Free-energy upper bound)

Let h > 0 and w > 0 be two self-adjoint operators on $) and $H ®s $H respectively,
such that

Trg(h™P) + Trge,o(wh™ @ h71) < oo

for some 1 < p < oco. Then we have

. Z\(T)
8.15 lim sup — lo < —log(z,).
(8.15) m sup —log (22 7 ) < ~log(=)
AT —1
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Proof. — Let J be a fixed integer and let V; = span(uq,...,uy) with associated
orthogonal projection P; in $'P, where we recall that the u;’s are the eigenvectors
of h. We recall the isomorphism of Fock spaces

F(H) = F(Vy) e F(Vi)
which corresponds to the decomposition
Lo ~T57®T57
with
J
<J ;)T —H$T /T >J ;)T —H>7 T
FO,T:r[(e ’ 71)6 0 ; F07T: H (6 7 *1)6 0
j=1 J>J+1

and an obvious similar notation for the operators H§J and Hy 7 of #(V;) and Z (V}),

respectively. In the same vein, we define

<J
e—HY7/T

<y _
AT — s
Trz (v, e /T

with Hf‘] = H§J + AWSY where WS is the second quantization of the operator

P?2wP$? in the Fock space .Z (V). Now, our trial state is simply

(8.16) I =T570057,

that is, we use the truncated interaction in V; and the free Gibbs state outside of V.
Due to the variational principle (8.4), we have

Z\(T)
Zo(T)

We now estimate the terms on the right side.

A
—log <H (T, Tor)+ T Tr [wD@].

Reduction to a finite dimensional estimate. — For the relative entropy, we use that
H(A® B,C® B) = (A,C) and deduce

H X, Tor) = A TS0 T57)
For the interaction term, a calculation shows that
1
<J <J <J
@ = L7 + [0571@ + 5 (071 © L5710 + MEAD @ TS7Y).

Using Lemma 8.2 in the space .% (V) and the facts that

1 \e2 . .
[To® = (W> <T°h~ ' (Py)t @ hH(P))*t,

1
F3H0 =

= S S Th=Y(Py)*,

we conclude that

r® <57 +1°C (' @ h™")(Py @ Py + P; @ Py + Py @ Py)
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and hence, when A ~ T71,

Z\(T
—log \T) %(r;§,r<J)+ATrw[r 713 4+ CTr(wh™t @ (PFh™Y)).
Zo(T) ~ T

. < o .
By definition, I‘;‘; minimizes the sum of the first two terms, so we arrive at

Z\(T) Z37(T)

<-lo Zx A\
Zy(T) 5751

(8.17) —log + CTr(wh™ @ (PFh™1))
with
<J
Z3N(T) = Trgy (/7).
The last term on the right side of (8.17) is independent of T and it converges to 0
when J — oo since Tr(wh™! ® h™!) is finite by assumption. But first we are going to
take the limit 7" — oo.

Semi-classics in the projected space. — Finite-dimensional semi-classical analysis pre-
dicts that
ZgJ(T) ~ (Z) 7 e—(u,hu)—AT(u@u,wu@u} du
A T—o0 m 1% ’
TN\
Zs(T) ~ (*) / e~ Cwhu) gy,
T—o0 ™ Vs
For ZO<J(T), this can be justified using a direct computation:
Z5(T (ushe)
PR ¥ B S —(u,hu
(8.18) J TJHI—e—A T Tﬁool_‘[)\ /VJe du.

We only need the lower bound on Z<J( T), i.e.,, an upper bound on the finite-

dimensional free-energy. This is an exact estimate that does not require to take the
limit T — oo. The proof is well-known [40, 57, 45] and we quickly discuss it for
completeness.

We recall the resolution of the identity (4.2) in terms of coherent states, from which
we conclude that

J J <J
(8.19) Trz v, [e‘Hf' /T] = % / <0 ‘W(\/Tu)*e_HA /TW(\/Tu)‘ 0> du
Vi

e(w,Ax)

By the Peierls-Bogoliubov inequality <x, eAm> > , we obtain

< TN/ HY’

(820) Trz (v, [e—Hf"/T] > (7) / exp(—<0‘W(\/Tu)*%W(ﬁu)‘(»)du
m vy

From the property (6.5) that coherent states are eigenfunctions of the annihilation

operator (or equivalently from the formula (6.6) of its density matrices), one can easily

show that

AT?
VueVy, <o ‘W(\/fu)*Hf‘]W(\/fu)‘ o> = Tu, hu) + == (1 ® u, wu @ u)

N(T)

and the lower bound on Z follows immediately.
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Passing to the limit: T — oo, then J — . In conclusion, we have proved that

Z5\(T) (T/m)” [y, e~ 4™ du
- (ZS(T)) < ~log( ZgJ(T)

)+ CTe(wh™ & (PFhY)

T—o0

— —log (/ e_<“®“’w“®">/2du0,J(u)> + C Tr(wh™ @ (PFh™1h)),
Vs

where
J

Aj il
Ho,J ZZH(?Je Aglasl® da]—)

j=1
is the cylindrical projection of uy onto V. Note that
/ 67<u®u,wu®u>/2dﬂo7(](u) _ / e—<u®u,Pj®2wP}®2u®u>/2d’uo (U)
Vs Hi-r
converges to — log(z,), by the dominated convergence theorem, and (8.15) follows by
taking the limit J — oo. (|

Step 3: lower bound for p = 1. Now we explain the proof of the lower bound in
the trace-class case Tr(h™!) < co. By Lemma 8.2, we already know that FE\UT/T is
bounded in the trace-class. The following says that the other density matrices are
bounded as well.

Lemma 8.4 (Estimates on higher moments in the trace-class case)
Let h > 0 and w > 0 be two self-adjoint operators on $ and $H Qs H respectively,
such that

Trgj(hfl) + Trpg.s(w e hil) < 0.

Then we have
(8.21) Tra ) [(A/T)Tar] < CrpeXT Twh ™ eh™ ) (y 1)k,

In particular, 1"g\lf)T/T’C is bounded in the trace-class in the limit where T — oo and
AT — 1.

Proof. Since .4 commutes with Hy and W > 0, we have
Try(ﬁ)(JV/T)kI‘,\T = Z)\(T)flek Tl'y(ﬁ) (Q/Vkeng/Tf)\W/T)
< ZA(T) 1T " Tr g 5y (A FeH0/T)

Zo(T) ok k
=) T (M Tor)
and the rest follows from (8.10) and the estimates on the density matrices of I'g r in
Section 3. g

We are now able to prove the lower bound on the relative partition function, and the
fact that the density matrices of I'y 7 all converge to the expected average involving
the nonlinear Gibbs measure. Up to extraction of a (not relabeled) subsequence,
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we may assume from Theorem 4.2 that the sequence {I'y 7} admits v as de Finetti
measure, and that

KT T, ., /}3 u®F) (u®| du (u)

weakly-* in the trace class, for all £k > 1. Note that since we have the uniform upper
bound I‘E\l)T/T < Ch™! by Lemma 8.2, the convergence must indeed be strong in &*
for the first density matrix, by the dominated convergence theorem in the trace-
class [56, Th.2.16]. We recall that

. ZT)\ .. AT 2)
h{r}}g}f( log Zo(T) ) = hTI’gloIlf (%(FA7T, Tor) + T Tr(wF/\,T)).

Since w > 0 we have, by Fatou’s lemma for operators and the de Finetti representation

formula for the weak limit of I’g\z)T,

. (2 1 / ®2\ /. ®2
1 f — Tr(wl > =T d
mint 7 i) > 51 (w0 [ )
1
27/ (u @ u, wu Q uydv(u).
2Js

Using then Theorem 7.1 for the relative entropy, we get

Z\(T) 1
Z;)\(T)> > Ha(v, o) + 2/5 (u® u, wu @ u)dv(u).

lim inf (— log
T—00
ATS1
From the variational principle (8.5) the right side is bounded from below by — log(z;).
Since we have already proved the upper bound in the previous section and since p is
the only minimizer, we conclude that v = y and that
. Z:\(T)
lim (1 ) = ~log(z).
Tl—l;noo i) Zo(T) Og(Z )
AT —1

In particular, we have the weak convergence of all the density matrices to the desired
integral representation, and the strong convergence (in the trace-class) for k& = 1.

Except for the proof of the strong convergence for k > 2 (which we postpone for
the moment), this ends the proof of Theorem 5.3.

Step 4: lower bound for p > 1. In the case p > 1, the main difficulty is the lack
of control on the higher density matrices. We know from (8.11) that Tr(wI‘g\z)T) is

bounded by CT?, but we do not have a bound on Fg?)T itself.

The beginning of the argument is the same as for p = 1. By Lemma 8.2, we already
know that Fg\l)T/T is bounded in &P and that I‘g\l)T < Th™1. After extraction of a
subsequence and by the dominated convergence theorem, we may assume

—1(1) (1)
T r Toe |

strongly in &P, for some limiting operator (') € &P. By Theorem 4.2, we may also
assume (after extraction of a subsequence), that {I' 1} admits v as de Finetti measure
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on $'7P. Hence the lower symbols

T._ 1T
Ky = Hyr, ¢

defined as in Section 6 converge to vy, for every fixed finite-dimensional subspace V.
Now, in order to mimic the argument used for p = 1, we need the following result.

Prorosition 8.5 (The interaction is weakly lower semi-continuous)
We have

Trfwl®] 1
(8.22) lﬁiogf% > 3 /ﬁl_p (u®?, wu®?) dv(u).
The purpose of the rest of this step is to prove Proposition 8.5. The following

summarizes some estimates that we have on the higher density matrices.

LLemma 8.6 (Moment estimates in the general case)
Let h > 0 and w = 0 be two self-adjoint operators on $ and $H Qs $H respectively,
such that

Tr(hP) + Trag.o(wh™ ' @h™1) < oo
for some 1 < p < 0o. Then we have, for all s > 1 and all \T < C,

(8.23) Trgz ) [ *Tar] < Cs TP

and for all e > 0

(8.24) Trg () [ dD(R' )0y p] < C. TP,
Proof. — The same argument as in Lemma 8.4 gives for s an integer

Trz o) [JVSF>\7T} < CTrg(y) [JVSF07T]
< C’[Trﬁ(eh/T - 1)71}S
< C[Trg(h/T)7F]" = OTP* [ Trg hP)°.
The argument follows for all s > 1 by interpolation. For the other estimate, we use
Holder’s inequality (and the fact that .#” commutes with d['(h!~P)) to obtain
Te[dD (')A Ty 1] < (Tr[dr(hl—P)rA,TD1_9(Tr[dp(h1—p) </V1/9P)\,T])9

< Cy(1r [dr(hlfp)FA,T])l_e (e[ OFA,T])G

< Cng_eTp(1+9) _ CETp+1+a
for all 6 € (0,1), where € = 8(p — 1) > 0. In the last line we have used (8.13). O

We conjecture that the bound Tr[(dT'(h*~7))?I'y r] < CT? holds true.

Now, the idea of the proof of Proposition 8.5 is to localize the problem to the
finite dimensional space V; = span(ui,...,uy) with a J = J(T) that grows at a
convenient speed in order to control the errors in the localization procedure, which
can be estimated using the bounds of Lemma 8.6.
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Lemma 8.7 (Localization of the interaction)
Let h > 0 and w > 0 be two self-adjoint operators on $) and $H R $H respectively,
such that Treg (h™?) < 0o and w < Ch*~? @ h'~?" for some p’ > p > 1. Then we have

TP+1+e T(p+3+e)/2

Cue)? =T )72

(8.25) Tr [wl(y] = Tr [(P)®2w(P)®2T )] — C.
for X\T < C, T >1/C and any € > 0.
Proof. — For simplicity we denote P = Py, Q =1 — P; and
N=1-(P)®?*=Q®P+P2Q+Q®Q.
As in the proof of [37, Lem. 3.6] we write
w = P#*wP®? + [MwP%? + P¥?wIl + Iwll
and note that, since w > 0,
nP®?wP%®? 4+ MwP®* + PO?wIl + 5~ 'Twll > 0
for any n > 0. Applying the latter estimate with 5 replaced by n/(1 +n) we find that
(1+n)w — PE2wP®? + (1 + o~ HwII
= nP®2wP®? 4 (1 4 n)(MwP®? + PO%wIl) + (1 +n)*n~ 'TwIl > 0
for any n > 0. By assumption 0 < w < Ch'* @ hl’p/, we deduce
w — P®?wP®? > —nw — (1 4+ 7~ 1) Twll
—w = C(L+n Y A) P (AP @1+ 10 AP,

/

where we have used Qh'?" < (Ay11)' " and h'~?" < Ch'™P in the last estimate.
Consequently, for any state I' and for any n > 0

Tr[(w — P2wP®)r®] > —nTr[wl®] — C(1 + 77 (A yy1) 7P Te[dD (A7) T].

\

WV

Applying this inequality to I'y r and inserting the bounds (8.11) and (8.24) on its
density matrices, we get

Tr[(w — PP2wP®)r®)] > —CnT? — Co(1 + 7 ) (Ayyr) P TPHE
and the result follows after optimizing with respect to 7. |

We are finally able to provide the

Proof of Proposition 8.5. — Let Ff‘; be the localized state of I'y 7 with respect to the
projection Pj as recalled in Section 6.1 and used several times before. By definition,
we have [Ff‘;]@) = (PJ)®2I‘E\2)T(PJ)®2. Let pi,, be the corresponding Husimi function
defined as in (6.7). By Lemma 6.2, we have

T2

7 [, WO dpt, () = (P PPT (P + (P) 2
J

+ Py @ (PT\Py) + (PyTS ) Pr) @ Py
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and hence

T2
Te [(P) 52w (P) T ] > /V (u®, wu®2) dyif, (u)
J

— T [w(P)®?] — 2Tx [(P)®2w(Py)®* 1 @ T ).
Now we use the assumption that
(8.26) w< Ch =P @ h=

and the bound I‘(;%w < CTh™! from Lemma 8.2 and we get

1
— Tt [(P) 22w (Py) 2T )]

T2 ’ 2 ’
1 2 2\ ;T (Tx[n' =7 Py)) Tr[h' ™7 Py
Z 5 v (u®?, wu®?) duy;, (u) — 72 -C 7
1 2 2\ 7 T (Aggp)2+p=p) Ay)tHr
2 2 )y, (u®?, wu®?) dpy,, (u) — C 73 -C T .
If we combine this with (8.25), we find
1
T=2Ty [wl“(j)T] = 5/‘/ <u®2, wu®2> d/j%}] (u)
J
Ay )20+p—p") A 1+p—p’ Tp—1+e T(p—14¢)/2
—C( J+1) ; —C( J+1) _c —7 I
T T (Ag41)P (Agyr) @' =0/

To make all four error terms small, we choose Ajy1 ~ T, which amounts to picking
a suitably large J — oo when T' — oo, with a > 0 satisfying

a(l+p—p)<1l and p—1l+e<al® -1).
This can be done when € > 0 is small enough since

p -1
p—1

>1+p—p,

where we have used p’ >p > 1.
Now it only remains to prove that

- T
lgggf/v (u®?, wu®?) duy;, (u) > / (u®?, wu®?) dv(u).

Hi-p
The main observation is that

In

wy, = v
in the sense that each cylindrical projection to a fized finite dimensional subspace V'
converges in the sense of measures on V’. The reason is that, due to Lemma 6.1, the
cylindrical projection of ,u% onto V' is ,ug/, which converges to vy by definition of v
in the proof of Theorem 4.2. Therefore, by Fatou’s lemma we obtain
lim inf /VJ (u®? wu®?) dui; (u) > /Y)lp (u®?, wu®?) dv(u)

n—roo
n

and this concludes the proof of Proposition 8.5. O
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To summarize, in the case p > 1 we have proved that p is the de Finetti measure
of {T'xr} as well as the convergence of the relative partition function. We also know
that Fg\lz‘r /T converges to a limit v(!) strongly in &P($)), but we still have to prove
that

(827 1= [ )l duto)

which will conclude the proof of Theorem 5.4. Unfortunately, we do not know that
||u||%1,pdu% Z is tight since we do not have any control on a higher moment. Therefore,
we cannot pass to the weak limit in the one-particle density matrix so easily. We need
another argument which will be provided in the next step.

Step 3: strong convergence for p > 1 and k = 1. Here we prove (8.27) by using
the Feynman-Hellmann principle. The rationale is that we may perturb h by a large
class of one-body operators and estimate the free energy in essentially the same way.
Differentiating with respect to the perturbation gives access to the one-body density
matrix. We cannot apply the same idea to higher density matrices since we require
strong assumptions, in particular positivity, of the two-body interaction.

Let A = |z)(z| with x € V; for some fixed J and [|z||g = 1. For

[l <1/~

we consider the Gibbs state
. dT(h4nA) AW Al (h+nA)+AW
Carm = 2Zxy(T)" e T v Zan(T) = Trzy) [6 T
The condition || < 1/||h~!|| ensures that h+nA is invertible and, since (h+nA4)~! =

h~1 (1+77Ah_1)_1, we conclude that (h+nA)~! € &P($), that is, Tr(h+nA4) P < co.
We can therefore apply our results with h replaced by h + nA throughout. We start

by writing
Ty (ATO] = L Ty [d0(h 4 nA)T A Ty [wr
T g | A,T}_f v [dT(h + nA) A,T]“"T [WT's 7]
+ Tr [TarlogDy 7] 4 log Tr Zx(T)
(8.28) > log Zy(T)
- Z\(T)
Zxn(T) Zo(T) Zoy(T)
= —log =21 "2 1o —lo i .
8 Z0a(T) P ZNT) " Z(T)

We remark that h +nA = h on V- and, therefore, by (2.9) we have

J — e~ Nm)/T

Zon(T) [[j= (1 —em M) / _ >

| i =1 J I | nl{zw)|” 4 .
(M) B ety 1o e\ g © Ho(u)

Jj=1
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Passing to the limit T — oo in (8.28) and using the convergence of the relative
partition function as well as Ff\l)T/T — W, we deduce that

/1 ez )]~ (u@u,wu@u) /2 dpio(u)
Hl-p

/ﬁl e —(uQu,wuu)/2 du ( )
P

Now, taking n — 0% and then n — 07, we conclude that

/ el P (B e /2 g o)
Hi-p
/ 67(u®u,wu®u)/2 d,LL()(u)
Hi-r
[ Hae o2 g

/ e—(u@u,wu®u>/2 dMO(U)
Hi-p
Since x € Vj is arbitrary, this proves that
PP, =P, (/1 |u) (ul dﬂ(“)) Py.
Hl-r

Passing to the limit J — oo, we obtain (8.27) and this concludes the proof of Theo-
rem 5.4.

nTrg [AyV] > —log

Toy [44)] = — L~ log

_ /.6 w Au) duw)

Step 6: strong convergence for p = 1 and k > 2. — Finally, we prove the strong con-
vergence

k
e o [ o)

TA—1
in the trace class for every k > 2, when p = 1. We recall that the uniform bound
in (8.13) already gave us the result for kK = 1, and that we know the weak-x convergence
for all kK > 1.We therefore need to show that

k!
hmbupT—Trﬁk F&)T / | EF
T)\—>1
and, since

1
— Trg () (N (AN = 1) (N —k+ D)5 1),

k!
Tk Trﬁk (Fgf%“) = T

T
it suffices to prove that

. NE

(8.29) hmsupTrg(;J)(WFA,T> g/ ||u||%k du(u)
T—00 9
ThA—1

for every k € N. We write

() =

=/V7 —HA/T) TI"( i —HO/T) Tr(efﬂo/T)
Ho/T) . Tr( —HO/T) .Tr(e_H/\/T)

EER
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and we recall that

by Theorem 5.3 and that

T oT)
Jin / |2 dio

by the strong convergence in the trace-class of F(()]f% in Lemma 3.4. Therefore, it
remains to prove that

T HF —HL/T
(8.30) lim sup il Tkke ) < [ e SuBuwwuew) g (),
T roe r(%e—Hﬂ/T) %
where

[l dpo (u )

/ % do

The rest of the argument is now exactly the same as in Step 3 and we only sketch
the proof. We have

’I‘r(é/TL —H\/T _ N
~log Tr(% HU/T) = %(FA,TaFO,T) + — T2 Tr[wF ]
with
= (A )T)ke —H\/T
IBWARSS

Tra () [(A/T)keHr/T]

(recall that .#" commutes with H) ). We remark that by the weak convergence of F( )

we have

T [(/T)ke /T
lim inf ] /Hu||Ja dp(u
s T 5

Then, the bounds in Lemma 8.4 tell us that
Tr [(JV/T)ZF)\’T] <Gy
for all £ > 1. By Theorem 4.2, we can therefore consider a sequence 7" — oo and

A ~ 1/T for which I'z, admits 7 as de Finetti measure.

Lemma 8.8 (Higher moments and de Finetti measure)
The sequence of states

. (N /T)keHo/T
T e pg) [(N /T)keB/T]

admits [ig as de Finetti measure at scale 1/T.
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The proof of the lemma is provided in Appendix B. Using Lemma 8.8, we get as
before

T N —HA\/T 1
e > o) + 5 [ (0w wn s war(w
9

—IOg </ 67(u®u,wu®u) dﬁo(u)>
H

which concludes the proof of (8.30), hence of the strong convergence of the k-particle

liminf — log ——————~
NE
%73? TI"( Tk € HO/T)

density matrices and that of Theorem 5.3. |

AprpPENDIX A. FREE GIBBS STATES

Lemma 2.1 follows from a well-known computation (Wick’s theorem). It is con-
venient to write a; := a(u;) and to use some algebraic properties of quasi free
states. First we write $) = ®i>1(Cui) and, as we have recalled above, this implies
F(9) ~ ;51 7 (Cu;). Next we use that dI'(h) can be expressed using creation and
annihilation operators as

dr'(h) =0® él (Zm: hi) => " Nidla;.
m=4\i=1 i>1

We deduce that exp(—dI'(h)/T) ~ @, exp(—A;ala;/T). In the Fock space .7 (Cu,),

we have simply a;ral- =0®1626---, the number operator. In particular, we find
that
Tr 7 (cuy) [exp(—/\ia;rai/T Z e /T — [l
n=0

and this gives
5 oo () = T oo (- 25%)] = T =

We also obtain
o—dT(h)/T

Xiala;
- 1 — e~ X/T (,#)
Trpgy (e oy~ Qe ew(==7

Now we compute the density matrices of I'g 7, using that

T‘I‘?(Cul) [(aj)m(al)m’ eXp(_)\iajai/T)} = 5mm' Z B_Ain/T |‘(al)m(uz)®n”2

n=m

_ Z —X n/T n!
(n —m)!

n=m

F07T =

_ Omamy !
NG (ErEo)

By definition of F(()’f)T, we deduce that

<uj1 Qs+ Qs UJMF( %uh Rs -+ Qs uik> i

i, @s -+ D g, || Py /T _1°

5i/zje
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Therefore we have shown that

k
I‘07T Z <H eNig/T _ 1) L k 1 %
(=1

2
11 <2< ik ”uh Qs -+ Qs Ujy, ||

- (ﬁ)@)k

which concludes the proof of Lemma 2.1. O

Arpenpix B. DE FINETTI MEASURE FOR HIGHER MOMENTS

Here we prove Lemma 8.8. Since we already know from Lemma 3.4 that

Te (A /T)re ™/T) K * .
Tre—Ho/T = lim ﬁTr (FO,T) /ﬁ”UH dpo(u)

T—o0

(B.1) lim

T—o0

for every k,¢ € N and since fO,T commutes with .47, it suffices to prove that

el N Y AV ad
(B.2) Tlggoﬁ[[[l(“;f") (%) ro,T] - /5 1:I|u| ull™ dyso (u)

for any set of integers n;, with N := > . n; < oo (hence with only finitely many
non-zero terms). Note that the density matrices require to have all the creation op-
erators on the left, but using the canonical commutation relations and the bounds
on Tr[(A/T)*+Ty 7], we see that the error terms obtained by commuting them are
small in the limit T — oo.

Now we use the factorization properties of quasi-free states and compute, as in the

previous section,

()" () 1] = & wfII(%)" ]

i=1 5520 J
> si=k
5o 7 (DT =1y
ZSj:k

Here in the first line we have used

(B.3) NE = (2 a}ai)k = Sz;@ H(ajai)sa

ZSJ':k‘
Using T(e*/T — 1) — A;, we find that

o nfII) (7)o = 2 (%)
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On the other hand, we can use that pg is a Gaussian measure to deduce

/ﬁH |ul|2n1 u||2k dpo(u) = Z / < |ui|2(ni+8i)> dpo(u)
=1

>0 sj=k
(B.5) >
-y (%Y
- n;+s; :
520,50 s;=k “i=1 Al
Here we have used
= (S = 3
Sj 20
Z S5 =k
which is analogous to (B.3). This finishes the proof of Lemma 8.8. O
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