Nested varieties of K3 type
[Variétés de type K3 et leurs relations]
Journal de l’École polytechnique — Mathématiques, Tome 8 (2021) , pp. 733-778.

Dans cet article nous étudions et construisons des relations entre les sous-structures de Hodge de type Calabi-Yau sur des variétés de Fano qui sont des sous-variétés de grassmanniennes. En particulier, nous construisons un isomorphisme entre les sous-structures de Hodge de type Calabi-Yau des sections hyperplanes de Gr(3,n) et celles d’autres variétés provenant de grassmanniennes symplectiques et de congruences de droites ou de plans. Nous détaillons le cas des sections hyperplanes de Gr(3,10), qui sont des variétés de Fano de type K3 dont la structure K3 est isomorphe à celle d’autres variétés de Fano comme la variété de Peskine. Ces isomorphismes sont obtenus via des correspondances géométriques entre différentes grassmanniennes, notamment des projections et des sauts via des variétés de drapeaux. Nous montrons aussi que ces correspondances permettent de construire une résolution catégorielle crépante de toute cubique de Coble. De plus, on montre une généralisation de la formule d’Orlov sur les décompositions semi-orthogonales des éclatements, qui permet de donner des versions (conjecturales) des résultats ci-dessus.

In this paper, we study and relate Calabi-Yau subHodge structures of Fano subvarieties of different Grassmannians. In particular, we construct isomorphisms between Calabi-Yau subHodge structures of hyperplane sections of Gr(3,n) and those of other varieties arising from symplectic Grassmannians and congruences of lines or planes. We describe in details the case of the hyperplane sections of Gr(3,10), which are Fano varieties of K3 type whose K3 Hodge structures are isomorphic with those of other Fano varieties such as the Peskine variety. These isomorphisms are obtained via the study of geometrical correspondences between different Grassmannians, such as projections and jumps via two-step flags. We also show how these correspondences allow to construct crepant categorical resolutions of the Coble cubics. Finally, we prove a generalization of Orlov’s formula on semiorthogonal decompositions for blow-ups, which provides conjectural categorical counterparts of our Hodge-theoretical results.

Reçu le :
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/jep.156
Classification : 14J45,  14F05,  14J40,  14C30,  14M15
Mots clés : Variétés de Fano, structures de Hodge de type Calabi-Yau, structure de Hodge de type K3, catégories K3, grasmmanniennes, cubiques de Coble
@article{JEP_2021__8__733_0,
     author = {Marcello Bernardara and Enrico Fatighenti and Laurent Manivel},
     title = {Nested varieties of {K3} type},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {733--778},
     publisher = {\'Ecole polytechnique},
     volume = {8},
     year = {2021},
     doi = {10.5802/jep.156},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.156/}
}
Marcello Bernardara; Enrico Fatighenti; Laurent Manivel. Nested varieties of K3 type. Journal de l’École polytechnique — Mathématiques, Tome 8 (2021) , pp. 733-778. doi : 10.5802/jep.156. https://jep.centre-mersenne.org/articles/10.5802/jep.156/

[1] N. Addington & R. Thomas - “Hodge theory and derived categories of cubic fourfolds”, Duke Math. J. 163 (2014) no. 10, p. 1885-1927 | Article | MR 3229044 | Zbl 1309.14014

[2] M. Andreatta & J. A. Wiśniewski - “A note on nonvanishing and applications”, Duke Math. J. 72 (1993) no. 3, p. 739-755 | Article | MR 1253623 | Zbl 0853.14003

[3] A. Bayer, M. Lahoz, E. Macrì & P. Stellari - “Stability conditions on Kuznetsov components”, 2017, Appendix joint with X. Zhao | arXiv:1703.10839

[4] A. Beauville - “The Coble hypersurfaces”, Comptes Rendus Mathématique 337 (2003) no. 3, p. 189-194 | Article | MR 2001133 | Zbl 1075.14042

[5] A. Beauville & R. Donagi - “La variété des droites d’une hypersurface cubique de dimension 4, C. R. Acad. Sci. Paris Sér. I Math. 301 (1985) no. 14, p. 703-706 | Zbl 0602.14041

[6] V. Benedetti - “Bisymplectic Grassmannians of planes”, 2018 | arXiv:1809.10902

[7] A. I. Bondal & D. O. Orlov - “Semiorthogonal decomposition for algebraic varieties”, 1995 | arXiv:alg-geom/9506012

[8] A. Craw - “An introduction to motivic integration”, in Strings and geometry, Clay Math. Proc., vol. 3, American Mathematical Society, Providence, RI, 2004, p. 203-225 | MR 2103724 | Zbl 1156.14307

[9] P. De Poi, D. Faenzi, E. Mezzetti & K. Ranestad - “Fano congruences of index 3 and alternating 3-forms”, Ann. Inst. Fourier (Grenoble) 67 (2017) no. 5, p. 2099-2165 | Article | Numdam | MR 3732686 | Zbl 1407.14046

[10] O. Debarre & C. Voisin - “Hyper-Kähler fourfolds and Grassmann geometry”, J. reine angew. Math. 649 (2010), p. 63-87 | Article | Zbl 1217.14028

[11] L. Ein & N. Shepherd-Barron - “Some special Cremona transformations”, Amer. J. Math. 111 (1989) no. 5, p. 783-800 | Article | MR 1020829 | Zbl 0708.14009

[12] E. Fatighenti & G. Mongardi - “A note on a Griffiths-type ring for complete intersections in Grassmannians”, 2018 | arXiv:1801.09586

[13] E. Fatighenti & G. Mongardi - “Fano varieties of K3 type and IHS manifolds”, Internat. Math. Res. Notices (2021) no. 4, p. 3097-3142 | Article | MR 4218348

[14] D. Favero, A. Iliev & L. Katzarkov - “On the Griffiths groups of Fano manifolds of Calabi-Yau Hodge type”, Pure Appl. Math. Q 10 (2014) no. 1, p. 1-55 | Article | MR 3264952 | Zbl 1311.14041

[15] L. Gruson, S. V. Sam & J. Weyman - “Moduli of abelian varieties, Vinberg θ-groups, and free resolutions”, in Commutative algebra, Springer, New York, 2013, p. 419-469 | Article | Zbl 1274.13027

[16] B. Hassett - “Special cubic fourfolds”, Compositio Math. 120 (2000) no. 1, p. 1-23 | Article | MR 1738215 | Zbl 0956.14031

[17] D. Huybrechts - Fourier-Mukai transforms in algebraic geometry, Oxford Math. Monographs, The Clarendon Press, Oxford University Press, Oxford, 2006 | Article | Zbl 1095.14002

[18] D. Huybrechts & J. V. Rennemo - “Hochschild cohomology versus the Jacobian ring and the Torelli theorem for cubic fourfolds”, Algebraic Geom. 6 (2019) no. 1, p. 76-99 | Article | MR 3904800 | Zbl 1428.14066

[19] A. Iliev & L. Manivel - “Fano manifolds of Calabi-Yau Hodge type”, J. Pure Appl. Algebra 219 (2015) no. 6, p. 2225-2244 | Article | MR 3299729 | Zbl 1314.14085

[20] Q. Jiang & N. C. Leung - “Derived category of projectivization and flops”, 2018 | arXiv:1811.12525

[21] A. Kuznetsov - “Lefschetz decompositions and categorical resolutions of singularities”, Selecta Math. (N.S.) 13 (2008) no. 4, p. 661-696 | Article | MR 2403307 | Zbl 1156.18006

[22] A. Kuznetsov - “Hochschild homology and semiorthogonal decompositions”, 2009 | arXiv:0904.4330

[23] A. Kuznetsov - “Derived categories of cubic fourfolds”, in Cohomological and geometric approaches to rationality problems, Progress in Math., vol. 282, Birkhäuser Boston, Boston, MA, 2010, p. 219-243 | Article | MR 2605171 | Zbl 1202.14012

[24] A. Kuznetsov - “Calabi-Yau and fractional Calabi-Yau categories”, J. reine angew. Math. 753 (2019), p. 239-267 | Article | MR 3987870 | Zbl 1440.14092

[25] G. J. Leuschke - “Non-commutative crepant resolutions: scenes from categorical geometry”, in Progress in commutative algebra 1, de Gruyter, Berlin, 2012, p. 293-361 | MR 2932589 | Zbl 1254.13001

[26] C. Li, L. Pertusi & X. Zhao - “Twisted cubics on cubic fourfolds and stability conditions”, 2018 | arXiv:1802.01134

[27] V. A. Lunts - “Categorical resolution of singularities”, J. Algebra 323 (2010) no. 10, p. 2977-3003 | Article | MR 2609187 | Zbl 1202.18006

[28] L. Manivel - Symmetric functions, Schubert polynomials and degeneracy loci, SMF/AMS Texts and Monographs, vol. 6, American Mathematical Society, Providence, RI; Société Mathématique de France, Paris, 2001 | MR 1852463 | Zbl 0998.14023

[29] D. O. Orlov - “Projective bundles, monoidal transformations, and derived categories of coherent sheaves”, Izv. Ross. Akad. Nauk Ser. Mat. 56 (1992) no. 4, p. 852-862 | Article

[30] J. V. Rennemo & E. Segal - “Hori-mological projective duality”, Duke Math. J. 168 (2019) no. 11, p. 2127-2205 | Article | MR 3992034 | Zbl 1427.14042

[31] D. M. Snow - “Cohomology of twisted holomorphic forms on Grassmann manifolds and quadric hypersurfaces”, Math. Ann. 276 (1986) no. 1, p. 159-176 | Article | MR 863714 | Zbl 0596.32016

[32] A. J. Sommese - “Submanifolds of Abelian varieties”, Math. Ann. 233 (1978) no. 3, p. 229-256 | Article | MR 466647 | Zbl 0381.14007

[33] C. Voisin - Théorie de Hodge et géométrie algébrique complexe, Cours Spécialisés, vol. 10, Société Mathématique de France, Paris, 2002 | Article | Zbl 1032.14001

[34] J. Weyman - Cohomology of vector bundles and syzygies, Cambridge Tracts in Math., vol. 149, Cambridge University Press, Cambridge, 2003 | Article | MR 1988690 | Zbl 1075.13007