Hölder regularity for the spectrum of translation flows
[Régularité Hölder pour le spectre des flots de translation]
Journal de l’École polytechnique — Mathématiques, Tome 8 (2021), pp. 279-310.

Cet article est consacré aux flots de translation génériques correspondant à des différentielles abéliennes sur des surfaces plates de genre arbitraire g2. Ces flots sont faiblement mélangeants, d’après le théorème d’Avila-Forni. En genre 2, la propriété de Hölder pour les mesures spectrales de ces flots a été établie dans [12, 14]. Récemment, Forni [18], motivé par [12], a obtenu des estimées Hölder pour les mesures spectrales dans le cas des surfaces de genre arbitraire. Ici, nous combinons l’idée de Forni avec l’approche symbolique de [12] et nous démontrons la régularité Hölder pour les mesures spectrales des flots sur des « compacta » de Markov aléatoires, et en particulier pour des flots de translation pour un genre arbitraire 2.

The paper is devoted to generic translation flows corresponding to Abelian differentials on flat surfaces of arbitrary genus g2. These flows are weakly mixing by the Avila-Forni theorem. In genus 2, the Hölder property for the spectral measures of these flows was established in [12, 14]. Recently, Forni [18], motivated by [12], obtained Hölder estimates for spectral measures in the case of surfaces of arbitrary genus. Here we combine Forni’s idea with the symbolic approach of [12] and prove Hölder regularity for spectral measures of flows on random Markov compacta, in particular, for translation flows for an arbitrary genus 2.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.146
Classification : 37A30, 37B1, 37E35, 28A78
Keywords: Translation flows, spectral measures, matrix Riesz products, upper Lyapunov exponents, Erdős-Kahane argument, Bratteli-Vershik automorphisms, renormalization cocycle
Mot clés : Flots de translation, mesures spectrales, produits de Riesz matriciels, exposants de Liapounoff supérieurs, l’argument d’Erdős-Kahane, automorphismes de Bratteli-Vershik, cocycle de renormalisation

Alexander I. Bufetov 1 ; Boris Solomyak 2

1 Aix-Marseille Université, CNRS, Centrale Marseille, I2M, UMR 7373, 39 rue F. Joliot Curie, Marseille, France Steklov Mathematical Institute of RAS, Moscow, Russia Institute for Information Transmission Problems, Moscow, Russia
2 Department of Mathematics, Bar-Ilan University Ramat-Gan, Israel
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2021__8__279_0,
     author = {Alexander I. Bufetov and Boris Solomyak},
     title = {H\"older regularity for the spectrum of translation flows},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {279--310},
     publisher = {\'Ecole polytechnique},
     volume = {8},
     year = {2021},
     doi = {10.5802/jep.146},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.146/}
}
TY  - JOUR
AU  - Alexander I. Bufetov
AU  - Boris Solomyak
TI  - Hölder regularity for the spectrum of translation flows
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2021
SP  - 279
EP  - 310
VL  - 8
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.146/
DO  - 10.5802/jep.146
LA  - en
ID  - JEP_2021__8__279_0
ER  - 
%0 Journal Article
%A Alexander I. Bufetov
%A Boris Solomyak
%T Hölder regularity for the spectrum of translation flows
%J Journal de l’École polytechnique — Mathématiques
%D 2021
%P 279-310
%V 8
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.146/
%R 10.5802/jep.146
%G en
%F JEP_2021__8__279_0
Alexander I. Bufetov; Boris Solomyak. Hölder regularity for the spectrum of translation flows. Journal de l’École polytechnique — Mathématiques, Tome 8 (2021), pp. 279-310. doi : 10.5802/jep.146. https://jep.centre-mersenne.org/articles/10.5802/jep.146/

[1] A. Avila & G. Forni - “Weak mixing for interval exchange transformations and translation flows”, Ann. of Math. (2) 165 (2007) no. 2, p. 637-664 | DOI | MR | Zbl

[2] L. Barreira & Y. Pesin - Nonuniform hyperbolicity. Dynamics of systems with nonzero Lyapunov exponents, Encyclopedia of Mathematics and its Applications, vol. 115, Cambridge University Press, Cambridge, 2007 | DOI | Zbl

[3] V. Berthé & V. Delecroix - “Beyond substitutive dynamical systems: S-adic expansions”, in Numeration and substitution 2012, RIMS Kôkyûroku Bessatsu, vol. B46, Res. Inst. Math. Sci. (RIMS), Kyoto, 2014, p. 81-123 | Zbl

[4] V. Berthé, W. Steiner & J. M. Thuswaldner - “Geometry, dynamics, and arithmetic of S-adic shifts”, Ann. Inst. Fourier (Grenoble) 69 (2019) no. 3, p. 1347-1409 | DOI | MR | Zbl

[5] V. Berthé, W. Steiner, J. M. Thuswaldner & R. Yassawi - “Recognizability for sequences of morphisms”, Ergodic Theory Dynam. Systems 39 (2019) no. 11, p. 2896-2931 | DOI | MR | Zbl

[6] A. I. Bufetov - “Decay of correlations for the Rauzy-Veech-Zorich induction map on the space of interval exchange transformations and the central limit theorem for the Teichmüller flow on the moduli space of abelian differentials”, J. Amer. Math. Soc. 19 (2006) no. 3, p. 579-623 | DOI | MR

[7] A. I. Bufetov - “Limit theorems for special flows over Vershik transformations”, Uspekhi Mat. Nauk 68 (2013) no. 5(413), p. 3-80 | DOI | MR

[8] A. I. Bufetov - “Limit theorems for translation flows”, Ann. of Math. (2) 179 (2014) no. 2, p. 431-499 | DOI | MR | Zbl

[9] A. I. Bufetov & B. M. Gurevich - “Existence and uniqueness of a measure with maximal entropy for the Teichmüller flow on the moduli space of abelian differentials”, Mat. Sb. 202 (2011) no. 7, p. 3-42 | DOI

[10] A. I. Bufetov & B. Solomyak - “Limit theorems for self-similar tilings”, Comm. Math. Phys. 319 (2013) no. 3, p. 761-789 | DOI | MR | Zbl

[11] A. I. Bufetov & B. Solomyak - “On the modulus of continuity for spectral measures in substitution dynamics”, Adv. Math. 260 (2014), p. 84-129 | DOI | MR | Zbl

[12] A. I. Bufetov & B. Solomyak - “The Hölder property for the spectrum of translation flows in genus two”, Israel J. Math. 223 (2018) no. 1, p. 205-259 | DOI | Zbl

[13] A. I. Bufetov & B. Solomyak - “On ergodic averages for parabolic product flows”, Bull. Soc. math. France 146 (2018) no. 4, p. 675-690 | DOI | MR | Zbl

[14] A. I. Bufetov & B. Solomyak - “A spectral cocycle for substitution systems and translation flows”, J. Anal. Math. 141 (2020) no. 1, p. 165-205 | DOI | MR

[15] P. Erdős - “On the smoothness properties of a family of Bernoulli convolutions”, Amer. J. Math. 62 (1940), p. 180-186 | DOI | MR | Zbl

[16] N. P. Fogg - Substitutions in dynamics, arithmetics and combinatorics, Lect. Notes in Math., vol. 1794, Springer-Verlag, Berlin, 2002, Edited by V. Berthé, S. Ferenczi, C. Mauduit and A. Siegel | DOI | MR | Zbl

[17] G. Forni - “Deviation of ergodic averages for area-preserving flows on surfaces of higher genus”, Ann. of Math. (2) 155 (2002) no. 1, p. 1-103 | DOI | MR | Zbl

[18] G. Forni - “Twisted translation flows and effective weak mixing”, 2019 | arXiv

[19] H. Furstenberg - Stationary processes and prediction theory, Annals of Math. Studies, vol. 44, Princeton University Press, Princeton, NJ, 1960 | MR | Zbl

[20] R. Gjerde & Ø. Johansen - “Bratteli-Vershik models for Cantor minimal systems associated to interval exchange transformations”, Math. Scand. 90 (2002) no. 1, p. 87-100 | DOI | MR | Zbl

[21] S. Ito - “A construction of transversal flows for maximal Markov automorphisms”, Tokyo J. Math. 1 (1978) no. 2, p. 305-324 | DOI | MR | Zbl

[22] J.-P. Kahane - “Sur la distribution de certaines séries aléatoires”, in Colloque de Théorie des Nombres (Univ. Bordeaux, Bordeaux, 1969), Mém. Soc. Math. France (N.S.), vol. 25, Société Mathématique de France, Paris, 1971, p. 119-122 | DOI | Numdam

[23] A. Katok - “Interval exchange transformations and some special flows are not mixing”, Israel J. Math. 35 (1980) no. 4, p. 301-310 | DOI | MR | Zbl

[24] K. Lindsey & R. Treviño - “Infinite type flat surface models of ergodic systems”, Discrete Contin. Dynam. Systems 36 (2016) no. 10, p. 5509-5553 | DOI | MR | Zbl

[25] A. N. Livshits - “Sufficient conditions for weak mixing of substitutions and of stationary adic transformations”, Mat. Zametki 44 (1988) no. 6, p. 785-793, English transl. in Math. Notes 44 (1988), no. 5–6, p. 920–925 | DOI | MR | Zbl

[26] S. Marmi, P. Moussa & J.-C. Yoccoz - “The cohomological equation for Roth-type interval exchange maps”, J. Amer. Math. Soc. 18 (2005) no. 4, p. 823-872 | DOI | MR | Zbl

[27] H. Masur - “Interval exchange transformations and measured foliations”, Ann. of Math. (2) 115 (1982) no. 1, p. 169-200 | DOI | MR | Zbl

[28] B. Mossé - “Puissances de mots et reconnaissabilité des points fixes d’une substitution”, Theoret. Comput. Sci. 99 (1992) no. 2, p. 327-334 | DOI | MR | Zbl

[29] V. I. Oseledec - “A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of dynamical systems”, Trudy Moskov. Mat. Obšč. 19 (1968), p. 179-210 | MR

[30] Y. Peres, W. Schlag & B. Solomyak - “Sixty years of Bernoulli convolutions”, in Fractal geometry and stochastics, II (Greifswald/Koserow, 1998), Progr. Probab., vol. 46, Birkhäuser, Basel, 2000, p. 39-65 | DOI | MR | Zbl

[31] M. Queffélec - Substitution dynamical systems—spectral analysis, Lect. Notes in Math., vol. 1294, Springer-Verlag, Berlin, 2010 | DOI | MR | Zbl

[32] G. Rauzy - “Échanges d’intervalles et transformations induites”, Acta Arith. 34 (1979) no. 4, p. 315-328 | DOI | Zbl

[33] R. Treviño - “Quantitative weak mixing for random substitution tilings”, 2006 | arXiv

[34] W. A. Veech - “Interval exchange transformations”, J. Anal. Math. 33 (1978), p. 222-272 | DOI | MR | Zbl

[35] W. A. Veech - “Gauss measures for transformations on the space of interval exchange maps”, Ann. of Math. (2) 115 (1982) no. 1, p. 201-242 | DOI | MR | Zbl

[36] W. A. Veech - “The metric theory of interval exchange transformations. I. Generic spectral properties”, Amer. J. Math. 106 (1984) no. 6, p. 1331-1359 | DOI | MR | Zbl

[37] A. M. Vershik - “A theorem on Markov periodic approximation in ergodic theory”, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 115 (1982), p. 72-82, 306, Boundary value problems of mathematical physics and related questions in the theory of functions, 14 | MR | Zbl

[38] A. M. Vershik - “The adic realizations of the ergodic actions with the homeomorphisms of the Markov compact and the ordered Bratteli diagrams”, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 223 (1995), p. 120-126, Teor. Predstav. Din. Sistemy, Kombin. i Algoritm. Metody. I. English transl. in J. Math. Sci. 87 (1997), no. 6, p. 4054–4058 | DOI | Zbl

[39] M. Viana - “Lectures on Interval Exchange transformations and Teichmüller flows” (2008), Preprint IMPA

[40] J.-C. Yoccoz - “Interval exchange maps and translation surfaces”, in Homogeneous flows, moduli spaces and arithmetic, Clay Math. Proc., vol. 10, American Mathematical Society, Providence, RI, 2010, p. 1-69 | MR | Zbl

[41] A. Zorich - “Finite Gauss measure on the space of interval exchange transformations. Lyapunov exponents”, Ann. Inst. Fourier (Grenoble) 46 (1996) no. 2, p. 325-370 | DOI | Numdam | MR | Zbl

[42] A. Zorich - “Flat surfaces”, in Frontiers in number theory, physics, and geometry. I, Springer, Berlin, 2006, p. 437-583 | DOI | Zbl

Cité par Sources :