Sets of transfer times with small densities
[Ensembles de temps de transfert avec petites densités]
Journal de l’École polytechnique — Mathématiques, Tome 8 (2021) , pp. 311-329.

Dans cet article, nous introduisons et discutons plusieurs notions de doublement pour des actions préservant la mesure sur un groupe abélien dénombrable G. Notre résultat principal caractérise les actions 2-doublantes et peut être vu comme une extension de nature ergodique de certains théorèmes de densité classiques pour les sommes d’ensembles par Kneser. Tous nos résultats sont optimaux et sont nouveaux déjà pour le cas où G=(,+).

In this paper we introduce and discuss various notions of doubling for measure-preserving actions of a countable abelian group G. Our main result characterizes 2-doubling actions, and can be viewed as an ergodic-theoretical extension of some classical density theorems for sumsets by Kneser. All of our results are completely sharp and they are new already in the case when G=(,+).

Reçu le :
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/jep.147
Classification : 37A44,  28D05,  11B13
Mots clés : Temps de retour, théorèmes inverses, sommes d’ensembles
@article{JEP_2021__8__311_0,
     author = {Michael Bj\"orklund and Alexander Fish and Ilya D. Shkredov},
     title = {Sets of transfer times with small densities},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {311--329},
     publisher = {\'Ecole polytechnique},
     volume = {8},
     year = {2021},
     doi = {10.5802/jep.147},
     mrnumber = {4218160},
     zbl = {07315958},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.147/}
}
Michael Björklund; Alexander Fish; Ilya D. Shkredov. Sets of transfer times with small densities. Journal de l’École polytechnique — Mathématiques, Tome 8 (2021) , pp. 311-329. doi : 10.5802/jep.147. https://jep.centre-mersenne.org/articles/10.5802/jep.147/

[1] M. Björklund & A. Fish - “Approximate invariance for ergodic actions of amenable groups”, Discrete Anal. (2019), article ID 6, 56 pages | Article | MR 3964142 | Zbl 1432.37003

[2] M. Boshernitzan & M. Wierdl - “Ergodic theorems along sequences and Hardy fields”, Proc. Nat. Acad. Sci. U.S.A. 93 (1996) no. 16, p. 8205-8207 | Article | MR 1401511 | Zbl 0863.28011

[3] J. Bourgain - “On the maximal ergodic theorem for certain subsets of the integers”, Israel J. Math. 61 (1988) no. 1, p. 39-72 | Article | MR 937581 | Zbl 0642.28010

[4] M. Kneser - “Abschätzung der asymptotischen Dichte von Summenmengen”, Math. Z. 58 (1953), p. 459-484 | Article | Zbl 0051.28104

[5] M. Kneser - “Summenmengen in lokalkompakten abelschen Gruppen”, Math. Z. 66 (1956), p. 88-110 | Article | MR 81438 | Zbl 0073.01702

[6] Y. Lacroix - “Natural extensions and mixing for semi-group actions”, Publ. Inst. Rech. Math. Rennes 2 (1995), article ID 7, 10 pages | MR 1396813