A Legendrian Turaev torsion via generating families
[Torsion de Turaev legendrienne des fonctions génératrices]
Journal de l’École polytechnique — Mathématiques, Tome 8 (2021) , pp. 57-119.

Nous introduisons un invariant des sous-variétés legendriennes construit à l’aide de fonctions génératrices. Cet invariant est défini pour une certaine classe de sous-variétés legendriennes, que nous appelons de type d’Euler, dans un espace de 1-jets. Nous utilisons cet invariant pour étudier les mailles legendriennes : une famille de sous-variétés legendriennes de type d’Euler dont le motif d’entrelac est déterminé par un graphe bicolore et trivalent qui est muni d’un ordre cyclique des arêtes concourantes en un même sommet. La torsion de Turaev d’une maille legendrienne est reliée à une certaine monodromie de glissement d’anses, que nous calculons en terme de la combinatoire du graphe. Comme application, nous exhibons, dans l’espace des 1-jets de toute surface fermée orientable, des paires d’entrelacs legendriens qui sont formellement équivalents, ne peuvent être distingués par aucun invariant legendrien naturel, et pourtant ne sont pas isotopes parmi les variétés legendriennes. Ces exemples sont apparus sous une forme différente dans les travaux du second auteur avec J. Klein sur des dessins pour K 3 et sur la torsion de Reidemeister supérieure de fibrés en cercles.

We introduce a Legendrian invariant built out of the Turaev torsion of generating families. This invariant is defined for a certain class of Legendrian submanifolds of 1-jet spaces, which we call of Euler type. We use our invariant to study mesh Legendrians: a family of 2-dimensional Euler type Legendrian links whose linking pattern is determined by a bicolored trivalent ribbon graph. The Turaev torsion of mesh Legendrians is related to a certain monodromy of handle slides, which we compute in terms of the combinatorics of the graph. As an application, we exhibit pairs of Legendrian links in the 1-jet space of any orientable closed surface which are formally equivalent, cannot be distinguished by any natural Legendrian invariant, yet are not Legendrian isotopic. These examples appeared in a different guise in the work of the second author with J. Klein on pictures for K 3 and the higher Reidemeister torsion of circle bundles.

Reçu le :
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/jep.141
Classification : 57R17,  19J10
Mots clés : Legendriennes, torsion de Turaev, K-théorie
@article{JEP_2021__8__57_0,
     author = {Daniel \'Alvarez-Gavela and Kiyoshi Igusa},
     title = {A {Legendrian} {Turaev} torsion via generating~families},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {57--119},
     publisher = {\'Ecole polytechnique},
     volume = {8},
     year = {2021},
     doi = {10.5802/jep.141},
     mrnumber = {4180260},
     zbl = {07282222},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.141/}
}
Daniel Álvarez-Gavela; Kiyoshi Igusa. A Legendrian Turaev torsion via generating families. Journal de l’École polytechnique — Mathématiques, Tome 8 (2021) , pp. 57-119. doi : 10.5802/jep.141. https://jep.centre-mersenne.org/articles/10.5802/jep.141/

[AGZV12] V. I. Arnold, S. M. Gusein-Zade & A. N. Varchenko - Singularities of differentiable maps. Volume 1, Modern Birkhäuser Classics, Birkhäuser/Springer, New York, 2012 | Zbl 1290.58001

[AK18] M. Abouzaid & T. Kragh - “Simple homotopy equivalence of nearby Lagrangians”, Acta Math. 220 (2018) no. 2, p. 207-237 | Article | MR 3849284 | Zbl 1396.53104

[Bar64] D. Barden - On the structure and classification of differential manifolds, Ph. D. Thesis, Cambridge University, 1964

[BFG + 18] K. Baur, E. Faber, S. Gratz, K. Serhiyenko & G. Todorov - “Friezes satisfying higher SL k -determinants”, 2018, to appear in Algebra & Number Theory | arXiv:1810.10562

[BL95] J.-M. Bismut & J. Lott - “Flat vector bundles, direct images and higher real analytic torsion”, J. Amer. Math. Soc. 8 (1995) no. 2, p. 291-363 | Article | MR 1303026 | Zbl 0837.58028

[Cer70] J. Cerf - “La stratification naturelle des espaces de fonctions différentiables réelles et le théorème de la pseudo-isotopie”, Publ. Math. Inst. Hautes Études Sci. 39 (1970), p. 5-173 | Numdam | MR 292089 | Zbl 0213.25202

[Cha84] M. Chaperon - “Une idée du type ‘géodésiques brisées’ pour les systèmes hamiltoniens”, C. R. Acad. Sci. Paris Sér. I Math. 298 (1984) no. 13, p. 293-296 | Zbl 0576.58010

[Cha19] F. Charette - “Quantum Reidemeister torsion, open Gromov-Witten invariants and a spectral sequence of Oh”, Internat. Math. Res. Notices (2019) no. 8, p. 2483-2518 | Article | MR 3942168 | Zbl 1431.83064

[Che96] Y. V. Chekanov - “Critical points of quasi-functions and generating families of Legendrian manifolds”, Funct. Anal. Appl. 30 (1996) no. 2, p. 118-128 | Article | Zbl 0873.58017

[Che02] Y. V. Chekanov - “Differential algebra of Legendrian links”, Invent. Math. 150 (2002) no. 3, p. 441-483 | Article | MR 1946550 | Zbl 1029.57011

[CM18] R. Casals & E. Murphy - “Differential algebra of cubic planar graphs”, Adv. Math. 338 (2018), p. 401-446 | Article | MR 3861709 | Zbl 1397.05042

[dR40] G. de Rham - “Sur les complexes avec automorphismes”, Comment. Math. Helv. 12 (1940), p. 191-211 | Article | MR 2551 | Zbl 0022.40802

[DR11] G. Dimitroglou Rizell - “Knotted Legendrian surfaces with few Reeb chords”, Algebraic Geom. Topol. 11 (2011) no. 5, p. 2903-2936 | Article | MR 2846915 | Zbl 1248.53073

[DWW03] W. Dwyer, M. Weiss & B. Williams - “A parametrized index theorem for the algebraic K-theory Euler class”, Acta Math. 190 (2003) no. 1, p. 1-104 | Article | MR 1982793 | Zbl 1077.19002

[EES07] T. Ekholm, J. Etnyre & M. G. Sullivan - “Legendrian contact homology in P×, Trans. Amer. Math. Soc. 359 (2007) no. 7, p. 3301-3335 | Article | MR 2299457 | Zbl 1119.53051

[EG98] Y. M. Eliashberg & M. Gromov - “Lagrangian intersection theory: finite-dimensional approach”, in Geometry of differential equations, Amer. Math. Soc. Transl. Ser. 2, vol. 186, American Mathematical Society, Providence, RI, 1998, p. 27-118 | Article | MR 1732407 | Zbl 0919.58015

[Eli98] Y. M. Eliashberg - “Invariants in contact topology”, in Proceedings of the ICM, Vol. II (Berlin, 1998), Doc. Math., Deutsche Mathematiker-Vereinigung, Berlin, 1998, p. 327-338, Extra Vol. II | Zbl 0913.53010

[EM12] Y. M. Eliashberg & N. M. Mishachev - “The space of framed functions is contractible”, in Essays in mathematics and its applications, Springer, Heidelberg, 2012, p. 81-109 | Article | Zbl 1334.57030

[FI04] D. Fuchs & T. Ishkhanov - “Invariants of Legendrian knots and decompositions of front diagrams”, Moscow Math. J. 4 (2004) no. 3, p. 707-717, 783 | Article | MR 2119145 | Zbl 1073.53106

[FR11] D. Fuchs & D. Rutherford - “Generating families and Legendrian contact homology in the standard contact space”, J. Topology 4 (2011) no. 1, p. 190-226 | Article | MR 2783382 | Zbl 1237.57026

[Fra35] W. Franz - “Über die Torsion einer Überdeckung”, J. reine angew. Math. 173 (1935), p. 245-254 | Article | Zbl 0012.12702

[Fuk97] K. Fukaya - “The symplectic s-cobordism conjecture: a summary”, in Geometry and physics (Aarhus, 1995), Lecture Notes in Pure and Appl. Math., vol. 184, Dekker, New York, 1997, p. 209-219 | MR 1423167 | Zbl 0871.57032

[GKS12] S. Guillermou, M. Kashiwara & P. Schapira - “Sheaf quantization of Hamiltonian isotopies and applications to nondisplaceability problems”, Duke Math. J. 161 (2012) no. 2, p. 201-245 | Article | MR 2876930 | Zbl 1242.53108

[Hen11] M. B. Henry - “Connections between Floer-type invariants and Morse-type invariants of Legendrian knots”, Pacific J. Math. 249 (2011) no. 1, p. 77-133 | Article | MR 2764942 | Zbl 1233.57006

[HI19] E. J. Hanson & K. Igusa - “A counterexample to the ϕ-dimension conjecture”, 2019 | arXiv:1911.00614

[HL99] M. Hutchings & Y.-J. Lee - “Circle-valued Morse theory and Reidemeister torsion”, Geom. Topol. 3 (1999), p. 369-396 | Article | MR 1716272 | Zbl 0929.57019

[HR15] M. B. Henry & D. Rutherford - “Equivalence classes of augmentations and Morse complex sequences of Legendrian knots”, Algebraic Geom. Topol. 15 (2015) no. 6, p. 3323-3353 | Article | MR 3450763 | Zbl 1334.57025

[HW73] A. Hatcher & J. Wagoner - Pseudo-isotopies of compact manifolds, Astérisque, vol. 6, Société Mathématique de France, Paris, 1973 | Numdam | MR 353337 | Zbl 1384.57019

[Igu] K. Igusa - “The generalized Grassmann invariant”, preprint

[Igu79] K. Igusa - The Wh 3 (π) obstruction for pseudoisotopy, Ph. D. Thesis, Princeton University, 1979 | MR 2628331

[Igu84] K. Igusa - “What happens to Hatcher and Wagoner’s formulas for π 0 C(M) when the first Postnikov invariant of M is nontrivial?”, in Algebraic K-theory, number theory, geometry and analysis (Bielefeld, 1982), Lect. Notes in Math., vol. 1046, Springer, Berlin, 1984, p. 104-172 | Article | MR 750679 | Zbl 0546.57015

[Igu87] K. Igusa - “The space of framed functions”, Trans. Amer. Math. Soc. 301 (1987) no. 2, p. 431-477 | Article | MR 882699 | Zbl 0624.57026

[Igu88] K. Igusa - “The stability theorem for smooth pseudoisotopies”, K-Theory 2 (1988) no. 1-2, p. 1-355 | Article | MR 972368 | Zbl 0691.57011

[Igu93] K. Igusa - “The Borel regulator map on pictures. I. A dilogarithm formula”, K-Theory 7 (1993) no. 3, p. 201-224 | Article | MR 1244001 | Zbl 0793.19001

[Igu02] K. Igusa - Higher Franz-Reidemeister torsion, AMS/IP Studies in Advanced Math., vol. 31, American Mathematical Society, Providence, RI, 2002 | Article | MR 1945530 | Zbl 1016.19001

[Igu04] K. Igusa - “Combinatorial Miller-Morita-Mumford classes and Witten cycles”, Algebraic Geom. Topol. 4 (2004), p. 473-520 | Article | MR 2077674 | Zbl 1072.57013

[Igu05] K. Igusa - Higher complex torsion and the framing principle, Mem. Amer. Math. Soc., vol. 177, no. 835, American Mathematical Society, Providence, RI, 2005 | Article | Zbl 1083.57030

[IK93] K. Igusa & J. Klein - “The Borel regulator map on pictures. II. An example from Morse theory”, K-Theory 7 (1993) no. 3, p. 225-267 | Article | MR 1244002 | Zbl 0793.19002

[Jek89] S. M. Jekel - “A simplicial formula and bound for the Euler class”, Israel J. Math. 66 (1989) no. 1-3, p. 247-259 | Article | MR 1017165 | Zbl 0686.57012

[JKS16] B. T. Jensen, A. D. King & X. Su - “A categorification of Grassmannian cluster algebras”, Proc. London Math. Soc. (3) 113 (2016) no. 2, p. 185-212 | Article | MR 3534971 | Zbl 1375.13033

[JT06] J. Jordan & L. Traynor - “Generating family invariants for Legendrian links of unknots”, Algebraic Geom. Topol. 6 (2006), p. 895-933 | Article | MR 2240920 | Zbl 1130.57018

[Kle89] J. R. Klein - The cell complex construction and higher R-torsion for bundles with framed Morse functions, Ph. D. Thesis, Brandeis University, 1989 | MR 2637458

[Kon92] M. Kontsevich - “Intersection theory on the moduli space of curves and the matrix Airy function”, Comm. Math. Phys. 147 (1992) no. 1, p. 1-23 | Article | MR 1171758 | Zbl 0756.35081

[Kra18] T. Kragh - “Generating families for Lagrangians in 2n and the Hatcher-Waldhausen map”, 2018 | arXiv:1804.02557

[Lau12] F. Laudenbach - Transversalité, courants et théorie de Morse, Éditions de l’École polytechnique, Palaiseau, 2012 | Zbl 1280.57001

[Lee05a] Y.-J. Lee - “Reidemeister torsion in Floer-Novikov theory and counting pseudo-holomorphic tori. I”, J. Symplectic Geom. 3 (2005) no. 2, p. 221-311 | Article | MR 2199540 | Zbl 1093.53091

[Lee05b] Y.-J. Lee - “Reidemeister torsion in Floer-Novikov theory and counting pseudo-holomorphic tori. II”, J. Symplectic Geom. 3 (2005) no. 3, p. 385-480 | Article | MR 2198782 | Zbl 1093.53092

[LS85] F. Laudenbach & J.-C. Sikorav - “Persistance d’intersection avec la section nulle au cours d’une isotopie hamiltonienne dans un fibré cotangent”, Invent. Math. 82 (1985) no. 2, p. 349-357 | Article | Zbl 0592.58023

[Maz63] B. Mazur - “Relative neighborhoods and the theorems of Smale”, Ann. of Math. (2) 77 (1963), p. 232-249 | Article | MR 150786 | Zbl 0112.38301

[Mil61] J. Milnor - “Two complexes which are homeomorphic but combinatorially distinct”, Ann. of Math. (2) 74 (1961), p. 575-590 | Article | MR 133127 | Zbl 0102.38103

[Mil66] J. Milnor - “Whitehead torsion”, Bull. Amer. Math. Soc. 72 (1966), p. 358-426 | Article | MR 196736 | Zbl 0147.23104

[MT96] G. Meng & C. H. Taubes - “SW ̲= Milnor torsion”, Math. Res. Lett. 3 (1996) no. 5, p. 661-674 | Article | MR 1418579 | Zbl 0870.57018

[Mur19] E. Murphy - “Loose Legendrian embeddings in high dimensional contact manifolds”, 2019 | arXiv:1201.2245v5

[Rei35] K. Reidemeister - “Homotopieringe und Linsenräume”, Abh. Math. Sem. Univ. Hamburg 11 (1935) no. 1, p. 102-109 | Article | MR 3069647 | Zbl 0011.32404

[RS71] D. B. Ray & I. M. Singer - “R-torsion and the Laplacian on Riemannian manifolds”, Adv. Math. 7 (1971), p. 145-210 | Article | MR 295381 | Zbl 0239.58014

[RS18] D. Rutherford & M. G. Sullivan - “Generating families and augmentations for Legendrian surfaces”, Algebraic Geom. Topol. 18 (2018) no. 3, p. 1675-1731 | Article | MR 3784016 | Zbl 1388.53096

[Sab05] J. M. Sabloff - “Augmentations and rulings of Legendrian knots”, Internat. Math. Res. Notices (2005) no. 19, p. 1157-1180 | Article | MR 2147057 | Zbl 1082.57020

[Sab06] J. M. Sabloff - “Duality for Legendrian contact homology”, Geom. Topol. 10 (2006), p. 2351-2381 | Article | MR 2284060 | Zbl 1128.57026

[Sik86] J.-C. Sikorav - “Sur les immersions lagrangiennes dans un fibré cotangent admettant une phase génératrice globale”, C. R. Acad. Sci. Paris Sér. I Math. 302 (1986) no. 3, p. 119-122 | MR 830282 | Zbl 0602.58019

[Sma61] S. Smale - “Generalized Poincaré’s conjecture in dimensions greater than four”, Ann. of Math. (2) 74 (1961), p. 391-406 | Article | MR 137124 | Zbl 0099.39202

[SS16] J. M. Sabloff & M. G. Sullivan - “Families of Legendrian submanifolds via generating families”, Quantum Topol. 7 (2016) no. 4, p. 639-668 | Article | MR 3593565 | Zbl 1358.57029

[STWZ19] V. Shende, D. Treumann, H. Williams & E. Zaslow - “Cluster varieties from Legendrian knots”, Duke Math. J. 168 (2019) no. 15, p. 2801-2871 | Article | MR 4017516 | Zbl 07145322

[STZ17] V. Shende, D. Treumann & E. Zaslow - “Legendrian knots and constructible sheaves”, Invent. Math. 207 (2017) no. 3, p. 1031-1133 | Article | MR 3608288 | Zbl 1369.57016

[Sul02] M. G. Sullivan - “K-theoretic invariants for Floer homology”, Geom. Funct. Anal. 12 (2002) no. 4, p. 810-872 | Article | MR 1935550 | Zbl 1081.53076

[Suá17] L. S. Suárez - “Exact Lagrangian cobordism and pseudo-isotopy”, Internat. J. Math. 28 (2017) no. 8, p. 1750059, 35 | Article | MR 3681121 | Zbl 1379.53095

[Tra01] L. Traynor - “Generating function polynomials for Legendrian links”, Geom. Topol. 5 (2001), p. 719-760 | Article | MR 1871403 | Zbl 1030.53086

[Tur86] V. G. Turaev - “Reidemeister torsion in knot theory”, Uspehi Mat. Nauk 41 (1986) no. 1(247), p. 97-147, 240 | MR 832411 | Zbl 0602.57005

[Tur98] V. G. Turaev - “A combinatorial formulation for the Seiberg-Witten invariants of 3-manifolds”, Math. Res. Lett. 5 (1998) no. 5, p. 583-598 | Article | MR 1666856 | Zbl 1002.57036

[Vit92] C. Viterbo - “Symplectic topology as the geometry of generating functions”, Math. Ann. 292 (1992) no. 4, p. 685-710 | Article | MR 1157321 | Zbl 0735.58019

[Wag78] J. B. Wagoner - “Diffeomorphisms, K 2 , and analytic torsion”, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Part 1 (Proc. Sympos. Pure Math.) XXXII (1978), p. 23-33 | Zbl 0408.57015

[Wal82] F. Waldhausen - “Algebraic K-theory of spaces, a manifold approach”, in Current trends in algebraic topology, Part 1 (London, Ont., 1981), CMS Conf. Proc., vol. 2, American Mathematical Society, Providence, RI, 1982, p. 141-184 | MR 686115 | Zbl 0595.57026

[Whi50] J. H. C. Whitehead - “Simple homotopy types”, Amer. J. Math. 72 (1950), p. 1-57 | Article | MR 35437 | Zbl 0040.38901