[La diagonale de l’associaèdre]
Cet article introduit pour la première fois une méthode générale permettant de résoudre le problème de l’approximation de la diagonale de familles de polytopes satisfaisant à une propriété de cohérence par faces. On retrouve les cas classiques des simplexes et des cubes et on résout celui des associaèdres, appelés aussi polytopes de Stasheff. On montre que ce dernier cas vérifie une formule cellulaire facile à énoncer. Pour la première fois, nous munissons une famille de réalisations des associaèdres (celle de Loday) d’une structure d’opérade topologique cellulaire, dont nous montrons qu’elle est compatible avec les diagonales.
This paper introduces the first general method to solve the problem of the approximation of the diagonal for face-coherent families of polytopes. We recover the classical cases of the simplices and the cubes and we solve it for the associahedra, also known as Stasheff polytopes. We show that it satisfies an easy-to-state cellular formula. For the first time, we endow a family of realizations of the associahedra (the Loday realizations) with a topological and cellular operad structure; it is shown to be compatible with the diagonal maps.
Accepté le :
Publié le :
DOI : 10.5802/jep.142
Keywords: Associahedra, approximation of the diagonal, operads, fiber polytopes, $\mathrm{A}_\infty $-algebras
Mot clés : Associaèdres, approximation de la diagonale, opérades, polytopes fibrés, $A_\infty $-algèbres
Naruki Masuda 1 ; Hugh Thomas 2 ; Andy Tonks 3 ; Bruno Vallette 4
@article{JEP_2021__8__121_0, author = {Naruki Masuda and Hugh Thomas and Andy Tonks and Bruno Vallette}, title = {The diagonal of the associahedra}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {121--146}, publisher = {\'Ecole polytechnique}, volume = {8}, year = {2021}, doi = {10.5802/jep.142}, mrnumber = {4191110}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.142/} }
TY - JOUR AU - Naruki Masuda AU - Hugh Thomas AU - Andy Tonks AU - Bruno Vallette TI - The diagonal of the associahedra JO - Journal de l’École polytechnique — Mathématiques PY - 2021 SP - 121 EP - 146 VL - 8 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.142/ DO - 10.5802/jep.142 LA - en ID - JEP_2021__8__121_0 ER -
%0 Journal Article %A Naruki Masuda %A Hugh Thomas %A Andy Tonks %A Bruno Vallette %T The diagonal of the associahedra %J Journal de l’École polytechnique — Mathématiques %D 2021 %P 121-146 %V 8 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.142/ %R 10.5802/jep.142 %G en %F JEP_2021__8__121_0
Naruki Masuda; Hugh Thomas; Andy Tonks; Bruno Vallette. The diagonal of the associahedra. Journal de l’École polytechnique — Mathématiques, Tome 8 (2021), pp. 121-146. doi : 10.5802/jep.142. https://jep.centre-mersenne.org/articles/10.5802/jep.142/
[AA17] - “Hopf monoids and generalized permutahedra”, 2017 | arXiv
[Amo17] - “The Künneth theorem for the Fukaya algebra of a product of Lagrangians”, Internat. J. Math. 28 (2017) no. 4, article ID 1750026, 38 pages | MR | Zbl
[Bro59] - “Twisted tensor products. I”, Ann. of Math. (2) 69 (1959), p. 223-246 | DOI | MR | Zbl
[BS92] - “Fiber polytopes”, Ann. of Math. (2) 135 (1992) no. 3, p. 527-549 | DOI | MR | Zbl
[BV73] - Homotopy invariant algebraic structures on topological spaces, Lect. Notes in Math., vol. 347, Springer-Verlag, Berlin, 1973 | MR | Zbl
[CFZ02] - “Polytopal realizations of generalized associahedra”, Canad. J. Math. 45 (2002) no. 4, p. 537-566 | DOI | MR | Zbl
[CSZ15] - “Many non-equivalent realizations of the associahedron”, Combinatorica 35 (2015) no. 5, p. 513-551 | DOI | MR | Zbl
[EML54] - “On the groups . II. Methods of computation”, Ann. of Math. (2) 60 (1954), p. 49-139 | DOI | MR
[EZ53] - “On products of complexes”, Amer. J. Math. 75 (1953), p. 200-204 | DOI | MR | Zbl
[For08] - “Convex hull realizations of the multiplihedra”, Topology Appl. 156 (2008) no. 2, p. 326-347 | DOI | MR | Zbl
[GKZ08] - Discriminants, resultants and multidimensional determinants, Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2008 | Zbl
[GZ97] - “Tensor constructions of open string theories. I. Foundations”, Nuclear Phys. B 505 (1997) no. 3, p. 569-624 | DOI | MR | Zbl
[Lod04] - “Realization of the Stasheff polytope”, Arch. Math. (Basel) 83 (2004) no. 3, p. 267-278 | MR | Zbl
[LV12] - Algebraic operads, Grundlehren Math. Wiss., vol. 346, Springer-Verlag, Berlin, 2012 | MR | Zbl
[May72] - The geometry of iterated loop spaces, Lect. Notes in Math., vol. 271, Springer-Verlag, Berlin, 1972 | MR
[MS06] - “Associahedra, cellular -construction and products of -algebras”, Trans. Amer. Math. Soc. 358 (2006) no. 6, p. 2353-2372 | DOI | MR | Zbl
[MSS02] - Operads in algebra, topology and physics, Math. Surveys and Monographs, vol. 96, American Mathematical Society, Providence, RI, 2002 | MR | Zbl
[Pro11] - “-structures. Modèles minimaux de Baues-Lemaire et Kadeishvili et homologie des fibrations”, Repr. Theory Appl. Categ. (2011) no. 21, p. 1-99, Reprint of the 1986 original, With a preface to the reprint by Jean-Louis Loday | MR | Zbl
[Sei08] - Fukaya categories and Picard-Lefschetz theory, Zürich Lectures in Advanced Math., European Mathematical Society, Zürich, 2008 | DOI | MR | Zbl
[Ser51] - “Homologie singulière des espaces fibrés. Applications”, Ann. of Math. (2) 54 (1951), p. 425-505 | DOI | Zbl
[SS97] - “From operads to “physically” inspired theories (Appendix B)”, in Operads: Proceedings of Renaissance Conferences (Hartford, CT/Luminy, 1995), Contemp. Math., vol. 202, American Mathematical Society, Providence, RI, 1997, p. 53-81
[Sta63] - “Homotopy associativity of -spaces. I & II”, Trans. Amer. Math. Soc. 108 (1963), p. 275-292 & 293–312 | MR | Zbl
[Sta70] - -spaces from a homotopy point of view, Lect. Notes in Math., vol. 161, Springer-Verlag, Berlin, 1970 | MR | Zbl
[Ste47] - “Products of cocycles and extensions of mappings”, Ann. of Math. (2) 48 (1947), p. 290-320 | DOI | MR | Zbl
[SU04] - “Diagonals on the permutahedra, multiplihedra and associahedra”, Homology Homotopy Appl. 6 (2004) no. 1, p. 363-411 | DOI | MR | Zbl
[Tam51] - Monoïdes préordonnés et chaînes de Malcev, Thèse de Mathématique, Paris, 1951
[Zie95] - Lectures on polytopes, Graduate Texts in Math., vol. 152, Springer-Verlag, New York, 1995 | MR | Zbl
Cité par Sources :