Affinization of monoidal categories
[Affinisation de catégories monoïdales]
Journal de l’École polytechnique — Mathématiques, Tome 8 (2021) , pp. 791-829.

Nous définissons l’affinisation d’une catégorie monoïdale 𝒞 arbitraire, correspondant à la catégorie des 𝒞-diagrammes sur le cylindre. Nous donnons aussi une autre caractérisation en termes de l’adjonction à 𝒞 de générateurs pointés. L’affinisation formalise et unifie plusieurs constructions qui existent dans la littérature. En particulier, nous décrivons un grand nombre d’exemples provenant d’algèbres de type de Hecke, tresses, enchevêtrements, et invariants de nœuds. Lorsque 𝒞 est rigide, son affinisation est isomorphe à sa trace horizontale, bien que les deux définitions paraissent assez différentes. En général, l’affinisation et la trace horizontale ne sont pas isomorphes.

We define the affinization of an arbitrary monoidal category 𝒞, corresponding to the category of 𝒞-diagrams on the cylinder. We also give an alternative characterization in terms of adjoining dot generators to 𝒞. The affinization formalizes and unifies many constructions appearing in the literature. In particular, we describe a large number of examples coming from Hecke-type algebras, braids, tangles, and knot invariants. When 𝒞 is rigid, its affinization is isomorphic to its horizontal trace, although the two definitions look quite different. In general, the affinization and the horizontal trace are not isomorphic.

Reçu le :
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/jep.158
Classification : 18M15,  18M30,  57K14,  57K31
Mots clés : Catégorie monoïdale, affinisation, diagramme de cordes, anneau, cylindre, tresse, enchevêtrement, relation d’écheveaux
@article{JEP_2021__8__791_0,
     author = {Youssef Mousaaid and Alistair Savage},
     title = {Affinization of monoidal categories},
     journal = {Journal de l'\'Ecole polytechnique --- Math\'ematiques},
     pages = {791--829},
     publisher = {\'Ecole polytechnique},
     volume = {8},
     year = {2021},
     doi = {10.5802/jep.158},
     language = {en},
     url = {https://jep.centre-mersenne.org/item/JEP_2021__8__791_0/}
}
Youssef Mousaaid; Alistair Savage. Affinization of monoidal categories. Journal de l’École polytechnique — Mathématiques, Tome 8 (2021) , pp. 791-829. doi : 10.5802/jep.158. https://jep.centre-mersenne.org/item/JEP_2021__8__791_0/

[BGHL14] A. Beliakova, Z. Guliyev, K. Habiro & A. D. Lauda - “Trace as an alternative decategorification functor”, Acta Math. Vietnam. 39 (2014) no. 4, p. 425-480 | Article | MR 3319701 | Zbl 1331.81153

[BHLŽ17] A. Beliakova, K. Habiro, A. D. Lauda & M. Živković - “Trace decategorification of categorified quantum 𝔰𝔩 2 , Math. Ann. 367 (2017) no. 1-2, p. 397-440 | Article | MR 3606445 | Zbl 1361.81075

[Bru17] J. Brundan - “Representations of the oriented skein category”, 2017 | arXiv:1712.08953

[BSA18] J. Belletête & Y. Saint-Aubin - “Fusion and monodromy in the Temperley–Lieb category”, SciPost Phys. 5 (2018), p. 41 | Article

[BSW20a] J. Brundan, A. Savage & B. Webster - “On the definition of quantum Heisenberg category”, Algebra Number Theory 14 (2020) no. 2, p. 275-321 | Article | MR 4195648 | Zbl 07213903

[BSW20b] J. Brundan, A. Savage & B. Webster - “Quantum Frobenius Heisenberg categorification”, 2020 | arXiv:2009.06690

[CK18] S. Cautis & J. Kamnitzer - “Quantum K-theoretic geometric Satake: the SL n case”, Compositio Math. 154 (2018) no. 2, p. 275-327 | Article | MR 3719249 | Zbl 1433.17014

[FY89] P. J. Freyd & D. N. Yetter - “Braided compact closed categories with applications to low-dimensional topology”, Adv. Math. 77 (1989) no. 2, p. 156-182 | Article | MR 1020583 | Zbl 0679.57003

[GL98] J. J. Graham & G. I. Lehrer - “The representation theory of affine Temperley-Lieb algebras”, Enseign. Math. (2) 44 (1998) no. 3-4, p. 173-218 | MR 1659204 | Zbl 0964.20002

[GL03] J. J. Graham & G. I. Lehrer - “Diagram algebras, Hecke algebras and decomposition numbers at roots of unity”, Ann. Sci. École Norm. Sup. (4) 36 (2003) no. 4, p. 479-524 | Article | Numdam | MR 2013924 | Zbl 1062.20003

[GRS20] M. Gao, H. Rui & L. Song - “A basis theorem for the affine Kauffman category and its cyclotomic quotients”, 2020 | arXiv:2006.09626

[Kas95] C. Kassel - Quantum groups, Graduate Texts in Math., vol. 155, Springer-Verlag, New York, 1995 | Article | Zbl 0808.17003

[Kau90] L. H. Kauffman - “An invariant of regular isotopy”, Trans. Amer. Math. Soc. 318 (1990) no. 2, p. 417-471 | Article | MR 958895 | Zbl 0763.57004

[Mor10] H. Morton - “A basis for the Birman–Wenzl algebra”, 2010 | arXiv:1012.3116

[MS17] H. Morton & P. Samuelson - “The HOMFLYPT skein algebra of the torus and the elliptic Hall algebra”, Duke Math. J. 166 (2017) no. 5, p. 801-854 | Article | MR 3626565 | Zbl 1369.16034

[RS20] D. Rosso & A. Savage - “Quantum affine wreath algebras”, Doc. Math. 25 (2020), p. 425-456 | Article | MR 4112762 | Zbl 07209428

[Sel11] P. Selinger - “A survey of graphical languages for monoidal categories”, in New structures for physics, Lecture Notes in Phys., vol. 813, Springer, Heidelberg, 2011, p. 289-355 | Article | MR 2767048 | Zbl 1217.18002

[Shu94] M. C. Shum - “Tortile tensor categories”, J. Pure Appl. Algebra 93 (1994) no. 1, p. 57-110 | Article | MR 1268782 | Zbl 0803.18004

[Tur89] V. G. Turaev - “Operator invariants of tangles, and R-matrices”, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989) no. 5, p. 1073-1107, 1135 | Article

[Yet01] D. N. Yetter - Functorial knot theory, Series on Knots and Everything, vol. 26, World Scientific Publishing Co., Inc., River Edge, NJ, 2001 | Article | MR 1834675 | Zbl 0977.57005