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AFFINIZATION OF MONOIDAL CATEGORIES

by Youssef Mousaaid & Alistair Savage

Abstract. —We define the affinization of an arbitrary monoidal category C , corresponding to
the category of C -diagrams on the cylinder. We also give an alternative characterization in terms
of adjoining dot generators to C . The affinization formalizes and unifies many constructions
appearing in the literature. In particular, we describe a large number of examples coming from
Hecke-type algebras, braids, tangles, and knot invariants. When C is rigid, its affinization is
isomorphic to its horizontal trace, although the two definitions look quite different. In general,
the affinization and the horizontal trace are not isomorphic.

Résumé (Affinisation de catégories monoïdales). — Nous définissons l’affinisation d’une caté-
gorie monoïdale C arbitraire, correspondant à la catégorie des C -diagrammes sur le cylindre.
Nous donnons aussi une autre caractérisation en termes de l’adjonction à C de générateurs
pointés. L’affinisation formalise et unifie plusieurs constructions qui existent dans la littérature.
En particulier, nous décrivons un grand nombre d’exemples provenant d’algèbres de type de
Hecke, tresses, enchevêtrements, et invariants de nœuds. Lorsque C est rigide, son affinisation
est isomorphe à sa trace horizontale, bien que les deux définitions paraissent assez différentes.
En général, l’affinisation et la trace horizontale ne sont pas isomorphes.
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792 Y. Mousaaid & A. Savage

1. Introduction

The goal of the current paper is to formalize and unify the concept of affinization
in certain areas of category theory and representation theory. In particular, we are
interested in the following uses of the term affine:

– Topological/diagrammatic: The term affine is often used to refer to the topolog-
ical or diagrammatic setting of a torus, annulus, or cylinder. For example, one often
encounters the term affine braids to refer to braids on a cylinder. More generally, the
term affine is often used to describe either monoidal categories drawn in terms of
string diagrams on a cylinder or annulus, or where strings are allowed to carry dots
with various properties. The description in terms of dots is often ad hoc. For example,
the dots are sometimes equal to their own mates and sometimes they are not.

– Algebraic: In the context of Hecke-type algebras, the term affine refers to the
introduction of a (Laurent) polynomial part of the algebra. (Of course, this can be
explained in terms of the Hecke algebra of an affine Weyl group.) For example, the
affine Hecke algebraHaff

r of type Ar−1 over a commutative ground ring k is isomorphic,
as a k-module, to k[x±1

1 , . . . , x±1
r ] ⊗k Hr, where Hr is the Iwahori–Hecke algebra of

type Ar−1. Allowing r to vary, the affine Hecke algebras can be organized into a
tower of algebras, which can be viewed as a monoidal category. In the string diagram
calculus for monoidal categories, the elements xi correspond to the dots mentioned
above.

– Representation theoretic: The term affine often appears in the context of du-
ality statements in representation theory. For example, quantum Schur–Weyl dual-
ity states that there is a surjective algebra homomorphism Hr → EndUq(gln)(V

⊗r),
where V is the quantum analogue of the natural representation of gln. This induces
an algebra homomorphism from Hr to the endomorphism algebra of the functor
V ⊗r ⊗ − : Uq(gln)-mod → Uq(gln)-mod. This homomorphism is not surjective in
general. Instead the braiding on Uq(gln)-mod coming from the R-matrix allows one
to extend it to an algebra homomorphism from Haff

r to the endomorphism algebra of
the functor V ⊗r ⊗−.

Preference for one of the languages listed above often depends on one’s point of
view. Topologists interested in skein theory and knot invariants will prefer the topo-
logical point of view, while representation theorists may prefer the algebraic or repre-
sentation theoretic point of view. In some cases, the translation between the languages
is well known. For instance, this is the case for the affine Hecke algebras mentioned
above. Our aim is to completely unify the different languages with a general approach.
The fact that the various viewpoints coincide gives a rich interplay between topology
and representation theory.

Our starting point is the definition of the affinization Aff(C ) of an arbitrary strict
monoidal category C . In terms of the usual string diagram calculus for monoidal cate-
gories, Aff(C ) should be thought of as the category of C -diagrams on the cylinder. Its
definition (Definition 2.1) involves adjoining to C invertible morphisms corresponding
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Affinization of monoidal categories 793

to strings wrapping around the cylinder, subject to natural relations. If C is braided,
then Aff(C ) is a strict monoidal category, with the tensor product corresponding to
nesting of cylinders. Furthermore, in this case, we can give an equivalent definition
of the affinization involving the addition of dot generators on strands (Theorem 2.6).
The equivalence of these two definitions is a very general and precise statement of the
correspondence between the topological/diagrammatic and algebraic notions of affine
described above. A significant advantage of the description of Aff(C ) in terms of dot
generators is that string diagrams become easier to draw, since we no longer need to
draw them on a cylinder.

We next turn our attention to categorical actions. If F : C → M is a monoidal
functor, then C acts on M via the action

X ·M = F (X)⊗M, f · g = F (f)⊗ g,

for X ∈ Ob(C ), M ∈ Ob(M ), f ∈ Mor(C ), and g ∈ Mor(M ). If C is balanced
(i.e., it is braided and has a twist; see Section 3), then we show in Theorem 3.2 that
this action can be extended in a natural way to the affinization Aff(C ). This yields
the precise connection to the representation theoretic viewpoint mentioned above; see
Corollary 3.3.

Our affinization procedure recovers a large number of examples appearing in the
literature, unifying them into a single precise framework. Examples include the fol-
lowing:

– The affinization of the category of braids over the disc is the category of braids
over the annulus (Proposition 6.1).

– The affinization of the tower of Iwahori–Hecke algebras of type A, naturally
viewed as a monoidal category, is the tower of affine Hecke algebras of type A (Sec-
tion 6.2).

– The affinization of the category of oriented tangles (respectively, framed oriented
tangles) over the disc is the category of oriented tangles (respectively, framed oriented
tangles) over the annulus (Propositions 7.2 and 7.4). Analogous results also hold for
unoriented tangles (Propositions 8.1 and 8.3).

– The affinization of the framed HOMFLYPT skein category over the disc is the
framed HOMFLYPT skein category over the annulus (Proposition 7.6).

– The affinization of the Kauffman skein category over the disc is the Kauffman
skein category over the annulus (Proposition 8.7).

– The affinization of the Temperley–Lieb category is the affine Temperley–Lieb
category (Section 8.4).
In all of the above examples, our general results give two descriptions of the affine
categories, one in terms of string diagrams on the cylinder and the other in terms of
string diagrams carrying dots. Some of these presentations have appeared previously
in the literature, while others are new. (See the body of the paper for references
to the literature in each case.) The appeal of our approach is a completely uniform
treatment.

J.É.P. — M., 2021, tome 8



794 Y. Mousaaid & A. Savage

Another construction that has appeared in the literature in the context of monoidal
categories on the annulus is the horizontal trace. The horizontal trace Trh(C ) has the
same objects as C , and its morphisms are equivalences classes of certain morphisms
in C ; see Section 9. We show (Theorem 9.4) that, when C is rigid (i.e., it has left and
right duals), the affinization Aff(C ) and the horizontal trace Trh(C ) are isomorphic.
However, even in this case, the two definitions are quite different. The affinization
involves adjoining additional morphisms subject to some natural relations, while the
horizontal trace involves equivalence classes of morphisms. This difference makes the
affinization easier to work with in many cases. In general (i.e., when C is not rigid),
the affinization and the horizontal trace are not isomorphic, and it is the affinization,
and not the horizontal trace, that gives the correct notion of C -diagrams on a cylinder
for two reasons: First, the interpretation of morphisms in the horizontal trace as string
diagrams on the cylinder (or annulus) involves cups and caps that have no precise
meaning when C is not rigid. String diagrams in the affinization avoid such cups and
caps. Second, in specific cases, it is the affinization that gives the expected “affine”
category. For example, if C is the category of braids over the disc, then Aff(C ) is the
category of braids over the annulus, while Trh(C ) is quite different; see Example 9.6.

The vertical trace Trv(C ) of a k-linear category C is the k-module given by linear
combinations of endomorphisms in C modulo the relation f ◦g = g ◦f for morphisms
f : X → Y , g : Y → X in C ; see (10.1). If C is strict pivotal, elements of the trace
are often drawn as diagrams on the annulus. In Section 10 we discuss how the proce-
dure of taking the vertical trace behaves with respect to the process of affinization.
In particular, if C is a balanced strict k-linear monoidal category, then Trv(Aff(C ))

can be viewed as the category of C -diagrams on the torus, and it acts naturally on
Trv(C ). This action corresponds to placing an annular diagram representing a mor-
phism in Trv(C ) inside the toroidal diagram representing a morphism in Trv(Aff(C ));
see Proposition 10.3 for a more general statement. We also show (Theorem 10.5) that
if C is a right-rigid or left-rigid braided strict monoidal category, then Trv(C ) is
isomorphic, as a k-algebra, to the center Z(Aff(C )) := EndAff(C )(1) of Aff(C ).

We conclude the paper with a brief discussion of how the concept of affinization
can be extended to the setting of 2-categories (Section 11). For rigid 2-categories, the
affinization is again isomorphic to the horizontal trace. However, the two concepts are
different in general.

Acknowledgements. — This research of A. Savage was supported by Discovery Grant
RGPIN-2017-03854 from the Natural Sciences and Engineering Research Council of
Canada. Y. Mousaaid was also supported by this Discovery Grant. The authors would
like to thank A. Brochier, J. Brundan, and P. Samuelson for helpful conversations.

2. Affinization of monoidal categories

Throughout this paper, we will use the usual calculus of string diagrams for
monoidal categories. We assume all categories are essentially small. For a category C ,
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we let Ob(C ) denote its set of objects, and Mor(C ) its set of morphisms. We let 1X
denote the identity morphism of an object X. We use k to denote a commutative
ground ring. By a monoidal functor, we mean a strong monoidal functor. We let 1
denote the unit object of a monoidal category. Throughout this section, C denotes a
strict monoidal category.

Definition 2.1 (Affinization of a strict monoidal category). — The affinization of
a strict monoidal category C is the category Aff(C ) obtained from C by adjoining
invertible morphisms ξX,Y : X ⊗ Y → Y ⊗X for each pair of objects X,Y ∈ Ob(C ),
subject to the relations

ξX,Y⊗Z = ξZ⊗X,Y ◦ ξX⊗Y,Z ,(2.1)
ξX2,Y2 ◦ (g ⊗ f) = (f ⊗ g) ◦ ξX1,Y1 ,(2.2)

for all X,X1, X2, Y, Y1, Y2, Z ∈ Ob(C ), f ∈ HomC (Y1, Y2), and g ∈ HomC (X1, X2).
We call the ξX,Y coils. We define ξX := ξ1,X . If C is a k-linear strict monoidal
category, then Aff(C ) is also naturally k-linear.

It follows from (2.1) that ξX,1 = ξX,1⊗1 = ξX,1◦ξX,1 and so, since ξX,1 is invertible,
we have

(2.3) ξX,1 = 1X for all X ∈ Ob(C ).

In terms of string diagrams, we should picture the morphisms of Aff(C ) as string
diagrams on a cylinder, where the coil ξX,Y corresponds to a strand labeled Y wrap-
ping around the cylinder:

(2.4) ξX,Y =

X Y

, ξ−1
X,Y =

XY

, ξX =

X

, ξ−1
X =

X

.

Remark 2.2. — Instead of considering diagrams on the cylinder, one can also consider
a “pole” on the right-hand side of the diagrams. Then, rather than strands wrapping
around the cylinder, they wrap around this pole. However, the monoidal structure to
be discussed below is more intuitive from the cylindrical point of view.

Remark 2.3. — The cylinder is topologically equivalent to the annulus, and, in the
literature, one often sees “affine type” categories drawn in terms of string diagrams
on the annulus. We choose here to use cylinders, since this allows us to draw the coils
without drawing caps and cups (i.e., critical points with respect to the vertical coor-
dinate). As we will recall below, cups and caps in string diagrams typically arise from
dual objects. Thus, in categories that do not necessarily have duals, the cylindrical
diagrammatics seem more natural. See Remark 9.3 for a similar situation.

J.É.P. — M., 2021, tome 8



796 Y. Mousaaid & A. Savage

In order to make cylindrical string diagrams easier to draw, we cut open the cylin-
der, drawing ξX,Y and ξ−1

X,Y as the string diagrams

ξX,Y =

X

X

Y

Y

, ξ−1
X,Y =

X

X

Y

Y

.

where the dashed vertical edges are identified. Then the relations (2.1) and (2.2)
become

(2.5)

X

X

Y⊗Z

Y⊗Z

=

X

X

ZY

ZY

,

X1

X2

Y1

Y2

g f
=

X1

X2

Y1

Y2

f g

.

Analogous relations also hold for the inverses ξ−1
X,Y . Intuitively, we can slide morphisms

in C around the cylinder.

Remark 2.4 (Dehn twist). — It follows from (2.2) that

(2.6) ξY ◦ f = f ◦ ξX , f ∈ HomC (X,Y ).

In other words, (ξX)X∈Ob(C ) is a natural transformation of the identity functor
idC : C → C . In terms of string diagrams, this corresponds to a Dehn twist of the
cylinder.

We now wish to endow Aff(C ) with the structure of strict monoidal category.
Intuitively, viewing morphisms f, g in Aff(C ) as diagrams on the cylinder, the tensor
product f⊗g is given by nesting the cylindrical diagram corresponding to g inside the
cylindrical diagram corresponding to f . In order for this to make sense, we need C

to be a braided strict monoidal category, so that we can use the braiding to formalize
what it means for strands in one diagram to pass over strands in another diagram.

Recall that a strict monoidal category C is braided if it is equipped with a natural
family of isomorphisms βX,Y : X ⊗ Y → Y ⊗X satisfying

(2.7) βX,Y⊗Z = (1Y ⊗ βX,Z) ◦ (βX,Y ⊗ 1Z), βX⊗Y,Z = (βX,Z ⊗ 1Y ) ◦ (1X ⊗ βY,Z),

for all X,Y, Z ∈ Ob(C ). We use the standard string diagrams for the braiding:

βX,Y =

YX

, β−1
X,Y =

Y X

.

Then the equations in (2.7) become

(2.8)

Y⊗ZX

=

Y ZX

,

ZX⊗Y

=

ZYX

.
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Affinization of monoidal categories 797

In what follows, we will use unlabeled strands to indicate that a relation holds for
any labeling of the strands. So, for instance,

f represents an arbitrary morphism
X

Y

f in C ,

and we have

= = .

The naturality of the braiding means that

= ,(2.9)

f

=
f

,
f

=
f

,

f
=

f

,
f

=
f

.

(2.10)

In other words, the braid relations are satisfied, and coupons slide through crossings.

Proposition 2.5. — If C is a braided strict monoidal category, then there is a unique
way to extend the tensor product of C to Aff(C ) such that Aff(C ) is a strict monoidal
category and

(2.11) ξX,Y ⊗ 1Z = ξX⊗Z,Y ◦ (1X ⊗ βY,Z), 1X ⊗ ξY,Z = (β−1
X,Z ⊗ 1Y ) ◦ ξX⊗Y,Z ,

for all X,Y, Z ∈ Ob(C ).

Proof. — Any tensor product on Aff(C ) must satisfy

(2.12) (g ◦ f)⊗ 1W = (g ⊗ 1W ) ◦ (f ⊗ 1W )

for all morphisms f : X → Y and g : Y → Z in Aff(C ) and W ∈ Ob(C ). Since
– f ⊗ 1W must be the tensor product in C if f is a morphism in C , and is given

by (2.11) for f a coil, and
– morphisms in C , together with coils, generate the morphisms in Aff(C ) under

composition,
there is a unique way to define f ⊗ 1W for a morphism f in Aff(C ). Similarly, there
is a unique way to define 1W ⊗ f . Then, for morphisms f : X → Y and g : Z →W in
Aff(C ), we must have

g ⊗ f = (g ⊗ 1Y ) ◦ (1Z ⊗ f).

This proves the uniqueness statement in the proposition. It is then a straightforward
verification to check that the tensor product, extended to Aff(C ) as above, endows
Aff(C ) with the structure of a strict monoidal category. �

J.É.P. — M., 2021, tome 8



798 Y. Mousaaid & A. Savage

Diagrammatically, the equations in (2.11) become

(2.13)

X

X

Y

Y

⊗

Z

=

ZX

X

Y

Y

,

X

⊗

Y

Y

Z

Z

=

Y

Y

Z

Z

X

.

Note that the strands of the left-hand diagram in the tensor product pass over those
of the right-hand diagram.

For the remainder of this section, we assume C is braided, and we view Aff(C ) as
a strict monoidal category with the tensor product of Proposition 2.5. Note that, in
general, Aff(C ) is no longer braided. (See, for example, (2.15) below.)

We now introduce some diagrammatic shorthand that allows us to dispose of cylin-
drical diagrams. We use a positive dot on a strand to denote the morphism ξX and a
negative dot to denote ξ−1

X :

X

:= ξX =

X

X

,

X

:= ξ−1
X =

X

X

.

It then follows from our definition of the tensor product on Aff(C ) that

(2.14) = , = ,

where there can be any number of strands to the left and right of the dots.
Using (2.5), (2.9), and (2.14), we have

= , = ,

X⊗Y

=

YX

,
f

=
f
,(2.15)

= , = ,

X⊗Y

=

YX

,
f

=
f
, = = ,(2.16)

for all X,Y ∈ Ob(C ) and f ∈ Mor(C ). Note that the relations in (2.16) follow
immediately from those in (2.15), together with the fact that the negative dot is
inverse to the positive dot. The third and fourth relations in (2.15) are equivalent to
the assertion that the collection (ξX)X∈Ob(C ) is a monoidal natural automorphism of
the identity functor on C ; see Remark 2.4.

The following result shows, in particular, that the positive and negative dots, to-
gether with the morphisms of C , generate all morphisms of Aff(C ) under composition
and tensor product.

Theorem 2.6. — The affinization Aff(C ) of a braided strict monoidal category C is
isomorphic to the strict monoidal category obtained from C by adjoining invertible
morphisms

ξX =

X

: X −→ X

for all objects X ∈ Ob(C ), subject to the first, third, and fourth relations in (2.15).

J.É.P. — M., 2021, tome 8
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Proof. — First note that the second relation in (2.15) follows from the first relation,
after composing on the top with and on the bottom with . Let Aff ′(C ) denote
the category described in the statement of the proposition and let us temporarily
denote the new generators of Aff ′(C ) by ξ′X to avoid confusion. By (2.15), we have a
functor F : Aff ′(C ) → Aff(C ) equal to the identity on C and sending ξ′X to ξX . We
then define a functor G : Aff(C ) → Aff ′(C ) equal to the identity on C and sending
ξX,Y to βX,Y ◦ (1X ⊗ ξ′Y ). Assuming G is well defined, it is straightforward to verify
that F and G are mutually inverse using the computation

(2.17) ξX,Y =

X Y

Y

=

Y

Y

XX

= βX,Y ◦ (1X ⊗ ξY ).

To prove that G is well defined, we need to show it preserves the defining relations
(2.1) and (2.2). We first compute that G sends the right-hand side of (2.1) to

Y ZX

=

ZYX

(2.15)
=

Y ZX

=

Y ZX

(2.15)
=

Y⊗ZX

,

which is the image under G of the left-hand side of (2.1). Finally, for morphisms f, g
in C , G sends the left-hand side of (2.2) to

fg

(2.15)
=

(2.10)

f g

,

which is the image under G of the right-hand side of (2.2). �

For a braided strict monoidal category C , we now have two diagrammatic ways of
viewing the affinization: the “cylindrical viewpoint”, where we picture string diagrams
on the cylinder, and the “dot viewpoint”, where the coils are depicted using the dot
generators. Both points of view can be useful, depending on the particular application.
One advantage of the dot viewpoint is that we no longer need to work with diagrams
on the cylinder; so we can dispense with the dashed vertical lines at the sides of
diagrams.

We conclude this section by examining the functoriality of the affinization pro-
cedure. Recall that a strict monoidal functor F : C → D is required to satisfy
F (X⊗Y ) = F (X)⊗F (Y ) for all X,Y ∈ Ob(C ). Note that a strong monoidal functor
between strict monoidal categories is not necessarily a strict monoidal functor.

J.É.P. — M., 2021, tome 8



800 Y. Mousaaid & A. Savage

Proposition 2.7. — Any strict monoidal functor F : C → D between strict monoidal
categories induces a functor Aff(F ) : Aff(C )→ Aff(D) by defining

Aff(F )(X) = F (X), X ∈ Ob(C ), Aff(F )(f) = F (f), f ∈ Mor(C ),

Aff(F )(ξX,Y ) := ξF (X),F (Y ), X, Y ∈ Ob(C ).

If F : C → D and G : D → E are strict monoidal functors between strict monoidal
categories, we have Aff(G ◦ F ) = Aff(G) ◦Aff(F ).

Proof. — To verify that Aff(F ) is a well-defined functor, it suffices to verify that
Aff(F ) preserves the relations (2.1) and (2.2), which follows immediately from the
fact that F is a strict monoidal functor. The final statement of the proposition also
follows immediately from the definitions. �

The proof of the following result is a straightforward exercise.

Proposition 2.8. — If F : C → D is a braided strict monoidal functor between braided
strict monoidal categories, then Aff(F ) is a strict monoidal functor.

Remark 2.9. — We expect that the concept of the affinization of a monoidal category
can be extended to the setting of monoidal categories which are not necessarily strict.
We have chosen to focus on strict monoidal categories since it significantly simplifies
the exposition and all of the examples and applications that we have in mind are
strict monoidal categories. Furthermore, by the Mac Lane coherence theorem, every
monoidal category is monoidally equivalent to a strict one.

3. Actions

Recall that, for any category M , the category End (M ) of endofunctors and nat-
ural transformations is a strict monoidal category. An action of a strict monoidal
category C on a monoidal category M is a monoidal functor A : C → End (M ).
We adopt the notation X ·M = A(X)(M) for X ∈ Ob(C ) and M ∈ Ob(M ).

If F : C →M is a monoidal functor, then C acts on M via the action

(3.1) X ·M = F (X)⊗M, f · g = F (f)⊗ g,

for X ∈ Ob(C ), M ∈ Ob(M ), f ∈ Mor(C ), g ∈ Mor(M ). The goal of this section is
to extend this action to the affinization Aff(C ). Intuitively, this action corresponds to
placing string diagrams from M inside the cylinder corresponding to diagrams from
Aff(C ), then using the functor F to interpret this as a diagram in M . In order for
this action to be well defined, we need to make the additional assumption that C is
a balanced strict monoidal category.

Recall that a strict monoidal category C is balanced if it is braided and has a
twist, which is a natural transformation θ : idC → idC (recall that idC is the identity
functor on C ), whose components we will denote

θX =

X

θ : X −→ X, X ∈ Ob(C ),
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satisfying θ1 = 11 and

(3.2)
X⊗Y

θ =

YX

θ θ , X, Y ∈ Ob(C ).

The fact that the family is natural means that the twists commute with morphisms:

(3.3)

X

Y

f

θ
=

X

Y

f

θ
, f : X −→ Y in C .

Remark 3.1. — In most of the examples to be considered in the current paper, the
objects of the category C will be freely generated by some set of generating objects.
In this case, any twist on C is uniquely determined by the twists of the generating
objects and (3.2). Furthermore, the category C will often be a braided strict pivotal
category, in which case we have a twist given by a “curl”; see (4.5).

The following result extends the action of (3.1) to the affinization Aff(C ).

Theorem 3.2. — Suppose C is a braided strict monoidal category, M is a balanced
strict monoidal category, and F : C →M is a braided monoidal functor. Then there
is an action of Aff(C ) on M uniquely determined by

X ·M := F (X)⊗M, f · g := F (f)⊗ g,(3.4)
ξX · g := βN,F (X) ◦ (g ⊗ θF (X)) ◦ βF (X),M ,

ξ−1
X · g := β−1

F (X),N ◦ (g ⊗ θ−1
F (X)) ◦ β

−1
M,F (X),

(3.5)

for all X ∈ Ob(C ) = Ob(Aff(C )), f ∈ Mor(C ), M,N ∈ Ob(M ), g ∈ HomM (M,N).

In terms of string diagrams, (3.5) becomes

ξX · g =

MF (X)

N

g θ , ξ−1
X · g =

F (X) M

N

g θ−1 .

Proof. — Let W,X, Y, Z be objects, and let f : Y → Z, f ′ : Z → W , g, and g′ be
morphisms in C . It is straightforward to verify that

(ξX · g) ◦ (ξ−1
X · g

′) = 1X · (g ◦ g′) = (ξ−1
X · g) ◦ (ξX · g′) and

(f · g) ◦ (f ′ · g′) = (f ◦ f ′) · (g ◦ g′)

for all objects X in C , morphisms f, f ′ in C , and morphisms g, g′ in M such that the
above compositions are defined.

It remains to show that (3.4) and (3.5) respect the first, third, and fourth relations
in (2.15). Since f ·g = (f ·1)◦(1·g) for f ∈ Mor(Aff(C )) and g ∈ Mor(M ), it suffices to
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consider the action on identity morphisms. For the first relation in (2.15), we compute

· 1M =

M

θ
=

M

θ
= · 1M .

For the third relation, setting X ′ = F (X) and Y ′ = F (Y ), we have


YX

 · 1Z =

Y ′X′

Z

θ

θ

=

Y ′X′

Z

θ θ
(3.2)
=

X′⊗Y ′

Z

θ =

X⊗Y

· 1Z .

The fourth relation in (2.15) is straightforward to verify using (3.3). �

The following result relates affinization of a monoidal category to the representation
theoretic approach to affinization mentioned in the introduction.

Corollary 3.3. — Suppose C is a braided strict monoidal category, M is a balanced
strict monoidal category, and F : C →M is a braided monoidal functor. Let A : C →
End (M ) be the action functor of (3.1).

(a) For each X ∈ Ob(C ), the collection ΞX := (ξX · 1M )M∈Ob(M ) is an endomor-
phism of the functor A(X) : M → M (i.e., a natural transformation from A(X) to
itself).

(b) The collection (ΞX)X∈Ob(C ) is an endomorphism of A.

Proof

(a) For a morphism g : M → N in M , we have

(
A(X)(g)

)
◦ (ξX · 1M ) =

MF (X)

N

g

θ
=

MF (X)

N

g

θ

= (ξX · 1N ) ◦
(
A(X)(g)

)
.

Hence ΞX is a natural transformation from A(X) to itself.
(b) This follows from Theorem 3.2 and the last relation in (2.15). �

For the remainder of this section, suppose that C is a balanced strict monoidal
category. Taking M = C and F = idC to be the identity functor, Theorem 3.2
implies that Aff(C ) acts on C . This extends the natural action of C on itself given
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by the tensor product. Considering the action on the unit object and its identity
morphism, it then follows that we have a functor

(3.6) Aff(C ) −→ C , X 7−→ X, f 7−→ f · 11, X ∈ Ob(Aff(C )), f ∈ Mor(Aff(C )).

Note that, under the functor (3.6), we have

ξX 7−→ θX , ξX,Y 7−→ βX,Y ◦ (1X ⊗ θY ),

where we use (2.17).

Corollary 3.4. — If C is a balanced strict monoidal category, then the functor C →
Aff(C ) that is the identity on objects and sends f ∈ Mor(C ) to the corresponding
morphism in Aff(C ) is faithful.

Proof. — It is straightforward to verify that the composite C → Aff(C )
(3.6)−−−→ C is

the identity functor, which implies the result. �

In light of Corollary 3.4, we will view C as a subcategory of Aff(C ). We expect
that the natural functor C → Aff(C ) is faithful even when C is not balanced.

Recall that if C and D are k-linear categories, then C �D is the k-linear category
whose objects are pairs (X,Y ) with X ∈ Ob(C ) and Y ∈ Ob(D). Morphisms are
given by

HomC�D((X1, Y1), (X2, Y2)) = HomC (X1, X2)⊗k HomD(Y1, Y2).

Composition is componentwise on simple tensors, and extended by linearity.
If C is a strict k-linear monoidal category, then a module category over C is a

k-linear category M , together with a k-linear monoidal functor C → End k(M ),
where End k(M ) denotes the strict k-linear monoidal category with objects that are
the k-linear endofunctors of M and morphisms that are natural transformations.
Equivalently, it is a k-linear functor −⊗− : C �M →M satisfying associativity and
unity axioms. All of the results of the current section go through in this linear setting
with the obvious modifications.

4. Pivotal structures

We continue to assume throughout this section that C is a strict monoidal category.
Recall that C is said to be right rigid if all objects have right duals. This means that,
for every object X ∈ Ob(C ), there is another object X∨ ∈ Ob(C ), called the right
dual of X, together with unit and counit morphisms

(4.1) ηX =
X

: 1 −→ X∨ ⊗X, εX =
X

: X ⊗X∨ −→ 1,

such that

(4.2)

X

=

X

,

X

=

X

.
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Here we use an upward oriented string to denote the identity morphism of an object X
and a downward oriented string to denote the identity morphism of its right dual X∨.

A strict monoidal category C is left rigid if all objects have left duals. This means
that, for every object X ∈ Ob(C ), there is another object ∨X ∈ Ob(C ), called the
left dual of X, together with morphisms

(4.3) η′X =
X

: 1 −→ X ⊗ ∨X, ε′X =
X

: ∨X ⊗X −→ 1,

such that

(4.4)

X

=

X

,

X

=

X

.

Here we use an upward oriented string to denote the identity morphism of an object X
and a downward oriented string to denote the identity morphism of its left dual ∨X.

The strict monoidal category C is rigid if it is both left rigid and right rigid. If C

is a braided strict monoidal category, then it is left rigid if and only if it is right rigid
(hence rigid). In this case, the left and right duals of X are isomorphic. Hence there
is no ambiguity in using a downward strand labeled X to denote the dual.

Remark 4.1. — If X ∈ Ob(C ) is self-dual, i.e., X = X∨ = ∨X, then the upward and
downward oriented strands are equal, and it is natural to draw these strands without
orientation. In particular, the left and right caps (resp. cups) above are equal.

The following result is straightforward.

Lemma 4.2. — If X is right dual (resp. left dual) to Y in C , then the same is true in
Aff(C ), using the same units and counits. In particular, if C is left rigid (resp. right
rigid, rigid) then so is Aff(C ).

The category C is strict pivotal if it is a rigid strict monoidal category and we have
the following:

(a) For all objects X and Y in C ,

(X∨)∨ = X, (X ⊗ Y )∨ = Y ∨ ⊗X∨, 1
∨ = 1.

(b) For all objects X and Y in C , we have

X⊗Y
=

X Y

and
X⊗Y

=

X Y

.

(c) For every morphism f : X → Y in C , its right and left mates are equal:

f∨ :=

Y

X

f =

Y

X

f .
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A braided pivotal category is the same as a balanced rigid category; see, for exam-
ple, [Sel11, Cor. 4.21]. In particular, if C is a braided strict pivotal category, then it
has a twist given by

(4.5) θX :=

X

, X ∈ Ob(C ).

A ribbon category (also called a tortile category) is a braided pivotal category satisfying

(4.6)

X

=

X

, X ∈ Ob(C ).

We say a category is a strict ribbon category if is it a ribbon category that is strict
pivotal.

Theorem 4.3. — If C is a braided strict pivotal category, then the same units and
counits endow Aff(C ) with the structure of a strict pivotal category. Furthermore, we
have

(4.7) ξ∨X = ξ−1
X∨ , X ∈ Ob(C ).

Proof. — The left and right mates of the morphisms of C are equal since C is strict
pivotal. Thus, to show that Aff(C ) is strict pivotal, it suffices to show that the left
and right mates of the positive dots are equal. (It then automatically follows that
the left and right mates of the negative dots are equal, since they are inverse to the
positive dots.) So it is enough to show that

(4.8)
X

=

X

= .

To illustrate the two viewpoints, topological and algebraic, we give two proofs of these
identities.

For a topological proof, we compute

X

=

X

=

X

,

X

=

X

(2.5)
=

X

=

X

,
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where, in the last equality, we used the fact that the two curls appearing in the
penultimate diagram are inverses of each other (see (5.4)).

For an algebraic proof of (4.8), we first note that by attaching appropriate cups
and caps and using (4.2) and (4.4), the identities (4.8) are equivalent to

(4.9) = , = .

We prove the first identity, since the proof of the second is analogous. Adding a
positive dot to the bottom-right strand, we see that it suffices to prove

X

=

X

.

By the third relation in (2.15), the left-hand side is the composite of a single positive
dot on a strand labeled X ⊗X∨ and the counit (the right cap). Then, by the fourth
relation in (2.15), we can slide this positive dot above the counit. Since ξ1 = 11, this
gives the right-hand side above. �

If C is a braided strict pivotal category and X ∈ Ob(C ), then we define the
invertible dots

(4.10)
X

:=

X

,

X

:=

X

.

It then follows from (4.8) that dots slide over cups and caps:

(4.11) = , = , = , = .

If X is self-dual, so that X = X∨, the above convention for open dots is still
valid, but not very useful in practice. As noted in Remark 4.1, one typically denotes
the identity of a self-dual object by an unoriented strand, in which case we cannot
introduce the open dot as above. Instead, we have

(4.12) = , = , = , = .

Remark 4.4. — Many of our categories will have generating morphisms given by
braidings for the generating objects and possibly cups and caps coming from dual
objects. We will want to give a presentation for the affinization of such a category C ,
following Theorem 2.6, by adjoining the ξX for X ranging over the set of generating
objects. Then ξX is defined on all objects using the third relation in (2.15). We impose
the first relation in (2.15) (and then the second relation follows) and then it remains to
impose the fourth relation in (2.15) with the coupon there ranging over the generating
morphisms of C . When the coupon is a braiding on generating objects X and Y , we
have, using the first two relations in (2.15)

X Y

=

YX

=

X Y

.

So the fourth relation in (2.15) is automatically satisfied when the coupon is a braid-
ing. If the coupon is a right cap, then, as explained in the proof of Theorem 4.3, the
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fourth relation in (2.15) is equivalent to

X

=

X

,

and similarly for left caps. Thus, it suffices to impose the cap-slide relations in (4.11)
(for non-self-dual objects) or (4.12) (for self-dual objects); the corresponding cup
relations then follow using (4.2) and (4.4).

5. Tangles

Many of the examples to be discussed in the sequel will be constructed from cate-
gories of tangles. In this section, we fix our conventions and recall some concepts that
will be common to many of these examples.

Let
D = (0, 1)2 and A = S1 × (0, 1)

be the disc and the annulus, respectively. In order to make various categories of tangles
strict, we need to fix a countable number of points in D, which will be the possible
endpoints of our tangles. We choose the points

(5.1) Pn = (1− 1/2n, 1/2) , n ∈ Z>0.

We make the identification

(5.2) A = ([0, 1]× (0, 1))/ ∼,

where ∼ is the relation given by (0, b) ∼ (1, b) for all b ∈ (0, 1), and we also view
the Pn as points in A. Up to isomorphism, our categories will not depend on the
particular choice of points. We will typically draw them as equally spaced, or adjust
the spacing to the particular tangle we draw.

We let FOT (D) be the category of framed oriented tangles over D. Its objects
are finite sequences (ε1, . . . , εn) of elements of {↑, ↓}. The unit object 1 is the empty
sequence. Morphisms in FOT (D) from (ε1, . . . , εm) to (ε′1, . . . , ε

′
n) are framed oriented

tangles in D × [0, 1], up to ambient isotopy, with endpoints

({P1, . . . , Pm} × {0}) ∪ ({P1, . . . , Pn} × {1})

such that the orientation of the tangle at each Pi×{0} agrees with εi, the orientation
at each P ′i × {1} agrees with ε′i, and the framing at the point Pi × {0} (respectively,
Pi × {1}) points towards Pi+1 × {0} (respectively, Pi+1 × {1}). We allow tangles to
have closed components. For example,

∈ HomFOT (D)((↓, ↑, ↑, ↑, ↑, ↓), (↑, ↑, ↓, ↑)),

where we adopt the convention of blackboard framing (i.e., the framing is parallel
to the page). The composite f ◦ g is given by placing f above g and rescaling the
vertical coordinate. The category FOT (D) is a strict monoidal category, with tensor
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product f ⊗ g given by placing the f to the left of g and rescaling. Objects can be
written as (possibly empty) tensor products of the objects ↑ and ↓.

We let OT (D) denote the strict monoidal category of oriented tangles over D. This
is defined as above, but without the framing. Similarly, forgetting orientations, we let
FT (D) and T (D) denote the strict monoidal categories of framed tangles over D and
tangles over D, respectively. Here the objects are natural numbers, since we have no
orientations of the endpoints.

Replacing the disc D by the annulus A, we obtain the categories FOT (A), OT (A),
FT (A), and T (A) of framed oriented tangles, oriented tangles, framed tangles, and
tangles over the annulus. We draw these by cutting along {(0, b, c) : b∈(0, 1), c∈ [0, 1]}
(see (5.2)) in order to draw, for example,

(5.3) ∈ HomFOT (A)(↑ ⊗ ↑ ⊗ ↓, ↑ ⊗ ↓ ⊗ ↑ ⊗ ↓ ⊗ ↑),

where we identify the dashed vertical edges. We always isotope tangles so that they
intersect the cut transversely.

The categories FOT (A), OT (A), FT (A), and T (A) are also strict monoidal cate-
gories, although some care must be taken with the tensor product. Viewing A× [0, 1]

as the cylinder, the tensor product f ⊗ g is given by placing the cylinder for g inside
the cylinder for f , then rescaling and isotoping the endpoints of the tangles so that
the endpoints of g are to the right of those of f (preserving the relative order of the
endpoints in f and the endpoints in g). In terms of diagrams as in (5.3), this corre-
sponds to placing the diagram of g to the right of the diagram of f , and then passing
all strands of f exiting the right side of its diagram over the diagram for g and all
strands of g exiting the left side of its diagram under the diagram for f . For example,

⊗ = .

The category Braid (D) of braids over D is the strict monoidal subcategory of
T (D) whose morphisms have no closed components. Equivalently, Braid (D) is the
strict monoidal subcategory of OT (D) with objects generated by the object ↑ and
morphisms containing no closed components. We define Braid (A) similarly.

For a commutative ring k, we use a subscript k to denote the k-linearization of a
strict monoidal category. For example, FOT (D)k is the k-linearization of FOT (D).

Many of the examples to be introduced in the sections to follow share some conven-
tions and defining relations. In order to make our presentation efficient, we introduce
these first here.

The “oriented” categories to follow will be generated by two objects, ↑ and ↓,
whose identity morphisms we denote by an upward and downward strand, respectively.
Morphisms will be string diagrams with oriented strings. The domain and codomain
of such diagrams can be read from the orientations of the strands at the bottom and
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top of the diagram in the usual way. The “unoriented” categories will be generated by
a single object I, whose identity morphism we denote by an unoriented strand. String
diagrams will then involve unoriented strings.

The following relations will be important (here z, t, δ ∈ k):

= = , = , = ,(R0)

= = ,(R1)

= ,(FR1)

= = ,(R2)

= ,(R3)

+ = z + z ,(KS+)

− = z − z ,(KS−)

:= q + q−1 ,(KB)

− = z ,(CS)

= t ,(T)

= δ11.(D)

= , = , = = ,(UA)

= , = , = , is invertible.(OA)

We will also use oriented versions of (R0), (R1), (FR1), (R2), and (R3), referring
to them by the same labels. We will interpret the above both as relations in strict
monoidal categories described by generators and relations, and also as relations on
(k-linearizations of) tangle categories over the disc or annulus. When viewing them
as relations on tangle categories, they are local relations drawn using the conventions
outlined earlier in this section. The relations (KS+), (KS−), (KB), and (CS) are called
the Kauffman skein relation, Dubrovnik skein relation (or Kauffman skein relation in
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its Dubrovnik form), Kauffman bracket skein relation and Conway skein relation,
respectively.

We now recall some other relations that follow from various combinations of the
above. First, note that (R0) implies the “windmill relation”:

(W) (R0) =⇒ = , = .

Also, it is a straightforward exercise to see that

(5.4) (R0), (R2), (R3) =⇒ =

 −1

, =

 −1

,

and this implication also holds for the strands oriented in either direction. Thus, if
(R0), (R2), and (R3) hold, then relations (FR1) & (T) suffice to straighten all twists,
in both the oriented and unoriented settings.

Next we consider bubbles. Relations (R0) and (R2) imply that the bubble is strictly
central:

(R0) + (R2) =⇒ =

(The same implication holds in the oriented case.) Hence it is natural to impose the
dimension relation (D). In fact, adjoining an indeterminate δ to the coefficient ring
and then imposing (D) simply corresponds to viewing the bubble as an element of
the coefficient ring. In the oriented case, (FR1) and (T) imply that the clockwise and
counterclockwise bubbles are equal:

(5.5) (FR1) + (T) =⇒ = t−1 = .

Thus, in the presence of (FR1) and (T), imposing (D) for the clockwise bubble auto-
matically means (D) is also satisfied for the counterclockwise bubble.

6. Towers of algebras

Many families of algebras appearing in representation theory can be combined into
a tower. We discuss some of these families here, using the language of strict monoidal
categories. We assume that all categories are linear over a commutative ground ring
k.

Suppose C is a strict monoidal category such that
– the objects of C are generated by a single object X, and
– we have HomC (X⊗n, X⊗m) = 0 when m 6= n.

For each n ∈ N, we have the endomorphism algebra C (n) := EndC (X⊗n). The
collection C (n), n ∈ N, is sometimes called a tower of algebras in the literature.

If C is balanced, then, under the functor (3.6), the elements 1
⊗(n−i)
X ⊗ξX⊗1

⊗(i−1)
X ,

1 6 i 6 n, are mapped to

(6.1) Ji,n := 1
⊗(n−i)
X ⊗

(
βX⊗(i−1),X ◦ (1

⊗(i−1)
X ⊗ θX) ◦ βX,X⊗(i−1)

)
∈ C (n).
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For fixed n, the elements J1,n, . . . , Jn,n are pairwise commuting elements of C (n).
We call them the Jucys–Murphy elements of C (n) since, in our examples below, they
will correspond to classical Jucys–Murphy elements.

In fact, in many of the examples in this section, we have θX = 1X . Then the twist
on arbitrary objects X⊗n is determined recursively by (3.2). In this case, we have

(6.2) Ji,n = 1
⊗(n−i)
X ⊗

(
βX⊗(i−1),X ◦ βX,X⊗(i−1)

)
.

6.1. Category of braids. — The category Braid (D) of braids over the disc is isomor-
phic to the strict monoidal category generated by a single object ↑, and morphisms

, ,

subject to the relations (R2) and (R3), with the strands oriented upwards. (The
orientation of the strands does not play an important role here.) We will identify
these two categories. It follows that Braid (D) is the free braided monoidal category
generated by a single object; see, for example, [Yet01, Th. 5.6]. It is balanced, with
twist determined by θ↑ = 1↑. The endomorphism algebra EndBraid (D)(↑⊗n) is the
group algebra of the braid group of type An−1 and the elements Ji,n of (6.2) are the
usual Jucys–Murphy elements.

Proposition 6.1. — The affinization Aff(Braid (D)) of the category of braids over the
disc is isomorphic to the category Braid (A) of braids over the annulus.

Proof. — Consider the functor F : Aff(Braid (D))→ Braid (A) that is the identity on
objects, and is given on morphisms as follows. Given a braid f ∈ Braid (D), we can
naturally view it as a braid over A via (5.2). We define

F (ξ↑) = and F (ξ−1
↑ ) = ,

where we view these as braids over A by identifying the vertical edges, as in (5.3).
It is straightforward to verify that F respects the relations (2.1) and (2.2) and that
it is a monoidal functor.

Now consider the functor G : Braid (A) → Aff(Braid (D)) that is the identity on
objects, and is given on morphisms as follows. Given a braid f over the annulus, we
cut the annulus as explained in Section 5 to obtain a tangle drawn in a rectangle with
vertical edges identified. After isotoping if necessary, this diagram is a composite of
diagrams not intersecting the vertical edges and diagrams of the form

(6.3) and ,

where there can be an arbitrary number of strands (including zero) in the middle
(i.e., not intersecting the vertical edges of the rectangle). We then define G on such a
morphism by declaring that it sends tangles not intersecting the vertical edges to the
same tangles, naturally interpreted as tangles over the disc, and the tangles (6.3) to
ξ↑⊗n,↑ and ξ−1

↑⊗n,↑, respectively, where n is the number of strands in the middle of the
diagrams (not intersecting the vertical edges). The relations (2.2) ensure that G is
well defined, and it is straightforward to verify that F and G are mutually inverse. �
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Corollary 6.2. — The category Braid (A) of braids over the annulus is isomorphic to
the strict monoidal category generated by a single object ↑, morphisms , , and
an invertible morphism , subject to the relations (R2), (R3), and the first relation
in (OA).

The endomorphism algebra EndBraid (A)(↑⊗n) is the extended affine braid group of
type An−1, which is isomorphic to the braid group of type Bn. We refer the reader
to [GL03, §2] for further discussion of viewing this braid group in terms of cylindrical
braids.

6.2. Hecke algebras. — Let H (D) be the strict k-linear monoidal category obtained
from Braid (D)k by imposing the Conway skein relation (CS). Then the endomorphism
algebra EndH (D)(↑⊗n) is the Iwahori–Hecke algebra of type An−1. (One often sees the
definition with z = q − q−1 for some q ∈ k×.)

Applying our affinization procedure, we obtain the category Aff(H (D)). By The-
orem 2.6, this is the strict monoidal category generated by a single object ↑, and
morphisms

, , ,

subject to the relations (R2) and (R2) with the strands oriented upwards, the relation
(CS), and

= , is invertible.

The endomorphism algebra EndAff(H (D))(↑⊗n) is the affine Hecke algebra of type
An−1. The category H (D) is balanced, with twist determined by θ↑ = 1↑. The ele-
ments Ji,n of (6.2) are the usual Jucys–Murphy elements. An interpretation of affine
Hecke algebras in terms of the cylinder was given in [GL03].

The above discussion can be generalized to the setting of quantum wreath product
algebras, which were introduced in [RS20, Def. 2.1] and depend on a Frobenius alge-
bra A. They are the endomorphism algebras of the quantum wreath product category
defined in [BSW20b, §2]. Affinization of this category yields the quantum affine wreath
product category defined there, whose endomorphism algebras are the quantum affine
wreath product algebras defined in [RS20, Def. 2.5]. When A = k, this recovers the
case of (affine) Hecke algebras described above. When A is the group algebra of a
finite cyclic group, it corresponds to the (affine) Yokonuma–Hecke algebras.

6.3. Symmetric groups. — Let Sym be the free k-linear symmetric monoidal category
on a single object. Thus Sym is the strict k-linear monoidal category generated by a
single object ↑, and morphism , subject to the relations

= = and = .

Then EndSym (↑⊗n) is the group algebra of the symmetric group Sn.
Since Sym is a braided monoidal category, we can apply our affinization procedure.

Is it easy to see, using Theorem 2.6, that EndAff(Sym)(↑⊗n) is isomorphic to the wreath
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product algebra k[x±1
1 , . . . , x±nn ] oSn, where xi corresponds to a positive dot on the

i-th strand, and Sn acts on k[x±1
1 , . . . , x±1

n ] by permutation of the xi.
Note that the endomorphism algebras of Aff(Sym) are not degenerate affine Hecke

algebras. To obtain the latter, one needs to instead consider a q → 1 degeneration of
Aff(H (D)) from Section 6.2.

7. Oriented examples

In this section and the next, we give a number of examples of the affinization of
monoidal categories coming from the theory of tangles and skein theory. In each exam-
ple, we see that affinization of such a category over the disc yields the corresponding
category over the annulus. Furthermore, Theorem 2.6 gives us presentations of these
annular categories involving dot generators.

7.1. Oriented tangles. — The category OT (D) of oriented tangles over the disc is
isomorphic to the strict monoidal category generated by objects ↑, ↓, and morphisms

, , , , , , , , , , , ,

subject to the relations (R0), (R1), (R2), and (R3) for all orientations of the strands.
This category is a strict ribbon category.

Remark 7.1. — There exist more efficient presentations. For instance, using (W), it is
enough to include the upward crossings as generators. One can then use (W) to define
the other crossings. Also, for example, (R1) and (R2) for downward oriented strands
follow from the upward oriented strand analogues, together with (R0). See [Tur89,
Th. 3.2], [FY89, Th. 3.5], or [Kas95, Th.XII.2.2] for details. We choose to include all
the crossings as generators to emphasize the structure as a braided monoidal category.

Proposition 7.2. — The affinization Aff(OT (D)) of the category of oriented tangles
over the disc is isomorphic to the category OT (A) of oriented tangles over the annulus.

Proof. — The proof is analogous to that of Proposition 6.1. �

Corollary 7.3. — The category OT (A) of oriented tangles over the annulus is iso-
morphic to the strict monoidal category generated by objects ↑, ↓, and morphisms

, , , , , , , , , , , , , ,

subject to relations (R0), (R1), (R2), (R3), and (OA).

7.2. Framed oriented tangles. — The category FOT (D) of framed oriented tangles
over the disc is isomorphic to the strict monoidal category generated by objects ↑, ↓,
and morphisms

, , , , , , , , , , , ,

subject to the relations (R0), (FR1), (R2), and (R3) for all orientations of the strands.
As in Remark 7.1, there are actually more efficient presentations, i.e., presentations
with fewer generators. See, for example, [FY89, Th. 3.5]. The category FOT (D) is the
ribbon category freely generated by a single object; see [Shu94, Th. 6.4] and [Yet01,
Th. 9.1].
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Proposition 7.4. — The affinization Aff(FOT (D)) of the category of framed oriented
tangles over the disc is isomorphic to the category FOT (A) of oriented tangles over
the annulus.

Proof. — The proof is analogous to that of Proposition 6.1. �

Corollary 7.5. — The category FOT (A) of oriented tangles over the annulus is iso-
morphic to the strict monoidal category generated by objects ↑, ↓, and morphisms

, , , , , , , , , , , , , ,

subject to relations (R0), (FR1), (R2), (R3), and (OA).

7.3. HOMFLYPT skein category. — Fix z, δ ∈ k and t∈ k× satisfying zδ= t− t−1.
Generically, we can work over the ring

k = Z[z, t, t−1, δ]/(zδ − t+ t−1).

The framed HOMFLYPT skein category OS(D; z, t, δ) (resp. OS(A; z, t, δ)) over the
disc (resp. over the annulus) is the category obtained from FOT (D)k (resp. from
FOT (A)k) by imposing the Conway skein relation (CS), the twist relation (T) for
the upward orientation of the strands, and the dimension relation (D) with either ori-
entation of the bubble (see (5.5)). The reason for imposing the condition zδ = t− t−1

in our coefficient ring is that we have

(7.1) (t− t−1)
(T)
= − (CS)

= z
(D)
= zδ .

When z ∈ k×, we have δ = (t − t−1)/z, and so we can omit δ from the notation.
In this case, we denote the category by OS(D; z, t) (resp. OS(A; z, t)). The category
OS(D; z, t, δ) was first introduced in [Tur89, §5.2], where it was called the Hecke
category (not to be confused with the more modern use of this term, which is related
to the category of Soergel bimodules). Our choice of the notation OS comes from
oriented skein.

The category OS(D; z, t) underpins the HOMFLYPT polynomial in the following
sense. Given an oriented link diagram L, define writhe(L) to be the number of posi-
tive crossings minus the number of negative crossings in L. Viewing L as an element
of EndOS(D;z,t)(1), there is a unique scalar HL(z, t) ∈ k such that t−writhe(L)L =

HL(z, t)δ11. (The factor of δ appears here to normalize the polynomial so that
HL(z, t) = 1 when L is the unknot.) If k = Z[z, z−1, t, t−1], then HL(z, t) is precisely
the HOMFLYPT polynomial of L. Since the writhe number of a knot is independent
of its orientation, this gives an invariant of unoriented knots. The Alexander, Conway,
and Jones polynomials are all specializations of the HOMFLYPT polynomial.

Proposition 7.6. — The affinization Aff(OS(D; z, t, δ)) of the framed HOMFLYPT
skein category over the disc is isomorphic to OS(A; z, t, δ), the framed HOMFLYPT
skein category over the annulus.

Proof. — The proof is analogous to that of Proposition 6.1. �
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Corollary 7.7. — The framed HOMFLYPT skein category OS(A; z, t, δ) over the
annulus is isomorphic to the strict monoidal category generated by objects ↑, ↓, and
morphisms

, , , , , , , , , , , , , ,

subject to relations (R0), (FR1), (R2), (R3), (CS), (T), (D), and (OA).

The presentation from Corollary 7.7 implies that OS(A; z, t) is isomorphic to the
affine oriented skein category AOS(z, t) of [Bru17, §4], which is also the quantum
Heisenberg category of central charge zero (see [BSW20a]). The functor OS(A; z, t)→
OS(D; s, t) from (3.6) corresponds to the functor described in [Bru17, Lem. 4.2] after
rescaling the dots by a factor of t.

8. Unoriented examples

In this section we continue our study of examples of the affinization of monoidal
categories, now focussing on unoriented categories of tangles and skein categories.

8.1. Tangles. — The category T (D) of tangles over the disc is isomorphic to the
strict monoidal category generated by a single object I, and morphisms

, , , ,

subject to the relations (R0), (R1), (R2), and (R3); see [FY89, Th. 3.5]. The category
T (D) is a strict ribbon category.

Proposition 8.1. — The affinization Aff(T (D)) of the category of tangles over the
disc is isomorphic to the category T (A) of tangles over the annulus.

Proof. — The proof is analogous to that of Proposition 6.1. �

Corollary 8.2. — The category T (A) of tangles over the annulus is isomorphic to
the strict monoidal category generated by a single object I, and morphisms

, , , , , ,

subject to the relations (R0), (R1), (R2), (R3), and (UA).

8.2. Framed tangles. — The category FT (D) of framed tangles over the disc is iso-
morphic to the strict monoidal category generated by a single object I, and morphisms

, , , ,

subject to the relations (R0), (FR1), (R2), and (R3); see [Tur89, p. 436]. It is a strict
ribbon category.

Proposition 8.3. — The affinization Aff(FT (D)) of the category of framed tangles
over the disc is isomorphic to the category FT (A) of tangles over the annulus.

Proof. — The proof is analogous to that of Proposition 6.1. �
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Corollary 8.4. — The category FT (A) of framed tangles over the annulus is isomor-
phic to the strict monoidal category generated by a single object I, and morphisms

, , , , , ,

subject to the relations (R0), (FR1), (R2), (R3), and (UA).

8.3. Kauffman skein category. — Let ε ∈ {1,−1}, and fix z, δ ∈ k, t ∈ k× satisfying
z(δ + ε) = t+ εt−1. Generically, we work over the ring

k = Z[z, t, t−1, δ]/(z(δ + ε)− t− εt−1).

The Kauffman skein categories KSε(D; z, t, δ) over the disc are the categories obtained
from FT (D)k by imposing the relation (KSε) (i.e., (KS+) when ε = 1 and (KS−) when
ε = −1), the twist relation (T), and the dimension relation (D). Replacing the disc D
by the annulus A, we get the analogous categories over the annulus. One might also
use the term Kauffman skein category to refer to the choice ε = 1 and Dubrovnik
skein category to refer to the choice ε = −1.

The reason for imposing the condition z(δ + ε) = t+ εt−1 in our coefficient ring is
that we have

(8.1) (t+ εt−1)
(T)
= + ε

(KSε)
=

(R0)
z + εz

(D)
= z(δ + ε) .

When z ∈ k×, we have δ = 1− ε(t+ εt−1)/z, and we denote the categories simply by
KSε(D; z, t). These categories were introduced by Turaev in [Tur89, §7.7].

The endomorphism algebras EndKS−(D;z,t)(I
⊗n) are the Kauffman tangle algebras,

which are isomorphic to the Birman–Murakami–Wenzl (BMW) algebras; see [Mor10].
Explicit bases for the morphism spaces of KS±(D; z, t) are given in [Tur89, Th. 7.8].
In particular, End(1) is one-dimensional, and this gives rise to link invariants as
for the HOMFLYPT skein category described in Section 7.3. Namely, suppose k =

Z[z, t, t−1, δ]/(z(δ+ε)−t−εt−1). Given an oriented link diagram L, we can view L as an
element of EndKSε(D;z,t)(1). Then there is a unique scalar FL,ε(z, t) ∈ k[z, t, t−1] such
that t−writhe(L)L = FL,ε(z, t)δ11. The scalar FL,1(z, t) is the Kauffman polynomial of
L and FL,−1(z, t) is the Dubrovnik polynomial of L.

It was noted by Lickorish (see [Kau90, p. 466]) that the Kauffman and Dubrovnik
polynomials are essentially equivalent when one extends scalars to a ring including a
square root i =

√
−1 of negative one, in the sense that

FL,1(z, t) = i−writhe(L)(−1)c(L)+1FL,−1(−iz, it),

where c(L) is the number of components of L. More generally, one has the following.

Lemma 8.5. — Suppose k contains a square root i of −1. Then, for each n ∈ N,
we have an isomorphism of algebras

EndKS+(D;z,t,δ)(I
⊗n) −→ EndKS−(D;−iz,it,−δ)(I

⊗n),
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determined by

(8.2)
1I⊗(j−1) ⊗ ⊗ 1I⊗(n−j−1) 7−→ i1I⊗(j−1) ⊗ ⊗ 1I⊗(n−j−1) ,

1I⊗(j−1) ⊗ ⊗ 1I⊗(n−j−1) 7−→ −1I⊗(j−1) ⊗ ⊗ 1I⊗(nj−1) ,

for 1 6 j < n.

Proof. — It is well-known that the elements appearing in (8.2) generate the endo-
morphism algebras of KS±(D; z, t, δ), i.e., the BMW algebras in their original and
Dubrovnik forms. Then it is straightforward to verify, using the standard presenta-
tion of these algebras, that the given map is an isomorphism. �

Because of the above relationship between the two choices of ε, many authors make
the choice that best suits their particular purpose. In the literature, the two choices
are often referred to as “variants” of each other. However, if one is interested in the
full monoidal categories, there is no such relationship, as the following result shows.

Proposition 8.6. — If k is an integral domain of characteristic not equal to two,
then there do not exist any choices of z±, t±, δ± for which KS+(D; z+, t+, δ+) and
KS−(D; z−, t−, δ−) are isomorphic as monoidal categories.

Proof. — Suppose, towards a contradiction, that we have an isomorphism

Ψ: KS+(D; z+, t+, δ+) −→ KS−(D; z−, t−, δ−)

of monoidal categories. Since this induces an isomorphism after we extend the
base ring, we may assume that k is a field. By [Tur89, Th. 7.8], the morphism
space Hom(I⊗2,1) is one-dimensional (in both categories), spanned by . Similarly,
Hom(1, I⊗2) is one-dimensional, spanned by . It follows that Ψ( ) = d and
Ψ( ) = c for some c, d ∈ k. Since Ψ must preserve the first equality in (R0), we
conclude that cd = 1.

Let Rot be the linear operator on End(I⊗2) giving by counterclockwise rotation by
90°. This operation is given by tensoring on the left and right by I, then adding a cap
to the top two strands, a cup to the bottom two strands, then using (R0). For any
f ∈ EndKS+(D;z+,t+,δ+)(I

⊗2), we have

Ψ(Rot(f)) = Ψ

(
f

)
= Ψ(f) = Rot(Ψ(f)).

In particular, Ψ preserves the eigenspaces of Rot. However, it follows from [Tur89,
Th. 7.8] that the endomorphism space EndKSε(D;zε,tε,δε)(I

⊗2) is three-dimensional,
with basis

+ , − , − ε .

In particular, the +1 eigenspace is one-dimensional for ε = 1 and it is two-dimensional
for ε = −1. This contradicts the assumption that Ψ is an isomorphism. �
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Proposition 8.7. — The affinization Aff(KSε(D; z, t, δ)) of the Kauffman skein cate-
gory over the disc is isomorphic to KSε(A; z, t, δ), the Kauffman skein category over
the annulus.

Proof. — The proof is analogous to that of Proposition 6.1. �

By Theorem 2.6, Aff(KSε(D; z, t, δ)) is the strict monoidal category generated by
a single object I, and morphisms

, , , , , ,

subject to the relations (R0), (FR1), (R2), (R3), (KSε), (T), (D), and (UA). For
the choice ε = −1, the category Aff(KS−(D; z, t, δ)) appeared in [GRS20, Def. 1.3],
where the authors called it the affine Kauffman skein category (although they have
made the choice of the Dubrovnik skein relation), and gave a basis theorem for it and
its cyclotomic quotients. The topological interpretation in terms of diagrams on the
cylinder does not seem to appear there. For the choice ε = 1, this category does not
seem to have been studied yet in the literature. The properties of the Jucys–Murphy
elements do not seem to have been explored in either of the two cases.

8.4. Temperley–Lieb category. — For δ ∈ k, the Temperley–Lieb category TL(δ) is
the free k-linear rigid monoidal category generated by a self-dual object of dimension δ.
It is generated by a single object I, and morphisms and , subject to the relation (D)
and the first two equalities in (R0).

For the remainder of this section, assume there exists q ∈ k× such that
(8.3) δ = −q2 − q−2.

Then TL(δ) is braided with the braiding given by

(8.4) := q + q−1 , := q−1 + q ,

and then extended to arbitrary objects using (2.8); see [BSA18, Prop. 2.6] (note that
our q is the q1/2 of [BSA18]). The cups and caps make TL(δ) a strict pivotal category,
and so we can define a twist as in (4.5):

(8.5) θI := = −q3 .

Extending the twist to a general object I⊗n using (3.2) recovers the twist defined in
[BSA18, Prop. 2.10].

Note that the definition (8.4) corresponds precisely to the relation (KB) and its
image under clockwise rotation by 90°. Thus TL(−q2−q−2) is isomorphic to a quotient
of either of the Kauffman skein categories KS±(D; q± q−1,−q3,−q2 − q−2) by (KB).

The category TL(−q2 − q−2) underpins the Jones polynomial just like the ori-
ented skein category underpins the HOMFLYPT polynomial (see Section 7.3). Given
an unoriented link L, let ~L be an oriented link obtained by choosing some orien-
tation of the components of L. Then there is a unique scalar V~L(q) ∈ k such that

J.É.P. — M., 2021, tome 8



Affinization of monoidal categories 819

(−q3)−writhe(~L)L = V~L(q)δ11 in TL(−q2 − q−2). If k = Z[q, q−1] and L is a knot
(in which case the writhe number is independent of the chosen orientation), then
VL(q) is the Jones polynomial of L (a Laurent polynomial in an indeterminate t),
specialized at t = q4.

We can now apply our general affinization procedure to obtain the affine
Temperley–Lieb category Aff(TL(δ)). It is the strict monoidal category generated by
the object I and morphisms

, , , , , ,

subject to the relations (R0), (FR1), (R2), (R3), (KB), and (UA). Alternatively, if we
want a presentation without crossings, Aff(TL(δ)) is the strict monoidal category
generated by an object I and morphisms

, , , ,

subject to the relations from (R0) and (UA) that do not involve crossings, together
with the relation

(8.6) q − q−1 = q − q−1 .

The affine Temperley–Lieb category was introduced in [GL98, Def. 2.5], where the
morphism spaces were defined to be linear combinations of Temperley–Lieb diagrams
on the cylinder. (The q of [GL98] is our q2.) We were not able to find the above
presentation of the affine Temperley–Lieb category, with the relation (8.6), in the
literature.

One can also form the affine Temperley–Lieb category Aff(TL(δ)) for general δ, not
necessarily of the form (8.3). However, one then loses the braided monoidal structure
on TL(δ). Thus we cannot use the presentation coming from Theorem 2.6, and we
lose the monoidal structure on Aff(TL(δ)).

9. Relation to the horizontal trace

In several places in the literature, the horizontal trace is used as the formal concept
embodying the idea of monoidal categories on annuli or cylinders. For example, the
horizontal trace is defined in [BHLŽ17, §2.4], where it is stated that the horizontal
trace of C can be naturally regarded as the category of C -diagrams on the annu-
lus when C admits biadjoints. A particular instance of this can be found in [CK18,
Prop. 4.4], where the authors identify the annular spider category with the horizontal
trace of the usual spider category.

In this section, we give a precise relationship between the horizontal trace and the
affinization of a monoidal category. The two are different in general, but are isomorphic
when C is rigid. This explains why the horizontal trace corresponds to diagrams on the
annulus for rigid categories. For example, the spider category considered in [CK18] is
rigid. However, when C is not rigid, it is the affinization, and not the horizontal trace,
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that naturally corresponds to C -diagrams on the annulus. Below we give examples to
illustrate this distinction.

Suppose C is an essentially small monoidal category. Fix two objects X,Y in C ,
and consider pairs (Z, f), where Z is an object of C and f : X ⊗ Z → Z ⊗ Y is a
morphism in C . We define an equivalence relation on such pairs generated by the
relations

(Z, f ◦ (1X ⊗ g)) ∼ (Z ′, (g ⊗ 1Y ) ◦ f),(9.1)
g ∈ HomC (Z,Z ′), f ∈ HomC (X ⊗ Z ′, Z ⊗ Y ).

The horizontal trace Trh(C ) of C is the category with the same objects as C and with
HomTrh(C )(X,Y ) the set of equivalence classes [Z, f ] of such pairs (Z, f). Composition
of morphisms is given by

(9.2) [Z ′, g : X⊗Z ′ → Z ′⊗Y ]◦[Z, f : W⊗Z → Z⊗X] := [Z⊗Z ′, (1Z⊗g)◦(f⊗1Z′)].

If C is a braided strict monoidal category, then Trh(C ) is a strict monoidal category,
where the tensor product of objects is the same as in C , and the tensor product of
morphisms is given by

(9.3) [Z1, f1 : X1 ⊗ Z1 → Z1 ⊗ Y1]⊗ [Z2, f2 : X2 ⊗ Z2 → Z2 ⊗ Y2]

:= [Z1 ⊗ Z2, (1Z1
⊗ βY1,Z2

⊗ 1Y2
) ◦ (f1 ⊗ f2) ◦ (1X1

⊗ β−1
Z1,X2

⊗ 1Z2
)].

Remark 9.1. — In the case that C is a braided monoidal category, a formula for a
tensor product on Trh(C ) is asserted in [CK18, §2.4.2]. However, the tensor product
given there does not satisfy the properties required of a tensor product in a braided
monoidal category. For example, when C is the category of braids over the disc (see
Section 6.1) with generating object I and f = ηI ◦ εI, then (f ⊗ 1I) ◦ (1I⊗ f) 6= f ⊗ f 6=
(1I ⊗ f) ◦ (f ⊗ 1I) with the tensor product of [CK18, §2.4.2].

Remark 9.2. — It can be helpful to visualize the morphism [Z, f ], f : X⊗Z → Z⊗Y ,
as the following diagram on the cylinder:

(9.4) f

X

Z

Y

where, as usual, we identify the vertical edges. The relation (9.1) then corresponds to
the equality

(9.5) f

X

Z

g

Y

=
f

X

g

Z′

Y

,
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where we think of sliding the coupon g around the cylinder. However, in general, one
should not view this as a precise string diagram. The reason is that the cups and caps
drawn above do not have any precise meaning, since our category may not be rigid!
(This is why we do not orient the strands in (9.4).) This observation is essential, since
it explains the difference between the affinization and horizontal trace constructions.
As we will see below, for non-rigid categories the affinization and horizontal trace
differ in general. We will see in Theorem 9.4 that if our category is rigid then the
affinization and horizontal trace agree, essentially because we can view (9.4) as a
string diagram, with the cup and cap being a unit and counit morphism as in (4.1).

Remark 9.3. — One also sometimes sees the morphism [Z, f ], f : X ⊗ Z → Z ⊗ Y ,
drawn as a diagram on the annulus:

f

However, the same pitfalls are present here as they are with the cylindrical depiction
of Remark 9.2, since the cups and caps appearing in this diagram do not have a precise
meaning in general. See also Remark 2.3.

Theorem 9.4
(a) If C is right rigid, then there is a functor Θ: Aff(C ) → Trh(C ) that is the

identity on objects and is given on morphisms by
(9.6) f 7−→ [1, f ], ξX,Y 7−→ [Y ∨, ηY ⊗ 1X ⊗ εY ], ξ−1

X,Y 7−→ [Y, 1Y ⊗ 1X ⊗ 1Y ],

for morphisms f in C and objects X,Y in C .
(b) If C is left rigid, then there is a functor Θ′ : Trh(C ) → Aff(C ) that is the

identity on objects and is given on morphisms by

(9.7) [Z, f ] 7−→ (ε′Z ⊗ 1Y ) ◦ (1∨Z ⊗ f) ◦ ξX⊗Z,∨Z ◦ (1X ⊗ η′Z) = f

X

ZZ

Y

for objects Z in C and f ∈ HomC (X ⊗ Z,Z ⊗ Y ).
(c) If C is rigid, then the functors Θ and Θ′ are mutually inverse. Hence the

horizontal trace Trh(C ) and the affinization Aff(C ) are isomorphic.
(d) If C is braided and rigid, then the functors Θ and Θ′ are mutually inverse

isomorphisms of monoidal categories.

Proof

(a) Suppose C is right rigid. To verify that Θ is well defined, we must show that
the given images of ξX,Y and ξ−1

X,Y are inverses of each other, and that Θ preserves
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the relations (2.1) and (2.2). For the first assertion, we compute

[Y ∨, ηY ⊗ 1X ⊗ εY ] ◦ [Y, 1Y ⊗ 1X ⊗ 1Y ]

= [Y ⊗ Y ∨, (1Y ⊗ ηY ⊗ 1X ⊗ εY ) ◦ (1Y ⊗ 1X ⊗ 1Y ⊗ 1Y ∨)]

= [Y ⊗Y ∨, 1Y ⊗ ηY ⊗ 1X ⊗ εY ]
(9.1)
= [1, (εY ⊗ 1Y ) ◦ (1Y ⊗ ηY )⊗ 1X ]

(4.2)
= [1, 1Y ⊗ 1X ],

where we used the interchange law in the second equality. A similar computation
shows that

[Y, 1Y ⊗ 1X ⊗ 1Y ] ◦ [Y ∨, (ηY ⊗ 1X) ◦ (1X ⊗ εY )] = [1, 1X ⊗ 1Y ].

Thus the images of ξX,Y and ξ−1
X,Y are inverse, as desired.

Next, note that

Θ(ξ−1
X⊗Y,Z) ◦Θ(ξ−1

Z⊗X,Y ) = [Z, 1Z ⊗ 1X ⊗ 1Y ⊗ 1Z ] ◦ [Y, 1Y ⊗ 1Z ⊗ 1X ⊗ 1Y ]

= [Y ⊗ Z, 1Y ⊗ 1Z ⊗ 1X ⊗ 1Y ⊗ 1Z ] = Θ(ξ−1
X,Y⊗Z).

Taking inverses shows that Θ preserves (2.1). Next, for f ∈ HomC (Y1, Y2) and g ∈
HomC (X1, X2), we compute

Θ(ξ−1
X2,Y2

) ◦Θ(f ⊗ g) = [Y2, 1Y2
⊗ 1X2

⊗ 1Y2
] ◦ [1, f ⊗ g] = [Y2, f ⊗ g ⊗ 1Y2

]

(9.1)
= [Y1, 1Y1 ⊗ g ⊗ f ] = [1, g ⊗ f ] ◦ [Y1, 1Y1 ⊗ 1X1 ⊗ 1Y1 ] = Θ(g ⊗ f) ◦Θ(ξ−1

X1,Y1
),

and so Θ preserves (2.2).
(b) Suppose C is left rigid. To verify that the functor Θ′ is well-defined, suppose

g ∈ HomC (Z,Z ′) and f ∈ HomC (X ⊗ Z ′, Z ⊗ Y ). Then

Θ′([Z, f ◦ (1X ⊗ g)]) =
f

X

Z
g

Y

=
f

X

Z

g

Y

(2.5)
= f

X

Z

g

Y

= f

X

Z

g

Y

= Θ′([Z, (g ⊗ 1Y ) ◦ f)]).

(c) Now suppose C is rigid. We check that the functors Θ and Θ′ are mutually
inverse. For f ∈ HomC (X,Y ), we have

Θ′ ◦Θ(f) = Θ′([1, f ]) = f ◦ ξX,1
(2.3)
= f.
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For objects X,Y in C , we have

Θ′ ◦Θ(ξ−1
X,Y ) = Θ′([Y, 1Y ⊗ 1X ⊗ 1Y ]) = Y

X

Y
(2.5)
=

XY

Y

=

XY

Y

= ξ−1
X,Y .

Thus Θ′ ◦Θ is the identity functor. It is straightforward to verify that Θ ◦Θ′ is also
the identity.

(d) Suppose C is braided and rigid. By part c, it suffices to show that the functor Θ

is a monoidal functor. For morphisms f, g in any monoidal category, we have
f ⊗ g = (f ⊗ 1) ◦ (1⊗ g).

Thus, it suffices to show that Θ(f)⊗Θ(1Z) = Θ(f⊗1Z) and Θ(1Z)⊗Θ(f) = Θ(1Z⊗f)

for all objects Z and morphisms f in Aff(C ). For f ∈ HomC (X,Y ) and Z ∈ Ob(C ),
we have

Θ(f)⊗Θ(1Z) = [1, f ]⊗ [1, 1Z ] = [1, βY,1 ◦ f ◦ (1X ⊗ β−1
1,1)] = [1, f ] = Θ(f ⊗ 1Z).

Similarly, Θ(1Z)⊗Θ(f) = Θ(1Z ⊗ f). For X,Y, Z ∈ Ob(C ), we have

Θ(ξX,Y )⊗Θ(1Z)
(9.6)
= [Y ∨, ηY ⊗ 1X ⊗ εY ]⊗ [1, 1Z ]

(9.3)
= [Y ∨, (1Y ∨ ⊗ βY⊗X,1 ⊗ 1Z) ◦ (ηY ⊗ 1X ⊗ εY ⊗ 1Z) ◦ (1X ⊗ 1Y ⊗ β−1

Y ∨,Z)]

= [Y ∨, (ηY ⊗ 1X ⊗ εY ⊗ 1Z) ◦ (1X ⊗ 1Y ⊗ β−1
Y ∨,Z)]

(R0)
= [Y ∨, (ηY ⊗ 1X ⊗ 1Z ⊗ εY ) ◦ (1X ⊗ βY,Z ⊗ 1Y ∨)]

(9.2)
= [Y ∨, ηY ⊗ 1X ⊗ 1Z ⊗ εY ] ◦ [1, 1X ⊗ βY,Z ]

(9.6)
= Θ(ξX⊗Z,Y ◦ (1X ⊗ βY,Z))

(2.11)
= Θ(ξX,Y ⊗ 1Z)

and

Θ(1X)⊗Θ(ξY,Z)
(9.6)
= [1, 1X ]⊗ [Z∨, ηZ ⊗ 1Y ⊗ εZ ]

(9.3)
= [Z∨, (βX,Z∨ ⊗ 1Z ⊗ 1Y ) ◦ (1X ⊗ ηZ ⊗ 1Y ⊗ εZ) ◦ (1X ⊗ β−1

1,Y⊗Z ⊗ 1Z∨)]

= [Z∨, (βX,Z∨ ⊗ 1Z ⊗ 1Y ) ◦ (1X ⊗ ηZ ⊗ 1Y ⊗ εZ)]

(R0)
= [Z∨, (1Z∨ ⊗ β−1

X,Z ⊗ 1Y ) ◦ (ηZ ⊗ 1X ⊗ 1Y ⊗ εZ)]

(9.2)
= [1, β−1

X,Z ⊗ 1Y ] ◦ [Z∨, ηZ ⊗ 1X ⊗ 1Y ⊗ εZ ]

(9.6)
= Θ((β−1

X,Z ⊗ 1Y ) ◦ ξX⊗Y,Z)

(2.11)
= Θ(1X ⊗ ξY,Z). �
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We now give an example to show that the affinization and horizontal trace are not
isomorphic (or even equivalent) in general.

Example 9.5. — Let C be the free monoidal category on one generating object I. Thus
HomC (I⊗m, I⊗n) is empty when m 6= n and consists of only 1⊗nI when m = n. Then
Aff(C ) is generated by the morphisms ξI⊗m,I⊗n : I⊗(m+n) → I⊗(m+n), m,n ∈ N, and
their inverses. In particular, since ξ1,1 = 11 by (2.3), we have EndAff(C )(1) = {11}.
However, EndTrh(C )(1) = {[I⊗n,1⊗nI ] : n ∈ N} has countably many elements. In terms
of cylindrical diagrams, Trh(C ) contains closed string diagrams wrapping around the
cylinder, while Aff(C ) does not.

On the other hand, EndAff(C )(I) = {ξnI : n ∈ Z} is an infinite cyclic group, while
EndTrh(C )(I) = {[I⊗n, 1⊗(n+1)

I ] : n ∈ N} is an infinite cyclic monoid (whose generator
is not invertible). In terms of cylindrical diagrams, EndAff(C )(I) contains strands that
enter at the bottom of the cylinder, wrap around the cylinder in either direction, and
exit out the top, while in EndTrh(C )(I) such strands can only wrap in one direction.
This illustrates the asymmetry inherent in the definition of the horizontal trace.

The next example illustrates how, in general, it is the affinization of C , and not
its horizontal trace, that naturally corresponds to the category of C -diagrams on the
cylinder or annulus.

Example 9.6. — As we saw in Proposition 6.1 the affinization Aff(Braid (D)) of the
category of braids over the disc is the category Braid (A) of braids over the annulus.
On the other hand, Trh(Braid (D)) is quite different. Similar to the situation in Ex-
ample 9.5, the “braids” in Trh(Braid (D)) can only wrap in one direction around the
cylinder, and one also has closed components wrapping around the cylinder.

10. The vertical trace

The vertical trace, or simply the trace, of a k-linear category C is the k-module

(10.1) Trv(C ) :=

( ⊕
X∈Ob(C )

EndC (X)

)
/ spank{f ◦ g − g ◦ f},

where f and g run through all pairs of morphisms f : X → Y and g : Y → X in C .
We let [f ] ∈ Trv(C ) denote the class of an endomorphism f ∈ EndC (X).

Remark 10.1. — One can also consider the vertical trace of categories that are not
necessarily linear. In this case, one replaces (10.1) by the set

Trv(C ) =

( ⊔
X∈Ob(C )

EndC (X)

)
/ ∼,

where ∼ is the equivalence relation generated by f ◦g ∼ g◦f for all pairs of morphisms
f : X → Y and g : Y → X in C . Since most of our examples of interest are linear
categories, we work in the linear setting in this section. However, all of the results go
through in the not-necessarily-linear setting with the obvious modifications.
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If C is strict pivotal (in particular, this means that it is strict monoidal), we can
naturally think of the trace as consisting of diagrams on the annulus. In particular,
if f is an endomorphism in C , then we picture [f ] as

f .

The fact that [f ◦ g] = [g ◦ f ] in Trv(C ) then corresponds to the fact we can slide
diagrams around the annulus:

f◦g =
f

g
= g f =

g

f
= g◦f .

We also have that Trv(C ) is a k-algebra, with multiplication given by [f ] · [g] = [f⊗g].
This corresponds to nesting of annuli:

f · g = gf .

We refer the reader to [BGHL14] for further details and properties of the trace.
Now suppose C is a strict k-linear monoidal category. Then Aff(C ) is a k-linear

category, and we can pass to its vertical trace Trv(Aff(C ). If C is strict pivotal,
this naturally corresponds to string diagrams drawn on the torus. For example, if
X ∈ Ob(C ), then [ξX ] corresponds to the diagram

X

X

,

where we identity the vertical edges and the horizontal edges, thereby obtaining a
diagram on the torus.

If C is a braided strict k-linear monoidal category, then Aff(C ) is a strict monoidal
category, and hence Trv(Aff(C )) is a k-algebra. If C is also strict pivotal, the prod-
uct on Trv(Aff(C )) corresponds to the nesting of tori. This can be visualized as in
(2.13), except that we only consider classes of endomorphisms and we identity the
top and bottom of the diagrams (as well as the dashed vertical edges). For example,
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for X,Y ∈ Ob(C ), we have

[ξX ] · [1Y ] =

X

X

·
Y

=

YX

X

= [ξY,X ◦ βX,Y ].

The action described in Section 3 induces an action of the trace, as we now explain.

Lemma 10.2. — If C and D are k-linear categories, we have an isomorphism of
k-modules

(10.2) Trv(C �D)
∼=−−→ Trv(C )⊗ Trv(D), [f ⊗ g] 7−→ [f ]⊗ [g],

for f an endomorphism in C and g an endomorphism in D , extended by k-linearity.
If C and D are also monoidal, then (10.2) is an isomorphism of k-algebras.

Proof. — For f1, f2 endomorphisms in C and g1, g2 endomorphisms in D , we have

([f1]⊗[g1])◦([f2]⊗[g2]) = [f1◦f2]⊗[g1◦g2] = [f2◦f1]⊗[g2◦g1] = ([f2]⊗[g2])◦([f1]⊗[g1]).

Thus the map (10.2) is well defined. It is similarly straightforward to verify that the
map

Trv(C )⊗ Trv(D) −→ Trv(C �D), [f ]⊗ [g] 7−→ [f ⊗ g],

is also well defined, and inverse to (10.2). �

Proposition 10.3. — Suppose C is a strict k-linear monoidal category, M is a bal-
anced strict k-linear monoidal category, and F : C →M is a monoidal functor. Then
Trv(M ) is a Trv(Aff(C ))-module, with action given by

(10.3) [f ] · [g] = [f · g], f ∈
⊕

X∈Ob(C )

EndC (X), g ∈
⊕

X∈Ob(M )

EndM (X),

where, on the right-hand side, f · g denotes the action from Theorem 3.2.

Proof. — By (the k-linear version of) Theorem 3.2, we have a k-linear functor
Aff(C ) �M → M . This induces a k-linear map Trv(Aff(C ) �M ) → Trv(M ). By
Lemma 10.2, this induces a k-linear map Trv(Aff(C )) ⊗ Trv(M ) → Trv(M ). The
associativity and unity axioms follow from the corresponding properties of the action
of Aff(C ) on M . �

If C is a balanced strict k-linear monoidal category, then we can take M = C and F
the identity functor in Proposition 10.3 to see that Trv(C ) is a Trv(Aff(C ))-module.
If C is strict pivotal, this action can be interpreted diagrammatically as follows.
As described above, the element [f ] ∈ Trv(Aff(C )) can be viewed as a C -diagram on
the torus, while [g] ∈ Trv(C ) can be viewed as a C -diagram in the annulus. Thickening
the annulus, we view [g] as a diagram in the solid torus. Then [f ] · [g] is obtained by
placing this solid torus inside the torus carrying the diagram of f , viewing the result
as a diagram in the solid torus, which we then project onto the annulus, using the
braiding to formalize what it means for one strand to pass over another.
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Example 10.4. — Recall the framed HOMFLYPT skein category from Section 7.3.
In the language of [MS17], Trv(Aff(OS(D; z, t, δ))) = Trv(OS(A; z, t, δ)) is the HOM-
FLYPT skein algebra of the torus. As explained above, it acts on Trv(OS(D; z, t, δ)),
which is the skein of the solid torus. This action is studied in [MS17].

Recall that the center Z(C ) of a monoidal category C is EndC (1), the endomor-
phism algebra of the identity object. The next result shows that if C is a braided strict
monoidal category (so that Aff(C ) is a strict monoidal category by Proposition 2.5)
that is either left or right rigid, then the vertical trace of C is isomorphic to the center
of Aff(C ).

Theorem 10.5
(a) If C is a right-rigid braided strict monoidal category, then the map

(10.4) Trv(C ) −→ Z(Aff(C )), [f ] 7−→ εX ◦ (f ⊗ 1X∨) ◦ ξ−1
X,X∨ ◦ ηX = f ,

f ∈ EndC (X), is an isomorphism of k-algebras.
(b) If C is a left-rigid braided strict monoidal category, then the map

(10.5) Trv(C ) −→ Z(Aff(C )), [f ] 7−→ ε′X ◦ (1∨X ⊗ f) ◦ ξX,∨X ◦ η′X = f ,

f ∈ EndC (X), is an isomorphism of k-algebras.

Proof. — We give the proof of (a), since the proof of (b) is analogous. Suppose C is a
right-rigid braided strict monoidal category. Recall that the right mate of a morphism
f : X → Y is the morphism

f∨ =

X

Y

f : Y ∨ −→ X∨.

Suppose f : X → Y , g : Y → X are morphisms in C . Letting h := f∨, we have

f

g

(4.2)
=

h

g
=

h

g (4.2)
=

g

f
,

where the second equality uses the analogue of (2.5) for the inverse coil. It follows
that the map (10.4) is well defined.

Now, viewing morphisms in Aff(C ) as string diagrams on the cylinder, every ele-
ment of Z(Aff(C )) is a linear combination of elements of the form

f , f ∈ EndC (X).

We define an inverse to (10.4) by sending this element to [f ]. The argument that this
inverse is well defined is analogous to the argument given above that (10.4) is well
defined. �
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11. Affinization of 2-categories

In this final section, we briefly describe how the concept of affinization can be
generalized to the setting of 2-categories. In a 2-category, we will use juxtaposition to
denote horizontal composition of 1-morphisms and 2-morphisms, and we will use ◦ to
denote vertical composition.

Definition 11.1 (Affinization of a 2-category). — The affinization Aff(C) of a 2-cat-
egory C is the category defined as follows. Objects of Aff(C) are 1-endomorphisms
f : x→ x in C. The morphisms of Aff(C) are obtained from the class of 2-morphisms
σ : f → g in C between 1-endomorphisms by adjoining invertible 2-morphisms

ξf,g : fg −→ gf, f : y −→ x, g : x −→ y, x, y ∈ Ob(C),

and imposing the relations
ξf,gh = ξhf,g ◦ ξfg,h,(11.1)

ξf2,g2 ◦ (τσ) = (στ) ◦ ξf1,g1 ,(11.2)

for all f : z → x, g : y → z, h : x→ y, x, y, z ∈ Ob(C), and all σ : g1 → g2, τ : f1 → f2

for g1, g2 : x→ y, f1, f2 : y → x, x, y ∈ Ob(C).

The reader should compare Definition 11.1 to Definition 2.1. In particular, a strict
monoidal category is the same as a 2-category with one object. In this case, Defini-
tions 2.1 and 11.1 coincide.

As for the affinization of strict monoidal categories, morphisms in Aff(C) can be
naturally interpreted as diagrams on the cylinder. Cutting open the cylinder as in
Section 2, we draw ξf,g and ξ−1

f,g for f : y → x, g : x→ y as the string diagrams

ξf,g =

f

f

g

g

x

y
x

y

, ξ−1
f,g =

f

f

g

g

y

x
y

x

.

Regions of the cylinder are labeled by objects of C, strings, which are allowed to wrap
around the cylinder, are labeled by 1-morphisms in C and these strings can carry
coupons labeled by 2-morphisms in C. For example,

hg

s

p

f

h

p
τ

σ

x
x

y

y zz

is a 2-morphism in Aff(C) for x, y, z ∈ Ob(C), f : y → x, g : y → y, h : x → y,
σ : g → sp, and τ : hf → 1y.

The horizontal trace of a 2-category is defined in [BHLŽ17, §2.4]. The discussion
of Section 9 has a straightforward generalization to the setting of 2-categories. In par-
ticular, the horizontal trace of a 2-category C is isomorphic to Aff(C) if C is rigid, but
the two concepts are different in general. (Since a strict monoidal category can be
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considered as a 2-category with one object, Example 9.5 gives an example illustrat-
ing the difference.) For an arbitrary 2-category, it is the affinization that naturally
corresponds to the category of C-diagrams on the cylinder.
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