Decay estimates for large velocities in the Boltzmann equation without cutoff
Cyril Imbert; Clément Mouhot; Luis Silvestre
Journal de l'École polytechnique — Mathématiques, Volume 7  (2020), p. 143-184

We consider solutions f=f(t,x,v) to the full (spatially inhomogeneous) Boltzmann equation with periodic spatial conditions x𝕋 d , for hard and moderately soft potentials without the angular cutoff assumption, and under the a priori assumption that the main hydrodynamic fields, namely the local mass fdv and local energy f|v| 2 dv and local entropy flnfdv, are controlled along time. We establish quantitative estimates of propagation in time of “pointwise polynomial moments”, i.e., sup x,v f(t,x,v)(1+|v|) q , q0. In the case of hard potentials, we also prove appearance of these moments for all q0. In the case of moderately soft potentials, we prove the appearance of low-order pointwise moments. All these conditional bounds are uniform as t goes to +, conditionally to the bounds on the hydrodynamic fields being uniform.

Cet article considère des solutions a priori f=f(t,x,v) de l’équation de Boltzmann sans hypothèse d’homogénéité spatiale et avec conditions périodiques x𝕋 d , pour des interactions de type potentiels durs ou modérément mous sans troncature angulaire. Sous l’hypothèse a priori que les champs hydrodynamiques associés à la solution : masse locale fdv, énergie locale f|v| 2 dv, entropie locale flnfdv, restent bornés au cours du temps, nous montrons des bornes sur les « moments polynomiaux ponctuels » sup x,v f(t,x,v)(1+|v| q ), q0. Ces moments sont propagés dans le cas des potentiels modérément mous, et apparaissent dans le cas des potentiels durs. Dans le cas des potentiels modérément mous, nous montrons également l’apparition de moments ponctuels d’ordre bas. Toutes ces bornes conditionnelles sont uniformes en temps grand, dès lors que les bornes sur les champs hydrodynamiques sont elles-mêmes uniformes en temps grand.

Received : 2019-03-25
Accepted : 2019-08-05
Published online : 2019-11-08
DOI : https://doi.org/10.5802/jep.113
Classification:  35Q82,  76P05,  35Q20
Keywords: Boltzmann equation, non-cutoff, grazing collisions, regularity, decay, maximum principle, a priori solutions
@article{JEP_2020__7__143_0,
     author = {Cyril Imbert and Cl\'ement Mouhot and Luis Silvestre},
     title = {Decay estimates for large velocities in the~Boltzmann equation without cutoff},
     journal = {Journal de l'\'Ecole polytechnique --- Math\'ematiques},
     publisher = {\'Ecole polytechnique},
     volume = {7},
     year = {2020},
     pages = {143-184},
     doi = {10.5802/jep.113},
     language = {en},
     url = {https://jep.centre-mersenne.org/item/JEP_2020__7__143_0}
}
Imbert, Cyril; Mouhot, Clément; Silvestre, Luis. Decay estimates for large velocities in the Boltzmann equation without cutoff. Journal de l'École polytechnique — Mathématiques, Volume 7 (2020) , pp. 143-184. doi : 10.5802/jep.113. https://jep.centre-mersenne.org/item/JEP_2020__7__143_0/

[1] R. Alexandre, L. Desvillettes, C. Villani & B. Wennberg - “Entropy dissipation and long-range interactions”, Arch. Rational Mech. Anal. 152 (2000) no. 4, p. 327-355 | Article | MR 1765272 | Zbl 0968.76076

[2] R. Alexandre & M. El Safadi - “Littlewood-Paley theory and regularity issues in Boltzmann homogeneous equations. I. Non-cutoff case and Maxwellian molecules”, Math. Models Methods Appl. Sci. 15 (2005) no. 6, p. 907-920 | Article | MR 2149928 | Zbl 1161.35331

[3] R. Alexandre & M. El Safadi - “Littlewood-Paley theory and regularity issues in Boltzmann homogeneous equations. II. Non cutoff case and non Maxwellian molecules”, Discrete Contin. Dynam. Systems 24 (2009) no. 1, p. 1-11 | Article | MR 2476677

[4] R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu & T. Yang - “Uncertainty principle and kinetic equations”, J. Funct. Anal. 255 (2008) no. 8, p. 2013-2066 | Article | MR 2462585 | Zbl 1166.35038

[5] R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu & T. Yang - “Regularizing effect and local existence for the non-cutoff Boltzmann equation”, Arch. Rational Mech. Anal. 198 (2010) no. 1, p. 39-123 | Article | MR 2679369 | Zbl 1257.76099

[6] R. Alexandre & C. Villani - “On the Boltzmann equation for long-range interactions”, Comm. Pure Appl. Math. 55 (2002) no. 1, p. 30-70 | Article | MR 1857879 | Zbl 1029.82036

[7] R. Alonso, J. A. Cañizo, I. Gamba & C. Mouhot - “A new approach to the creation and propagation of exponential moments in the Boltzmann equation”, Comm. Partial Differential Equations 38 (2013) no. 1, p. 155-169 | Article | MR 3005550 | Zbl 1280.82008

[8] R. Alonso, I. M. Gamba & M. Tasković - “Exponentially-tailed regularity and time asymptotic for the homogeneous Boltzmann equation”, 2017 | arXiv:1711.06596

[9] L. Arkeryd - “L estimates for the space-homogeneous Boltzmann equation”, J. Statist. Phys. 31 (1983) no. 2, p. 347-361 | Article | MR 711482 | Zbl 0584.35090

[10] A. V. Bobylev - “Moment inequalities for the Boltzmann equation and applications to spatially homogeneous problems”, J. Statist. Phys. 88 (1997) no. 5-6, p. 1183-1214 | Article | MR 1478067 | Zbl 0979.82049

[11] A. V. Bobylev & I. M. Gamba - “Upper Maxwellian bounds for the Boltzmann equation with pseudo-Maxwell molecules”, Kinet. and Relat. Mod. 10 (2017) no. 3, p. 573-585 | Article | MR 3591124 | Zbl 1353.76075

[12] A. V. Bobylev, I. M. Gamba & V. A. Panferov - “Moment inequalities and high-energy tails for Boltzmann equations with inelastic interactions”, J. Statist. Phys. 116 (2004) no. 5-6, p. 1651-1682 | Article | MR 2096050 | Zbl 1097.82021

[13] M. Briant - “Instantaneous exponential lower bound for solutions to the Boltzmann equation with Maxwellian diffusion boundary conditions”, Kinet. and Relat. Mod. 8 (2015) no. 2, p. 281-308 | Article | MR 3356579 | Zbl 1330.35282

[14] M. Briant - “Instantaneous filling of the vacuum for the full Boltzmann equation in convex domains”, Arch. Rational Mech. Anal. 218 (2015) no. 2, p. 985-1041 | Article | MR 3375544 | Zbl 06481062

[15] M. Briant & A. Einav - “On the Cauchy problem for the homogeneous Boltzmann-Nordheim equation for bosons: local existence, uniqueness and creation of moments”, J. Statist. Phys. 163 (2016) no. 5, p. 1108-1156 | Article | MR 3493188 | Zbl 1342.35203

[16] S. Cameron, L. Silvestre & S. Snelson - “Global a priori estimates for the inhomogeneous Landau equation with moderately soft potentials”, Ann. Inst. H. Poincaré Anal. Non Linéaire 35 (2018) no. 3, p. 625-642 | arXiv:1701.08215 | Article | Zbl 1407.35036

[17] T. Carleman - “Sur la théorie de l’équation intégrodifférentielle de Boltzmann”, Acta Math. 60 (1933) no. 1, p. 91-146 | Article | MR 1555365 | Zbl 0006.40002

[18] T. Carleman - Problèmes mathématiques dans la théorie cinétique des gaz, Publ. Sci. Inst. Mittag-Leffler, vol. 2, Almqvist & Wiksells Boktryckeri Ab, Uppsala, 1957 | MR 98477 | Zbl 0077.23401

[19] C. Cercignani - The Boltzmann equation and its applications, Applied Math. Sciences, vol. 67, Springer-Verlag, New York, 1988 | Article | MR 1313028 | Zbl 0646.76001

[20] P. Constantin & V. Vicol - “Nonlinear maximum principles for dissipative linear nonlocal operators and applications”, Geom. Funct. Anal. 22 (2012) no. 5, p. 1289-1321 | Article | MR 2989434 | Zbl 1256.35078

[21] L. Desvillettes - “Some applications of the method of moments for the homogeneous Boltzmann and Kac equations”, Arch. Rational Mech. Anal. 123 (1993) no. 4, p. 387-404 | Article | MR 1233644 | Zbl 0784.76081

[22] L. Desvillettes & C. Mouhot - “Large time behavior of the a priori bounds for the solutions to the spatially homogeneous Boltzmann equations with soft potentials”, Asymptot. Anal. 54 (2007) no. 3-4, p. 235-245 | MR 2359877 | Zbl 1141.35337

[23] L. Desvillettes & C. Mouhot - “Stability and uniqueness for the spatially homogeneous Boltzmann equation with long-range interactions”, Arch. Rational Mech. Anal. 193 (2009) no. 2, p. 227-253 | Article | MR 2525118 | Zbl 1169.76054

[24] L. Desvillettes & B. Wennberg - “Smoothness of the solution of the spatially homogeneous Boltzmann equation without cutoff”, Comm. Partial Differential Equations 29 (2004) no. 1-2, p. 133-155 | Article | MR 2038147 | Zbl 1103.82020

[25] R. J. DiPerna & P.-L. Lions - “On the Cauchy problem for Boltzmann equations: global existence and weak stability”, Ann. of Math. (2) 130 (1989) no. 2, p. 321-366 | Article | MR 1014927 | Zbl 0698.45010

[26] T. Elmroth - “Global boundedness of moments of solutions of the Boltzmann equation for forces of infinite range”, Arch. Rational Mech. Anal. 82 (1983) no. 1, p. 1-12 | Article | MR 684411 | Zbl 0503.76091

[27] F. Filbet & C. Mouhot - “Analysis of spectral methods for the homogeneous Boltzmann equation”, Trans. Amer. Math. Soc. 363 (2011) no. 4, p. 1947-1980 | Article | MR 2746671 | Zbl 1213.82069

[28] I. M. Gamba, V. Panferov & C. Villani - “Upper Maxwellian bounds for the spatially homogeneous Boltzmann equation”, Arch. Rational Mech. Anal. 194 (2009) no. 1, p. 253-282 | Article | MR 2533928 | Zbl 1273.76373

[29] I. M. Gamba, N. Pavlović & M. Tasković - “On pointwise exponentially weighted estimates for the Boltzmann equation”, SIAM J. Math. Anal. 51 (2019) no. 5, p. 3921-3955 | arXiv:1703.06448 | Article | Zbl 07114504

[30] F. Golse, C. Imbert, C. Mouhot & A. F. Vasseur - “Harnack inequality for kinetic Fokker-Planck equations with rough coefficients and application to the Landau equation”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 19 (2019) no. 1, p. 253-295 | Article | MR 3923847 | Zbl 07050183

[31] M. P. Gualdani, S. Mischler & C. Mouhot - Factorization of non-symmetric operators and exponential H-theorem, Mém. Soc. Math. France (N.S.), vol. 153, Société Mathématique de France, Paris, 2017 | Zbl 06889665

[32] T. Gustafsson - “L p -estimates for the nonlinear spatially homogeneous Boltzmann equation”, Arch. Rational Mech. Anal. 92 (1986) no. 1, p. 23-57 | Article | MR 816620 | Zbl 0619.76100

[33] T. Gustafsson - “Global L p -properties for the spatially homogeneous Boltzmann equation”, Arch. Rational Mech. Anal. 103 (1988) no. 1, p. 1-38 | Article | MR 946968 | Zbl 0656.76067

[34] C. Henderson & S. Snelson - “C smoothing for weak solutions of the inhomogeneous Landau equation”, 2017 | arXiv:1707.05710

[35] C. Henderson, S. Snelson & A. Tarfulea - “Local existence, lower mass bounds, and smoothing for the Landau equation”, J. Differential Equations 266 (2019) no. 2-3, p. 1536-1577 | arXiv:1712.07111 | Article | Zbl 1406.35401

[36] Z. Huo, Y. Morimoto, S. Ukai & T. Yang - “Regularity of solutions for spatially homogeneous Boltzmann equation without angular cutoff”, Kinet. and Relat. Mod. 1 (2008) no. 3, p. 453-489 | Article | MR 2425608 | Zbl 1158.35332

[37] E. Ikenberry & C. Truesdell - “On the pressures and the flux of energy in a gas according to Maxwell’s kinetic theory. I”, J. Rational Mech. Anal. 5 (1956), p. 1-54 | MR 75726 | Zbl 0070.23504

[38] C. Imbert & L. Silvestre - “Weak Harnack inequality for the Boltzmann equation without cut-off”, 2017, to appear in J. Eur. Math. Soc. (JEMS) | HAL:hal-01357047

[39] C. Imbert & L. Silvestre - “The Schauder estimate for kinetic integral equations”, 2018 | arXiv:1812.11870

[40] X. Lu - “Conservation of energy, entropy identity, and local stability for the spatially homogeneous Boltzmann equation”, J. Statist. Phys. 96 (1999) no. 3-4, p. 765-796 | Article | MR 1716814 | Zbl 0962.82062

[41] X. Lu & C. Mouhot - “On measure solutions of the Boltzmann equation, part I: moment production and stability estimates”, J. Differential Equations 252 (2012) no. 4, p. 3305-3363 | Article | MR 2871802 | Zbl 1234.35175

[42] J. C. Maxwell - “On the dynamical theory of gases”, J. Philos. Trans. Roy. Soc. London 157 (1867), p. 49-88

[43] S. Mischler & C. Mouhot - “Cooling process for inelastic Boltzmann equations for hard spheres. II. Self-similar solutions and tail behavior”, J. Statist. Phys. 124 (2006) no. 2-4, p. 703-746 | Article | MR 2264623 | Zbl 1135.82030

[44] S. Mischler & B. Wennberg - “On the spatially homogeneous Boltzmann equation”, Ann. Inst. H. Poincaré Anal. Non Linéaire 16 (1999) no. 4, p. 467-501 | Article | MR 1697562 | Zbl 0946.35075

[45] Y. Morimoto, S. Ukai, C.-J. Xu & T. Yang - “Regularity of solutions to the spatially homogeneous Boltzmann equation without angular cutoff”, Discrete Contin. Dynam. Systems 24 (2009) no. 1, p. 187-212 | Article | MR 2476686 | Zbl 1169.35315

[46] Y. Morimoto & T. Yang - “Local existence of polynomial decay solutions to the Boltzmann equation for soft potentials”, Anal. Appl. (Singap.) 13 (2015) no. 6, p. 663-683 | Article | MR 3376931 | Zbl 1326.35225

[47] C. Mouhot - “Quantitative lower bounds for the full Boltzmann equation. I. Periodic boundary conditions”, Comm. Partial Differential Equations 30 (2005) no. 4-6, p. 881-917 | Article | MR 2153518 | Zbl 1112.76061

[48] A. J. Povzner - “On the Boltzmann equation in the kinetic theory of gases”, Mat. Sb. (N.S.) 58 (100) (1962), p. 65-86 | MR 142362

[49] L. Silvestre - “A new regularization mechanism for the Boltzmann equation without cut-off”, Comm. Math. Phys. 348 (2016) no. 1, p. 69-100 | Article | MR 3551261 | Zbl 1352.35091

[50] L. Silvestre - “Upper bounds for parabolic equations and the Landau equation”, J. Differential Equations 262 (2017) no. 3, p. 3034-3055 | Article | MR 3582250 | Zbl 1357.35066

[51] C. Truesdell - “On the pressures and the flux of energy in a gas according to Maxwell’s kinetic theory. II”, J. Rational Mech. Anal. 5 (1956), p. 55-128 | MR 75726 | Zbl 0070.23505

[52] C. Villani - “A review of mathematical topics in collisional kinetic theory”, in Handbook of mathematical fluid dynamics, Vol. I, North-Holland, Amsterdam, 2002, p. 71-305 | Article | Zbl 1170.82369

[53] B. Wennberg - “The Povzner inequality and moments in the Boltzmann equation”, Rend. Circ. Mat. Palermo (2) Suppl. 45 (1996), p. 673-681, Proceedings of the VIII Int. Conf. on Waves and Stability in Continuous Media, Part II (Palermo, 1995) | MR 1461113 | Zbl 0909.76089