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DECAY ESTIMATES FOR LARGE VELOCITIES IN
THE BOLTZMANN EQUATION WITHOUT CUTOFF

By Cyrit ImserT, CLEMENT Mounior & Lurts SILVESTRE

Asstract. — We consider solutions f = f(¢,xz,v) to the full (spatially inhomogeneous) Boltz-
mann equation with periodic spatial conditions z € T, for hard and moderately soft poten-
tials without the angular cutoff assumption, and under the a priori assumption that the main
hydrodynamic fields, namely the local mass [ f dv and local energy [ flv|? dv and local entropy
J f1n f dv, are controlled along time. We establish quantitative estimates of propagation in time
of “pointwise polynomial moments”, i.e., sup, ,, f(¢,,v)(1 + |v])¢, ¢ > 0. In the case of hard
potentials, we also prove appearance of these moments for all ¢ > 0. In the case of moderately
soft potentials, we prove the appearance of low-order pointwise moments. All these conditional
bounds are uniform as t goes to +oo, conditionally to the bounds on the hydrodynamic fields
being uniform.

Résumié (Décroissance aux grandes vitesses pour les solutions de I’équation de Boltzmann sans
troncature angulaire)

Cet article considére des solutions a priori f = f(¢,x,v) de I’équation de Boltzmann sans
hypothése d’homogénéité spatiale et avec conditions périodiques = € T, pour des interactions de
type potentiels durs ou modérément mous sans troncature angulaire. Sous I’hypothése a priori
que les champs hydrodynamiques associés a la solution : masse locale [ fdv, énergie locale
Ir |v|? dv, entropie locale J fIn f dv, restent bornés au cours du temps, nous montrons des
bornes sur les « moments polynomiaux ponctuels » sup,, ,, f(t,z,v)(1 + |v|?), ¢ > 0. Ces mo-
ments sont propagés dans le cas des potentiels modérément mous, et apparaissent dans le cas
des potentiels durs. Dans le cas des potentiels modérément mous, nous montrons également ’ap-
parition de moments ponctuels d’ordre bas. Toutes ces bornes conditionnelles sont uniformes
en temps grand, des lors que les bornes sur les champs hydrodynamiques sont elles-mémes
uniformes en temps grand.
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1. INnTRODUCTION

1.1. Tue Borrzmany EQuarioN. — The Boltzmann equation models the evolution of
rarefied gases, described through the probability density of the particles in the phase
space. It sits at a mesoscopic scale between the hydrodynamic equations (e.g. the
compressible Euler or Navier Stokes equations) describing the evolution of observable
quantities on a large scale, and the complicated dynamical system describing the
movement of the very large number of molecules in the gas. Fluctuations around
steady state, on a large scale, follow incompressible Navier-Stokes equations under
the appropriate limit.

This probability density of particles is a non-negative function f = f (¢, x, v) defined
on a given time interval I € R and (z,v) € R?xR? and it solves the integro-differential
Boltzmann equation

(1L.1) Ohf +v-Vauf =Q(f, f).
The bilinear Boltzmann collision operator Q(f1, f2) is defined as

Qet= [ [ [AEDRW) = A W] B(o =0l cos0) v do,

where B is the collision kernel and the pre-collisional velocities v), and v' are given
by (see Figure 1.1)

v4wv |[v — vl v+ |v — vy
v = 2*—|— 2*0 and v, = 2*— 2*
The so-called deviation angle 6 is the angle between the pre- and post-collisional
relative velocities (observe that |v — v.| = |[v/ — v}]):
o r r
cosfi= 2 V7% and o= L0
lv—wa] [o" = v v — ]
v — v — v,
sin(0/2) i= —— - and cos(0/2) i = —— - 0.
(6/2) 1= 10 (0/2) 1= 1 -0

The precise form of the collision kernel B depends on the molecular interaction [19].
For all long-range interactions, that is all interactions apart from the hard spheres
model, it is singular at 6 ~ 0, i.e., small deviation angles that correspond to grazing
collisions. Keeping this singularity dictated by physics in the mathematical analysis
has come to be known quite oddly as a non-cutoff assumption. In dimension d = 3,
when this long-range interaction derives from a power-law repulsive force F(r) =
Cr~® with a € (2,400), then B is given by (see [19] and [52, Chap. 1])

B(r,cos0) = r'b(cos)  with b(cos ) ~gg cst (D28

withy = (a—=5)/(a—1) € (—d,1),C >0and s = 1/(a— 1) € (0,1). The singularity
of b at grazing collisions 6 ~ 0 is the legacy of long-range interactions.

JE.P.— M., 2020, tome ;



DECAY ESTIMATES IN THE BOLTZMANN WITHOUT CUTOFF I/|5

Ficure 1. The geometry of the binary collision.

The assumption above is vaguely formulated as far as the singularity is concerned,
the more precise formulation that we will use in this paper is

B(r,cos80) = r7b(cos 0)
(1.2) _
b(cosf) = (sinf/2)~(4=2D+7(tan §/2)~ 25+ Dp(cos 0)

with some smooth b satisfying 0 < 50 <b< El for constants EO, 31 > 0. The precise
mixture of sinus and tangent functions to model the singularity is made for technical
convenience and is no loss of generality: it is easy to check using the symmetry of the
collision process v’ <+ v}, that physical collision kernels satisfy it. It corresponds to
the technical condition (3.1) in [49].

We counsider collision kernels satisfying (1.2) in general dimension d > 2 and with
general exponents v € (—d, 2] and s € (0, 1) that are not necessarily derived from the
inverse power-law formula above. The hard spheres interactions play the role of the
limit case a — oo (7 = 1 and integrable b).

It is standard terminology in dimension d = 3 to denote respectively:

— the case a =5 (v =0 and 2s = 1/2) as Mazwell molecules [42],

— the case a € (5,400) (v € (0,1) and 2s € (0,1/2)) as hard potentials,

— the case a € [3,5) (v € [-1,0) and 2s € (1/2,1]) as moderately soft potentials,
— the case a € (2,3) (v € (—3,—1) and 2s € (1,2)) as very soft potentials.

The limit s — 1 is called the grazing collision limit, and in this limit the Boltz-
mann collision operator converges to the Landau-Coulomb collision operator. It turns
out that the threshold between moderately and very soft potentials corresponds to
v 4 2s = 0. We therefore denote by moderately soft potentials, in any dimension d > 2,
the case v+ 2s € [0, 2].

JE.P.— M., 2020, tome 7



146 C. Insert, C. Mounor & L. StLVESTRE

1.2. THE QUESTION AT HAND. The global well-posedness for solutions to the inho-
mogeneous Boltzmann equation is an outstanding open problem. Since it is a more
detailed model than the Euler and Navier-Stokes equations, and it includes these
equations as limits in certain scalings, one can expect that it will share some of
the (currently intractable) difficulties of these hydrodynamic models. Even in the
spatially homogeneous case, the Cauchy problem is shown to be well-posed without
perturbative assumptions only in the case of moderately soft potentials [23]. Given
that global well-posedness seems out of reach at present time, our more realistic goal
is to show that for suitable initial data f(0,z,v) = fo(z,v), the equation (1.1) has
a unique smooth solution for as long as its associated hydrodynamic quantities stay
under control. Morally, this neglects the hydrodynamic difficulties of the model and
concentrates on the difficulties that are intrinsic to the kinetic representation of the
fluid.

Let us state the longer-term conjecture. Consider the following hydrodynamic quan-
tities

(mass density) M(t,x) = ft,xz,v)dv,
Rd

(energy density) E(t,x) :z/ f(t,z,v) v do,
Rd

(entropy density) H(t,z) := / fln f(t,x,v) dv.
Rd

Consecrure (conditional regularisation). — Consider any solution
e r=([o,7], L' (R x RY))

to (1.1) on a time interval [0,T] for some T € (0,+0o0], such that the hydrodynamic
fields of f remain controlled on this time interval: more precisely assume that for all
points (t,x), the mass density is bounded below and above 0 < mg < M(t,z) < My,
the energy density is bounded above E(t,x) < Ey and the entropy density is bounded
above H(t,z) < Hy (for constants mg, Moy, Eo, Hy > 0). Then this solution is bounded
and smooth on (0,T].

Remarks 1.1

(1) Observe that the contraposition of this statement means that any finite-time
blow-up in solutions to the Boltzmann equation with long-range interactions must
include a blow-up in the hydrodynamic quantity (local mass, energy or entropy di-
verging at some position), or the creation of vacuum (local mass vanishing at some
position). In other words, one of the hydrodynamic bounds above has to degenerate
ast 11T

(2) There are two natural ways in which this conjecture can be strengthened or
weakened:

(a) Strengthening the statement: the blow-up scenario through the creation
of vacuum is likely to be ruled out by further work, which means that the
lower bound assumption on the mass could be removed. Mixing in velocity

JE.P.— M., 2020, tome 7



DECAY ESTIMATES IN THE BOLTZMANN WITHOUT CUTOFF I/|7

through collisions combined with transport effects generate lower bounds in
many settings, see [47, 27, 14, 13], and the assumption was indeed removed
for the related Landau equation with moderately soft potentials in [35]. We
might also expect that the pointwise bounds could be replaced with an LY (L)
bound for F, M and H, similar to the Prodi-Serrin condition for Navier-Stokes
equations.

(b) Weakening the statement: more regularity or decay could be assumed on
the initial data, as long as it is propagated conditionally to the hydrodynamic
bounds assumed on the solution. This would slightly weaken the conjecture but
the contraposed conclusion would remain unchanged: any blow-up must occur
at the level of the hydrodynamic quantities.

1.3. KN()‘VN RESULTS OF CONDITIONAL REGULARISATION IN KINETIC THEORY

1.3.1. The Bolizmann equation with long-range interactions. — In [5], the authors
prove that if the solution f has five derivatives in L?, with respect to all variables ¢,
and v, weighted by (v)? := (14 |v|?)%/? for arbitrarily large powers g, and in addition
the mass density is bounded below, then the solution f is C'*°. Note also that stability
(uniqueness) holds under such H2 ,((v)?) regularity. Note also the previous partial
result [24] and the subsequent follow-up papers [2, 36, 4, 3, 45] in the spatially
homogeneous case, with less assumption on the initial data. Our goal however is to
reduce the regularity assumed on the solution as close to the minimal hydrodynamic
bounds as possible.
The natural strategy we follow goes through the following steps:

(1) A pointwise estimate in L>=((0,T] x R? x R?): observe that hydrodynamic
quantities only control v-integrals on the solution.

(2) A decay estimate for large velocities: the non-compact velocity space is a source
of mathematical difficulties in the Boltzmann theory, and badly thermalised solutions
(e.g. spikes of high-velocity particles) break regularity estimates. Such decay can be
searched in L' (moment estimates) or L> spaces as in this paper.

(3) A regularisation estimate in Hélder spaces: this is where the hypoelliptic nature
of the equation enters the strategy, and such a regularity estimate is in the spirit of
De Giorgi-Nash-Moser theory.

(4) Schauder estimates to obtain higher regularity by bootstrap: this is a standard
principle for quasilinear equations that regularity can be bootstrapped in C* Hélder
spaces, but the non-local integral nature of the collision operator creates new inter-
esting difficulties.

The first step was completed in [49]. The main result in the present paper is the
completion of the second step, i.e., decay estimate for large velocities. The third step,
i.e., the regularisation in C'* was completed in [38]. The bootstrap mechanism to
obtain higher regularity is the piece of the puzzle that currently remains unsolved.
In future work, we intend to address the forth step using the Schauder estimates
from [39].

JE.P.— M., 2020, tome 7



148 C. Imsert, C. Mounor & L. STLVESTRE

1.3.2. The Landau equation. This program of “conditional regularisation” follow-
ing the four steps above has already been carried out for the inhomogeneous Landau
equation with moderately soft potentials, which corresponds to the limit of the Boltz-
mann equation as s — 1, when furthermore v € [—2,0]. The L estimate, as well as
Gaussian upper bounds, were obtained in [16] (first and second steps). The regular-
isation estimate in Holder spaces was obtained in [30] (third step). The fourth step
was completed in [34] in the form of Schauder estimates for kinetic parabolic equa-
tions. The regularity of solutions of the Landau equation is iteratively improved using
Schauder estimates up to C'*° regularity. In the physical case of the Landau-Coulomb
equation (playing the role of the limit case « = 2, vy = —3, s = 1 in dimension 3), the
conjecture is still open: the L> bound is missing (see however partial results in this
direction in [50]), and the Schauder estimates [34] do not cover this case even though
this last point is probably only a milder technical issue.

An important inspiration we draw from the case of the Landau equation is that
the iterative gain of regularity in the spirit of [34] require a solution that decays, as
|[v] — oo, faster than any algebraic power rate |v|~9. We expect the same general
principle to apply to the Boltzmann equation.

1.4. MaiN RESULT. We consider in this paper strong (classical) solutions to the
Boltzmann equation in the torus z € T¢ (periodic spatial boundary conditions) with
decay O((1 + |v|)~°), i.e., polynomial of any order.

Derinition 1.2 (Classical solutions to the Boltzmann equation with rapid decay)
Given T € (0,+oc], we say that a function f : [0,T] x T¢ x R? — [0, +00) is a
classical solution to the Boltzmann equation (1.1) with rapid decay if
— the function f is differentiable in ¢t and x and twice differentiable in v everywhere;
— the equation (1.1) holds classically at every point in [0, 7] x T x R%;
— for any ¢ > 0, (1+ |v])?f (¢, z,v) is uniformly bounded on [0, 7] x T x R<.

We chose the setting of classical solutions. This is natural because we work under
a priori assumptions (the hydrodynamic bounds), and moreover the only theory of
existence of weak solutions available in the case of long-range interactions is the
theory of “renormalized solution with defect measure” [6], that extends the notion of
renormalized solutions of DiPerna and P.-L. Lions [25], and these very weak solutions
are too weak to be handled by the methods of this paper. The rapid polynomial decay
we impose at large velocities is a qualitative assumption that we make for technical
reasons: just like the periodicity in x, it is used to guarantee the existence of a first
contact point in the argument of maximum principle. It is specially needed in the
case 7 > 0. However the estimates in the conclusion of our theorem do not depend
on the decay rate as |v| — oo that is initially assumed for the solution (otherwise,
the theorem would obviously be empty). We discuss in Section 5 how to relax this
qualitative assumption.

JE.P.— M., 2020, tome 7
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Turorem 1.3 (Pointwise moment bounds for the Boltzmann with hard or moderately
soft potentials)

Let v € (—2,2) and s € (0,1) satisfy v+ 2s € [0,2] and f be a solution of the
Boltzmann equation (1.1) as in Definition 1.2 such that f(0,z,v) = fo(z,v) in T¢xRY
and

(1.3) VY (t,x) €[0,T) x T 0<mo<M(t,x)< My, E(t,x)<Ey and H(t,z)< Hy

holds true for some positive constants mg, My, Eo, Hy. It was then proved in [49] that f
satisfies an L a priori estimate depending on these constants (see Theorem 4.1
recalled later); we establish here the following more precise decay estimates at large
velocities.

(1) Propagation of “pointwise moments” for moderately soft and hard potentials.
There exists qo depending on d, s, v, mqg, My, Ey, Hy such that if ¢ = qo and
fo < CA+ |v|)79 for some C > 0 then there exists a constant N depending on C,
mo, Mo, Eo, Ho, q, d, v and s, such that

Vte[0,T), z €T veR:  ft,z,v) <N+ o))" 2.

(2) Appearance of “pointwise moments” for hard potentials. If additionally v €
(0,2) then, for any q > 0 there exists a constant N depending on mg, My, Fo, Ho, q,d,~y
and s and a power 5 > 0 depending on d, q, v and s such that

Vte (0,7), €T veR:  f(t,z,0) SN (1+t77) (14 v))77.

(3) Appearance of lower order “pointwise moments” for moderately soft potentials.
For all v € (=2,0], there exists a constant N depending on mo, My, Eo, Hy,d,~y and s
such that

Ve (0.7], €T veR?,  f(t,x,v) < N(L+t7Y2) (14 o))" 7072

Remarks 1.4

(1) In the third point (3), the “order” of the pointwise decay is lower than what
would ensure integrability in the energy bound [ flv|?>dv < +oo since d+1+~d/2s <
d+1. Since y+2s > 0 (moderately soft potentials), d+1+vd/2s > 1. More precisely, in
dimension 3 and for an inverse power-law interaction force Cr~® this is (3a—7)/2 with
a € [3,5). However this bound is locally (in v) stronger than the energy bound as it is
pointwise, and it does not depend on norms on derivatives through an interpolation
argument.

(2) In the proof of point (2), our reasoning provides 8 = d/(2s) 4+ g/ if ¢ is large,
without claim of optimality.

(3) As discussed in Section 5, see Theorem 5.2, the qualitative assumption of rapid
decay can be relaxed entirely for (3) and for (2) for ¢ = d + 1 and also for (1) when
7 < 0 and ¢ large enough. Finally for (2) it can be weakened to (1+ |v|%) f uniformly
bounded on t € [0, 7], x € T?, v € R for some ¢ large enough.

(4) Tt is conceivable that some versions points (1) and (2) of Theorem 1.3 should
hold in the cutoff case, probably with stronger conclusions. We are interested here in

JE.P.— M., 2020, tome 7



5o C. Imsert, C. Mounor & L. STLVESTRE

the non-cutoff model, so we have not investigated this problem. Note however that
point (3) is likely to be false in the cutoff case, i.e., to be of a strictly non-cutoff
nature.

(5) Note that our conditional bounds are uniform as ¢ — +oo, provided that the
bounds on the hydrodynamic fields are also uniform as ¢ — +o0o. The latter is known
for spatially homogeneous solutions, and in this case our result implies uniform in time
bounds on the pointwise moments in the case of moderately soft potentials which is
new to the best of our knowledge (and improves on the previous results [21, 22]).

1.5. DEcAY AT LARGE VELOCITY IN THE BOLTZMANN THEORY. The study of the decay
at large velocity is central in the study of solutions to the Boltzmann equation, and
has a long history. Such decay is necessary for instance to prove that appropriate
weak solutions satisfy the conservation of the kinetic energy (second moment), and
more generally appears in any regularity estimate.

1.5.1. Moment estimates (weighted L' estimates). — Measuring the decay at large ve-
locity in terms of moments, i.e., weighted integral | f|v|?dv, is a natural step in view
of the fact that the velocity space is unbounded and the collision operator integrates
over all velocities. The study of moments was initiated for Maxwellian potentials
(v = 0) in the spatially homogeneous case in [37, 51]: closed systems of exact differ-
ential equations are derived for polynomial moments and their propagation in time is
shown, without any possibility of appearance. In the case of hard potentials (v > 0)
with angular cutoff (playing the role of “s = 0”) and spatial homogeneity (no z
dependency), the study of moments relies on the so-called Pouvzner identities [48]:

— Elmroth [26] used them to prove that if any moment ¢ > 2 exists initially, then
they remain bounded for all times.

— Desvillettes [21] then showed that all moments are generated as soon as one
moment of order g > 2 exists initially.

— Finally [44, 40] proved that even the condition on one moment of order s > 2
can be dispensed with and only the conservation of the energy is required; it was later
extended to the spatially homogeneous hard potentials without cutoff in [53].

— Then Bobylev [10], through some clever refinement of the Povzner inequality and
infinite summation, proved, for spatially homogeneous hard potentials with cutoff, the
propagation of (integral) exponential tail estimates [ fecwb dv with b € (0,2] and C
small enough if b = 2.

— This result was extended in [12] to more general collision kernels, that remains
variants of hard potentials with cutoff.

— Finally the Bobylev’s argument was improved to obtain generation of (integral)
exponential tail estimates [ feC”l" dv with b € (0,7] in [43, 7).

— The case of measure-valued solutions in the spatially homogeneous hard po-
tentials with cutoff is considered in [41], and the case of the Boltzmann-Nordheim
equation for bosons was addressed in [15].

Let us also mention two important extensions of these methods:

JE.P.— M., 2020, tome 7



DECAY ESTIMATES IN THE BOLTZMANN WITHOUT CUTOFF 1

— In the case of spatially homogeneous moderately soft potentials with cutoff,
Desvillettes [21] proved for v € (—1,0) that initially bounded polynomial moments
grow at most linearly with time and it is explained in [52] that the method applies to
v € [-2,0). This was later improved [22] into bounds uniform in time thanks to the
convergence to equilibrium.

— In [31, §5], the appearance and propagation of polynomial moments L:L°(1 +
|v]?) is proved for the the spatially inhomogeneous Boltzmann equation in z € T¢
for hard spheres, as well as the appearance and propagation of exponential moments
LIW3t(ecl?l). All these results assume bounds on the hydrodynamic quantities similar
to what is assumed in this paper.

1.5.2. Pointwise decay (weighted L estimates). In the spatially homogeneous set-
ting (with cutoff), the study of pointwise decay goes back to Carleman [17, 18], where
it was first studied for radially symmetric solutions f = f(¢,|v|), and was further
developed in [9] (see also the LP bounds in [32, 33]). The first exponential pointwise
bound was obtained in [28] and the latter paper pioneered the use of the comparison
principle for the Boltzmann equation: the authors obtain pointwise Gaussian upper
and lower bounds. The method was extended in [11], and in [29] (using estimates from
[8]) where the authors prove exponential (but not exactly Gaussian) upper bound for
the space homogeneous non-cutoff Boltzmann equation.

Regarding the spatially inhomogeneous setting, it is mentioned in [52, Chap.2,
§2] that: “In the case of the full, spatially-inhomogeneous Boltzmann equation there
is absolutely no clue of how to get such [moment] estimates. This would be a major
breakthrough in the theory”. This refers to unconditional moment bounds, and, as the
result in [31, §5] mentioned above shows, it is expected that some of these estimates
can be extended to the space inhomogeneous case under the assumptions that the
hydrodynamic quantities stay under control. However, moment estimates obtained
using Povzner inequalities would, in the most optimistic scenario, involve an upper
bound on a weighted integral quantity with respect to & and v. There seems to be
no natural procedure to imply pointwise upper bounds from them. Indeed, in order
to apply methods similar to [28, 11, 29] to the space inhomogeneous case, we would
first need strong Lg%, L) (w) moments for some weight w (probably exponential). In
this paper, we bypass any analysis of moment estimates by obtaining pointwise upper
bounds directly.

1.6. StratEGcy oF ProOF. — The proof of the main theorem consists in proving that
the solution satisfies f(¢,x,v) < g(t,v) with g(t,v) := N(¢)(1 + |v|) 79, for different
choices of the function N : (0,+00) — (0,+00) and ¢ € (0,+00). The appearance
of pointwise bounds requires N(t) — +oo as t — 0, whereas the function N(t) is
bounded near t = 0 for proving propagation of pointwise bounds. Without loss of
generality, it is convenient in order to simplify calculations to use instead the barrier
g(t,v) = N(t)min(1, |v|~9).

JE.P.— M., 2020, tome 7
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We then ensure that the comparison is satisfied initially and look for the first time
to > 0 when the inequality is invalidated. We prove the existence of a first contact
point (tg,zg,ve) such that f(¢o,x0,v0) = g(to,vo), and search for a contradiction
at this point. The existence of this first contact point follows from the rapid decay
assumption in Definition 1.2 and the compactness of the spatial domain.

At the first contact point we have f(tg,xo,v0) = g(to,v0). Since the right hand
side does not depend on z, we must have V, f(to,zo,v9) = 0. We also deduce that
O f (to, xo,v0) = Org(to, vo). Therefore, since f solves the equation (1.1), we have

(1.4) 0rg(to,vo) < O f(to, z0,v0) = Q(f, f)(to, xo, vo)-

We then decompose the collision operator (using the so-called Carleman representa-
tion, see (2.1) and (3.2) below) into Q = G+ B+ Qs where G is the “good” term, that
is to say negative at large velocities, B is the “bad” term, treated as a positive error
term at large velocities, and finally Qs is a remaining “non-singular / lower order
term” where the angular singularity has been removed by the so-called “cancellation
lemma”. The core of the proof then consists in proving that the “good” negative term
dominates over all the other terms at large velocities, hence yielding a contradiction.

Remark that the only purpose of the rapid decay assumption in Definition 1.2 is to
obtain this first contact point (¢, zg, vo). In Section 5 we explore a setting in which we
can relax this qualitative assumption: we add a small correction term to the function
g(t,v) in order to ensure the inequality f < g for large values of v; we recover a large
part of Theorem 1.3, but run into technical problems when v > 0 (see Theorem 5.2).

1.7. OPEN QUESTIONS. Here are some natural questions that remain unanswered
and are natural problems to investigate in the future:

— Our result says, for some range of parameters, that the rate of decay of the
solution f(t,x,v) is faster than any power function |v|~? as |v| — oo. The most
desirable result would be to obtain the appearance of exponential upper bounds on
sup,, feClvl"
or [16]. This seems to require new techniques.

— Another open problem regards the range of parameters -y, s for which the bounds
hold. This work is restricted to moderately soft potentials v 4+ 2s € [0,2]. The case

or the propagation of Gaussian upper bound sup, ,, fec‘”|2 as in [28]

v+ 2s € (—1,0) (very soft potentials) is of great interest but seems out of reach
with the current methods and requires new ideas. The non-physical range v + 2s > 2
presents a difficulty in that the energy estimate is insufficient to control the kernel
Ky defined in (2.3).

— It would also be interesting to relax the qualitative assumption of rapid decay in
Definition 1.2 of the solutions we use. We explore this question in Section 5. In the
case v < 0, we recover essentially the same result as in Theorem 1.3 without assuming
the rapid decay at infinity of solutions provided that « + 2s < 1. In the case v > 0,
we can always generate decay of the form f < N|v|~¢~!. However, in order to obtain
an upper bound that decays with a higher power, we need to make the qualitative
assumption that lim|,|_ [v|? f(¢,z,v) = 0 for some power gy that depends on all
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the other parameters. We would naturally expect the estimates in Theorem 1.3 to
hold for solutions with only the energy decay.

1.8. ORGANISATION OF THE ARTICLE. Section 2 reviews quickly results from previous
works that are used in the proof of the main result. The collision operator is divided
into different pieces which are estimated successively in Section 3. Section 4 contains
the proof of the main result. Finally Section 5 discusses how to relax the assumption
of rapid decay.

1.9. Norarion. — For two real numbers a,b € R, we write a A b for their minimum.
Moreover, a < b means that a < Cb with C only depending on dimension, v, s
and hydrodynamic quantities mg, Mo, Eo, Hy. The notation a <, b means that C
may additionally depend on the parameter g. Constants Cy, R, also depend on g,
and can be large. The constant ¢, is “explicit” in Proposition 3.1. We sometimes use
the shorthand [/ = f(v'), fl = f(vl), f = f(v), fx = f(vs). We will also denote
classically: w :=v" — v, w = w/|w|, u:= v, — v, T = u/|ul.

2. PRELIMINARIES RESULTS

2.1. CANCELLATION LEMMA AND CARLEMAN REPRESENTATION. — We split the Boltzmann
collision operator in two, along an idea introduced in [1], and use the so-called can-
cellation lemma from the latter paper to estimate the non-singular part. Then, in the
remaining singular part, we change variables to the so-called Carleman representation
introduced in [17, 18] (see also [52, §4.6] for a review, and developed in the non-cutoff
case in [49, §4]). Given a velocity v, the possible binary collisions can be parametrised
(i) by v« € R% o € S¥! which is sometimes called the “o-representation” given in
the previous section, (ii) by v, € R? and w € S with w := (v — v)/|v/ — v| (see
Figure 1.1) which is sometimes called the “w-representation”, and (iii) by v’ € R? and
v, € v+ (v —v)* (the (d — 1)-dimensional hyperplane) which is called the “Carle-
man representation” to acknowledge its introduction in [17] in the radial case. This
alternative Carleman representation is used, as in previous works, in order to write
the Boltzmann collision operator as an integral singular Markov generator applied to
its second argument, with an explicit kernel depending on its first argument.

The splitting is (without caring for now about convergences of integrals):

Q(fh fz)(’l})

:/Rd . [fl(vi)f2(v’)—fl(v*)fz(v)]de*da
(2.1) xgi=1
— [ HED10) - )] Bdv.do+ fa(0) [ [i) = A(w)] B do

=1 Qs(f1, f2) + Qus(f1, f2),

where “s” stands for “singular” and “ns” stands for “non-singular”.
Let us first consider the non-singular part Qns. Given v € R?, the change of vari-
ables (vi,0) = (v.,0) has Jacobian dv.do = 2971(cosf/2)% dv,.do, which yields
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(same calculation as [1, Lem. 1])

Qulfe2)0) = o) [ [ [ = A0 Bdvdo = f20) (1 + S)(0)

with

S(u ‘Sd 2|/ (sin )4~ 2{(C089/2) dB( |0|/2 cos6‘> —B(|u|,cos€)} dé

w/2

= 1872 ul / (sin 6)%2[(c0s.6,/2) =4~ — 1]b(cos 6) df
0

= Cg|u|77

where we have used the precise form (1.2) of the collision kernel in the second line. The
constant Cg > 0 is finite and only depends on b, d, and ~. In short, the cancellation
lemma is a kind of discrete integration by parts where the singularity of the fractional
derivative is pushed onto the kernel itself.

Let us consider the singular part 5. We change variables (Carleman representa-
tion) according to (vs,0) — (v',v.) as described above. The Jacobian is dv,do =
241y — /|~ — v, | 7472 dv'dv’, (see for instance [49, Lem. A.1]):

(22) Qi 1)) = v, [ Kp 0.1 - fa0)] do
R
where
Ky (v,0") = 1 FL(W))|v — v, |74 Dp(cos 0) dv
|U - U| vl € v+ (v —v)+
1 ~
(23) - | Ao — [T cos6) dus,
IUI - U|d+28 v, € vt+(v/'—v)+

where we have used the assumption (1.2) and in particular the fact that
b(cos ) = v — o/| @025y — g, @D |y — o 725 p(cos ).

The notation p.v. denotes the Cauchy principal value around the point v. Note that
it is needed only when s > [1/2,1).
One can reverse the order of the integration variables to get the alternative formula
, ~
_ / I 1y+2s o) = f2(0)]b
(24) Qs(f1, fo) = p~V-/ fi(vo)v —vi]” /'U/EUJr(vv;)J- v/ — p|d—1+2s dv’.

v! ER4

Note that we have used the following standard manipulation:

/ / F(u,w)dwdu :/ F(u,w)d(w - u) dwdu
ueRd Jw lu u,weRE

= / F(u,w)§(|w\(@~ﬂ))dwdu:/ F(u,w)w|™'6(@ - @) dw du
u,w€eR?

u,weR4
:/ F(u,w) lul d(u-w)dudw = / / |u| F(u,w) dudw.
w,wERT | | weR Julw |’lU|
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2.2. LLOWER BOUND INDUCED BY THE HYDRODYNAMIC BOUNDS. It is classical that, for
each z, the controls on the local mass, energy and entropy, and the non-vacuum
condition, together imply that the mass is bounded below and cannot concentrate in
a zero-measure set: hence it implies pointwise lower bound on non zero-measure sets.

Levmva 2.1 (Lower bound on a set with positive measure). — Under the assumption
(1.3), there exists Ry > 0 such that for all t € [0,T] and x € T¢ there evists a set
D =D(t,x) C Br, such that

Vv e D(t,x), f(t,z,v) =2cy and |D(t,z)|>pn>0
for Ry and p only depending on My, mq, Eo, Hy and dimension.

Proof. — The proof is elementary and can be found for instance in [49, Lem. 4.6]. It
follows from the classical fact that the entropy bound implies the non-concentration
estimate

/ft 2,0) dv Saig,e (Al with @(r) = In(1+7) + [In (r~)] 7

and A a Borel set and | 4| its Lebesgue measure. The energy bound provides tightness
and prevents the mass from being arbitrarily far from the origin. |

2.3. TuE CONE OF NON-DEGENERACY. — We recall from [49, 38] the following more
subtle result.

Lemma 2.2 (Cone of non-degeneracy). — Consider a non-negative function f satisfy-
ing (1.3). Then there are constants cy, Co, i, i’ > 0 (depending on d, v, s, mg, My,
Eqy and Hy) such that for any t € [0,T], x € T? and v € R?, there exists a cone of
directions = = Z(t, x,v) that is symmetric (i.e., Z(t,x,v) = —E(t,x,v)) and so that

Vo eRY, Vo' € v+E(t,z,v), Kf(v,0) = co(l+ o) T30 —of| 7972
and
E(t,z,v) C {w e R? | |v-w| < Colwl|}

and for any r >0
pr? <E
1+l ~

,u/Td

(2.5) SATD S

(t,x,v) N By| <

Proof. — The proof is gathered from [49, Lem. 4.8] and [49, Lem. 7.1]. Observe that
by changing the order of integration, for any integrable function F on R%:

/ / (u) dudw = | Sd 2|/
weSd—1 J{ueRd, uLw} Rd ‘u|

We distinguish the two cases |v| < 2Ry and |v| > 2Ry, where Ry is the upper bound
on elements of D(¢,z) in Lemma 2.1.

JE.P.— M., 2020, tome 7



56 C. Imsert, C. Mounor & L. STLVESTRE

Case when |v] < 2Ry. We estimate

/wesdl /{ueRd

Ipt,e) (v +u)dudw = ’Sd_2’ / Ipt,e) (v + u)lu| ! du
ulw} R4

S IR 3
v’ €D(t,x)

which is bounded below by some positive constant dg > 0 independent of ¢t € R,

5

reT+ 1t ve Bsg,. Because of the upper bound
(2.6) / Lp(t,e) (v +u)du < / du <pg, 1
{ueR?, ulw} {ueR?, |u|<Ro}

following from the boundedness of D(t, z), we deduce that there exists p9, Ao > 0 such
that for all t € R, z € T?! and v € Bypg,, there exists a set Z(¢,z,v) NS~ of unit
vectors w such that |Z(¢,z,v) NS4~ > g and

Vw e E(t, z,v)N st / Ip,z)(v+u)dudw = Ao
{ueR?, ulw}

for some Ao > 0. Since the integrand above is even as a function of w, the cone
E(t,x,v) can be chosen symmetric.

Case when |v] > 2Rg. — We estimate
[ ) tntwdnds= 5 [ ol
wesd—t J{ueRd, ulw} €D (k1)
S
1+ v

for some positive constant d; > 0 independent of t € R, z € T4, v € B3g,- Given
the upper bound (2.6) on the one hand and the fact that the support of the function

w— Ipt,e) (v +u)du
{ueR?, ulw}
is included in the set {w € S¥~! : |w-v| < C} for some constant C' > 0, we deduce
that there exists p1, A1 > 0 such that for all t € R, z € T4! and v € Bapg,, there
exists a set (¢, z,v) N S?~! of unit vectors w such that
M1
1+ v

|2(t,z,v)N Sdil} >

and
Yw e E(t,z,v) NS, / Ip(t,e) (v +u)dudw > Ay
{ueR?, ulw}
Since the integrand above is even as a function of w, the cone Z(¢, x,v) can be chosen

symmetric. It lies by construction in the equatorial region required.
The cone Z(¢, x,v) built above satisfies the statement. O
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Figure 2. The good term: G corresponds to the integration over the
red (plain) line ({v/ € R? : v/ — v L w}). The grey ball is of radius
¢q|v| while the larger ball is of radius |v|/2.

3. TECHNICAL ESTIMATES ON THE COLLISION OPERATOR

We consider a contact point where
(3.1) ft,z,v") < g(t,v') forall ' € RT and  f(t,x,v) = g(t,v).

Since the collision operator does not act on the ¢t and x variables, we omit them in
most of this section to keep calculations uncluttered.

3] . ES'I'IMA'I‘I‘]S OF THE COLLISION OPERATOR AT THE FIRST CONTACT POINT. — In Order to
estimate the singular part Qs(f, f) of the collision operator, we split it into a “good”
term, negative at large velocities, and a “bad” term, treated as a smaller error at large
velocities: define ¢1(q) = ¢~1/20 and

(3.2) Qs(f, f) =6(f, f) + B(f. f)
with
_ / _ |y +2s [fg(’l)/)—fg(’l))]g / /
G(f1, f2) P-V-/U;Kq(q)lvl Ji(v)|v — v /v/ew(vv;)L |U_U/|d71+2s dv” dvy
B(f1, f2) = p.v. N — ol [1F2 o) = L2b 4 g
Go=pv [ pehp—ept [ S

Note first that this decomposition is based on the representation (2.4) but the order
of integration will sometimes be reversed back to the representation (2.2), depending
on technical convenience. Note second that the idea behind this decomposition is to
isolate the “good” configurations when v, is close enough to zero, where the bulk of
the mass is located. Note finally that under assumption (3.1) on f one has Q(f, f) <
Q(f.9) and similarly Q(f, f) < Qs(f. 9) and G(f, /) < G(f,g) and B(f. f) < B(f. ).
We bound from below G(f, g) for large ¢ and G(f, f) for not-so-large ¢, and we bound
from above B(f, f) and Qus(f, f) successively in the next subsections.
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3.2. LOWER BOUND ON THE GOOD TERM § FOR LARGE ¢

Prorosirion 3.1 (Estimate of G(f, g) useful for large ¢). — Let f be a non-negative
function satisfying (1.3) and g = N min(1, |v|79), ¢ > 0. Then there exists a radius
Ry > 1 so0 that

Vo eRY | o] > Ry, G(f,9)(v) S —(1+a)°lv|"g(v)
We first estimate from above the inner integral in the following lemma.

Levmva 3.2. — Let ¢ > 0 and g(v) = Nmin(1, |v|~%). Then for all v € R? such that
|v] =2 and all v, € R? such that |v.,| < c1(q)|v|, we have (with a constant uniform in
q=0)

b(cos 6) s 95
/ ( . [g('l)/) _ g(’]_})] m d'l)/ g —(1 —+ q) N"U| 2 q.
v'evt+(v—v

Proof. — We first prove that this integral is non-positive when (v’ —v) is small enough
with respect to v. We then prove that when (v — v) is large enough in proportion
to v then [v/| is larger than |v| (in this step we use the assumption |v}| < ¢1(q)|v|)
which gives an explicit negative upper bound due to the decay of g. The geometric
interpretation is simple: when v/, is small with respect to v and v is large, then the
cone of possible directions for (v' — v) is close to orthogonal to v, and when (v’ — v)
is not too small v’ leaves B(0, |v]).

Define ¢5(q) := (14+¢)~/?/20 (note the different asymptotic behaviour as compared
to ¢1(g)) and assume first that |[v — v'| < 4ea(g)|v|. Then |[v'| = (1 — 4ea(q))|v] = 1
since |v| > 2, and g(v') = N|v'|7%. By assumption |v| > 1 and thus g(v) = N|v|™%.
The integration kernel is invariant under rotation around the axis (vv*) and therefore

Z(cos )

! ’

/v’Eer(vu;)L [g(v ) — g(v)] W dv
g(cos 0)

— / / /
B /U’E v+ (v—vl)+ [g(v ) B g(v) - vg(v) . (’U B ’U)} m dv’.

Taylor expand the integrand: there is some 6 € (0,1) and vy := v + 6(v' — v) so
that

g(v'>—g<v>—v9<v>-<v'—v>} 7D2< D =) (0 =)

_ | |q2<((I+2)

3 o

Since (v —v") L (v —v}) and |v — v'| < 4ea(q)|v] and |v] < ¢1(q)|v|, we have
o (v = 0)| + v = v]* = v, - (v = 0)[ + [0 = 0f?

cr(q)|l]v" = v + v = vf* < (c1(g) + de2(a)) [ol[v" — ]

lvg - (v = )| <
<
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and |vj] > (1 —4ea(q))|v]. We deduce

(3:4) [90)) —g(v) = Vg(v) - (v' = )]

qN c1(q) + 4ca(q)\2 / 2
<1 ((g42) (L2 )y —of? <
2|vé|q+2((q+ )< 1— 4ea(q) ) )'“ v <0
since
c1(q) + 4ca(q)\ 2 1 5cg \2 1
< - 2 < 5
( 1— 4e3(q) ) 9Ng+1) (a+ )(1—4cq> 3

uniformly for ¢ > 0, due to the smallness assumptions on ¢;(gq) < ¢2(q).
When v/ — v| > 4ca(q)|v|, then (using the smallness and orthogonality properties
as before):

[V = o> + v/ =>4+ 20" (v —v) = [+ [V =]+ 20 (v — )
o] + v = v| (Jv' — v] = 2e1(q) v])
0] + v = v|2e2(q) [v] > (1 + 8ea(a)?)vf?,

F— o = 2ol — o] >

2
2

where we used ¢;1(q) < ¢2(q), and in particular,
(85)  g(v)) — g(v) < =N [1= (1+8e2(0)*) "] ol 1 S = Nol 1,

The last inequality uses 1 — (1 4 8¢2(q)2)~¥2 — 1 — e=4/19° > 0 as ¢ — co. (This is
where we use that cz(q) = O(g~1/?) rather than Q(q~') like ¢1(q).)
We deduce from (3.4) and (3.5) that, if |v}]| < ¢1(g)|v| and |v| > 2 then

, ~ dv’
o 190 g Beos0)
v’ € v+(v—uv)

~ dv’
< ) — b 5 0 v—ov’ c v} 1d—1+2s
/U/EH(U_U;)L [9(v") = 9(0)]b(cOs DX oz ea @ lol} 17— =T

B ~ dv’
S — Nl q//e N b(cos D)X (oo ex (@)1} [y =17

< —Nea(g) > o777 & —¢* No| 7172

~

This achieves the proof of the lemma. O
We can now prove Proposition 3.1.
Proof of Proposition 3.1. — We estimate G(f, g) using Lemma 3.2.

[9(v") = g(v)]b

g
l|d71+25 dU d/U*

6(.9) =v.v. [ fep = v [

vl <er(a)]v] revt(v—vt)L [V =V

S [ Tk,
L l<er @l
< —¢*Nlv|~7H7.

~
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The last inequality follows from the lower bound on b and choosing R, > Roc1(gq) ™1,
where Ry is the radius of Lemma 2.1: then the lower bound of Lemma 2.1 implies a
lower bound on

L g 2o [ gz p
vl |<e1(q)|v

[vi|<Ro
since |v — v}| 2 |v| on the domain of integration (and given |v| > Ry). O
3.3. LOWER BOUND ON THE GOOD TERM G FOR NOT-SO-LARGE ¢. — The coercivity con-

stant (14 ¢)® in the previous estimate is not large enough to dominate other bad and
non-singular terms for not-so-large ¢: we therefore prove a second estimate inspired
by the study of the L> norm in [49].

Prorosirion 3.3 (Estimate of G(f, f) for not-so-large q). Assume [ satisfies (3.1)
for g = Nmin(1, |v|~?) with ¢ > 0. Then there exists Ry > 1 so that
Vv e RY | |U| > Rq, Q(f,f)(v) qu 7g(v)1+2s/d‘v|v+25+2s/d'

Remark 3.4. — Note that the constant here depends on ¢, but we do not track this
dependency since this proposition will be used for not-so-large values ¢ € [0,d + 1].

Proof. — We first claim that the estimate this proposition is implied by the previous
Proposition 3.1 whenever |v| > 1 and N|v|~¢ <, |v|~(¢*Y. Indeed for such choice of ¢

and v one has
Pl g(v) Zg gv) T2/ Ay r2ets/d,

Consider now the case where g(v) > Cy|v|~(¢*1 for a constant C, > 0 large enough
(depending on ¢q) to be chosen later. We proceed as in the proof of Proposition 3.1,
but refine it in that we estimate the difference f(v') — g(v'):

g(f, Nw)

I
<pov | F)lo v:ﬂ“S{ / Wd}d
oL |<er (a0l vevt—v)t V=V

!
— b
:p.v./ f(vi)v—vi””s{/ %dv'
vt <1 (@)v] v vt (v—vl)L |V — V']

no_ / g
+/ [f(’U) /dg(f )2] dv/}dvi
v/ Ev+(v—ul)+ |U_U ‘ Tltes
(note that second principal value is well-defined since f(v) = g(v)).
The first of the two inner integral terms is negative because of Lemma 3.2. Thus

g(f, fw) )
<pov. D —wirnd [ W—m')wd}d,,
o /v;|<c1(q)|v| f(v*)lv v*l { v’ €v+(v—vl )t "U' — v|d71+25 v Vs

<p.v. /Rd [f(v") = g(v")] K5(v,v") dv’ < 0.

where we have exchanged the order of integration and where K5 denotes the
kernel (2.3) with the truncated f(v}) := f(v})Ljys|<er(g)v|- If |v] is sufficiently large,
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the estimates in Lemma 2.2 hold for K? as well since f and f share comparable
bounds on their hydrodynamic quantities.

Let us estimate the measure of points w € Z(¢, z, v), the cone from Lemma 2.2, such
that f(v+ w) > g(v)/2. Note that for sufficiently large |v|, whenever w € Z(t,z,v),
the almost-orthogonality condition in Lemma 2.2 implies

2
o bl > Jof? + fuf? — 20k > -
and therefore
- 9(v) 2 4Eqy
we:(t,x,v);f(v+w)>—}\<—/ Flv+w)dw < .
’{ 2 g(U) weE(t,x,v) |U‘2g(11)
The estimate (2.5) from Lemma 2.2 implies that we can pick r > 0 such that
4°F
2(t,2,0) N By| = 5.
[vl?g(v)

The corresponding r is given by r ~ (|v|_lg(v)_1)1/d and for this choice of r we have

I2(t, z,v) N B,| > 4]{10 EE:flu+w) > @H
This implies that three fourth of the w € E(¢, z,v) N B, satisfy f(v+ w) < g(v)/2.
Going back to our estimate on G, we restrict the domain of integration (since the

integral is non-positive)

G(f, ) < /

E(t,@,0)NBrN{ f(v+w)<g(v)/2}

This is a useful estimate when g(v + w) > g(v)/2 with w € E(¢,z,v) N B,.. Recall
that we assume that g(v) > Cy|v|=¢7! for an arbitrarily large constant C,. Let us
pick C, large so that if g(v) 2 C,lv|~@~1 then

r < (ol ()™)Y < L= (3/4)7] o,

so that g(v+w) > % g(v) for w € B,.. Note that the latter inequality is always satisfied
when ¢ = 0 without extra-condition on v, and for large ¢ the constant C, = O(q).
Therefore, we get

g9(v)
g(faf)g_ 4

[@ —g(v+ w)} K5(v,0") dv'.

/ K5 (v, V') dv’,
E(t,z,0)NB-N{f(v+w)<g(v)/2}

< —glu)fo 2o ttydee

g(v) H
2
where we have used the estimate on the kernel of Lemma 2.2. We use now

g(v)

3
=(t,z,0) N B, N {f(v—l—w) < TH > L E(tw,v) N B~ ol

E(t,x,v)ﬂBrﬂ{f(erw) <

that follows from our choice of r to deduce
G(f, [)(w) S —g(u) o[ 7T25r72 = —g(v)! T2/ d|p|r2st2s/d

which concludes the proof. O
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Remark 3.5. Here, we interpret in terms of the collision process on v, v’, vy, v, the
two last estimates for the good term.
The first estimate given by Proposition 3.1 is generated by the angles 6 such that

v — v 20 1y

ol Tra 0

Hence, in some sense, the singularity is not used fundamentally. It is only used to get
a constant larger and larger for ¢ — +o0, because of the ¢* factor coming for 25 in
the proof of Lemma 3.2.

The second estimate given by Proposition 3.3 is genuinely non-cutoff in nature.
Indeed, it is adapted from [49] where the nonlinear maximum principle for singular
integral operators in the spirit of [20] is used. In particular, the higher exponent on |v|
in Proposition 3.3 is crucial in order to dominate the bad and non-singular terms for

/

|sin(8/2)] =

not-so-large q.

34 [LOWER BOUND ON THE GOOD TERM g FOR q = 0 AND SMALL ¥

Prorosirion 3.6 (Estimate of G(f, f) for ¢ = 0 and small v)
Assume | satisfies (3.1) for g = m (constant function m = m(ty) at the time of
contact). Then we have

G(f. )(w) S —m! T2,

Proof. — The proof is a variant of the previous one. We start from
! ! !
G(f,Hw) < p.v./Rd [f(v") —m] K7(v,v") dv" < 0.
where m = g(t) is the upper bound barrier at the contact point.
We then use that

_ 2My

m 2
w e E(t,z,v) : flo+w) > — ‘é—/ fv+w)dw <
’{ 2} m Jwe=(t,zw)

m
and using again equation (2.5) of Lemma 2.2, we can pick r > 0 such that

M,
|E(t,z,v) N B,| = 8Mo with r ~ (\v|71m*1)1/d
m

and for this choice of r we have
|E(t, z,v) N B,| > 4‘{111 €E(,z,v) : flv+w) > %H

This implies that three fourth of the w € Z(v) N B, satisty f(v + w) < m/2, and

m
g(fa f) < _5 K?(UJ/) dv’
Z(t,z,v)NB.N{f(v+w)<m/2}
<2 K5(v,v') dv’
2 J=(te)nB A {f (vtw)<m/2}

)

< —mfo| 2 md28 5 (¢ 2, 0) N B, N {f(v +w) < %}
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where we have used the estimate on the kernel K? of Lemma 2.2. We use now

9(v)

E(t,x,v)ﬂBrﬂ{f(v—i—w) < 5

3
HEECROLTAETA
that follows from our choice of r to deduce
G(f, ) (v) < —mlo[1H2sp=2s < —plt2s/d,

which concludes the proof. O

3.5. UpPPER BOUND ON THE BAD TERM BB FOR LARGE q. We decompose further the bad
term (see Figure 3)

(3.6) B(f,f) = Bi(f, ) + B2(f, f) + Bs(f. f)

with

Bi(f1, f2)(v)

, .
— (o / v 2s / [fQ(U)ifQ(rU)]b
S R CAVCATE /Jlewv_vgﬁ‘l(”) e

Ba(f1, f2)(v)
— [ a2 )
v’ €R4

AN S LA s | (! Vo — o’ 1725 4o’ do.
) |’Ul _ ’U‘d+25 /viE’U-‘r(v—v’)L X( *)fl( *)| *| *

dv’ dv,.

Bs(f1, f2)(v)
;=/ N GOt 1]
v’ €R4

AN S LA s | (! Vo — o 1725 do’ do’
) |’Ul _ U‘d+2s /UQE’U-&-(U—U’)* X( *)fl( *)| *| *

with X(v}) = 1jjor|zci(q)oy (inherited from good/bad decomposition) and the
v'-integration domain is decomposed as follows:
X1 (0) = Tgws 2y X2(V) = Twi<es@plys X8(0) = Liey(q) ol <lel/2)

with c3(q) := (1/2)(1 4+ ¢q)~ L.

It is intentional that the first term in the decomposition is written with the fv, fv,
representation, while the second and third is written with the fv, fvi representagion.
This corresponds to the respective representations used to estimate each term below.

Observe that when f < g with contact at v, one has By (f, f) < Bi(f,9)-

Prorosiriox 3.7 (Estimate of By(f,g) for all ¢ > 0). Let f be non-negative and
satisfy (1.3). Let g = N min(1, |v|~9) with ¢ > 0. For |v| > 2,

Bi(f,9)(v) S (14 q)*2%v|"2g(v)

with constant uniform in q.
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v+ w

Ficure 3. The bad terms: B; corresponds to the integration over the
intersection of the line with the exterior of the balls, By corresponds
to the integration over the intersection of the line with the grey ball,
and B3 over the intersection of the line with the ring.

Proof. — Since |v| > 2 and (restriction of the domain x1) [v'| > |v]|/2 > 1, we have
g(v) = N|v|~% and g(v') = N|v’'|~? and we further decompose the inner integral as

hio,v)i=pv. [ Xl(v/)w o

v evt(v—v)+
= p-V-/Xl(U/)X{|u7U'|<|v\/2} . —|—p-V-/XI(U/)X{lvf'u’\2|v|/2} cee
= I1’< + Il’>.

The term I; < is estimated following the same argument as in (3.3). We subtract
by symmetry the term Vg(v) - (v/ — v) that vanishes after integration

[9(v') — g(v) = Vg(v) - (v —v)]b
I <(v,v)) = /v/ew(vml X1 (V)Xo |<]v]/2} o — o[d-1+2 do’

and use (3.3) with |vy| = |v + (v —v)| > |v]/2:

dv’
I <(v,v) <29N v o |72 — e ————
1<V, ) S S X1 (U)X {jo—vr <ol /23 [ o

S 2INJo|717% < 27|v| g (v).

The term I; - is even simpler: the singularity is removed by the restriction v’ —v| >
|v]/2 > 1 and the integrability at infinity is provided by the kernel:

b(cos §)
I YK N ! o . P S A— 74
1,>(va*) B oot (ol X1 (v )X{Iv v \>|v\/2}|v | v — 7J|d—1+23 v

S 2N o]~ < 2] g ().
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We deduce that I1(v,v}) < 29)v]72g(v) and we compute
Bi(f,9)(v) = p.v. X(0o) f(W)lw = v " *2 1 (v, 0]) do,
S il R (CAVICA T
vl ER4

< e1(g)~ 029 () o] 2 / CATICA AT

v/, ER4
Sal@ 29l [ fEL+ P
v/ €R4
where we have used in the last lines the fact that, under the restriction |vl| > ¢1(¢)|v]

imposed by X, we have
o= ol S (@) O+ W) S eaa) TP TR TR (L o)
We deduce, since ¢;(q) = O(q~!) that
Bi(f,9)(v) £ (1+q)*27g(v)|v|" (Mo + Eo) < (1 +)*2%(v)[v] 72,
which concludes the proof. |
We recall that the next two estimates are based on the fv, fvi representation.
Prorosition 3.8 (Estimate of By (f, f) for large ¢). — Let f be a non-negative function

satisfying (1.3). Let g = N min(1, [v|~9) with ¢ > d + v + 2s. Assume f < g for all
v € R Then for |v] > 2,

[o]”
BaF 0 S =gy g ?)
Proof. We first estimate from above the inner integral

o) = | (L) W)l — v, 2+ B (cos ) dor,
vl €vt(v—v’)t

</ RWg )l — 0,25+ B(cos 6)
v, €vt(v—v’)+

We have for |[v'| < c3(q)

ol:
ol| = v, — '] = es(g)v]

1/2
o — o'+ o=, 2]"? = es(g) o]

(1= e3(@)?vl* + v — vy ]

> |
> |
[§|v|2+|v R
> (1-

—a3(g)lv]
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Then we write (Jv}| > 1 for v large enough from above, and thus g(v.,) = N|v,|~9):
Bo.) 5 [ X9l = 172 F(cos ) du
vl Evt+(v—o’)+

SN X(wy) oy |7 v — vl P F2 4 do)
vl Ev+(v—o’)+

SN(1- \@Cs(Q))iq/

vl €v+(v—o’)+

_ 1 —q/2
SN(-VEa@) " [ Gl

u€ERI—1

—q 1 o] —1/2 R

<N (1= v2es(q) v|q+v+’“+d(/ 5 + ] |u|v+2s+1du),
weRd—1

where the last integral is finite when ¢ — v —2s — 1 > d — 1, as assumed, with
1 91792 - 1
</ [7 i |u|2} ||yt du) < '
Ri—1 12 q—(v+2s+d)

—q
B(o) S NUZY2ED) L riena
q—(d+~+2s)
We plug our estimate on I into the formula for By (using the control of |v —v/| 7! <
(1 —c3(q))~t|v|~! over the restriction y2):
[f () = f(v)]
B1.N0) = [ ) S )

SN (1= es(g) ™7 o472 (/U,eRd

cN(O- c3(@) ™% (1 - V2es(q))

~ q—(d+~v+2s)
The choice of c3(q) = (1/2)(1 + ¢q) ! shows that the factor
(1- C3(Q))7d725 (1 - \/503(61))7‘]

is uniformly bounded for ¢ > 0, which concludes the proof. |

~ 1 —q/2
O[Sl + o =i 2] o = o2 o

Hence

f@) dv') sup Iz(v,v")

v’

|U|fq+7.

Prorosirion 3.9 (Estimate of Bs(f, f) for large q). Let f be a non-negative function
satisfying (1.3). Assume f < g for all v € R, where g = N min(1, |v|~9) for q >
d+ v+ 2s. Then for all |v| > 2,

Bs(f, f)(v) < (14 q)* ((1 4D 1

a—d+q+ 2@)'”'7729(”)'

Proof. — We first estimate

Bo,) = | KOOIl = [+ 5(cos0) oL,
vl evt(v—2v")t

</ R g0 — v+ 2+ (cos ) o]
v €v+(v—v’)+
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under the conditions c¢3(q)|v| < |v'| < |v|/2 and |[v}| > ¢1(q)|v| imposed by x3 and Y.
We change variable v, = v + |v|u and bound from above (denoting v := v/|v]|)

Bo,o) SN2t [ R @
ue(v—ov’')+

The restriction x(v}) imposes [0+ 4| = ¢1(q) > 0. Close to the singularity |0 + u| ~

c1(q), then || ~ 1 and the integral in % is controlled by O(ci(q)?~179). At large w,

the integral is finite provided that ¢ > d + v + 2s:

1

~U; i)\—i—ﬂ_q a’y+28+1 da<c d*lfq_’_—'
[ Gl Sa@™ " —

We finally plug this estimate into the formula for Bs:
B3(f7 f)(?))
/ [f(vl) - f(’U)]
§ /U,G]Rd X3('U )WI3(U,'U/) d’l}l
1
<N “2(pd=l=q . = @ |2« / (1 12y do’
SNes(@ ™ (74— [Py ),

where we have used the restriction |v| < |v|/2 on x3(v’) to deduce |v — v'| ~ |v|, and
the restriction [v/| > c3(q)|v| to deduce 1 < c3(q)~2|v|~2[v’|?. From the assumption
on the mass and energy of f we get finally

1

Ba(f. 1)) S es(0) (@™ +

ol 2g(v)

which concludes the proof. O

3.6. UPPER BOUND ON THE BAD TERM 3 FOR NOT-SO-LARGE ¢
Prorosirion 3.10 (Estimate of Ba(f, g) + Bs(f, g) for not-so-large q)

Let f be a non-negative function satisfying (1.3). Let ¢ = N min(1, |v|™?) and
q € [0,d+1]. Then for |v| > 2,

o=@ Dg(v) ifqg>d—1,
(Bo + By) (£.9)(0) £ § [oP 2 In(1 + [ol)g(v) ifq=d—1,
|v|7"2g(v) ifg<d—1.

Proof. — Denote Bays := By + Bz and x243(v") := x2(v') + x3(v') = Lgjur<jo|/2}-
Then

82+3(f, g) (’U)

[g(v") —g()]b . O .,
= F)|o — v;ﬂ“S{ / Xogs () L T2 4y Lol
/|v;|>c1(q>|v v vt (v—vl)t v/ — p|d=1+2s
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We use that g(v') — g(v) < 29N (1 + |[v'|)~? in order to write

Bay3(f,g)(v)
N+ [v])~¢

S 2q/ f(v’)|v _ Ul |v+25{/ X2+3(UI)} dv’ d’Ul
W@l ’ v €uot(v—v)) - e B

5 2qN|’U|7d+172S X

<[ sl - v | aral0)(1+ )00 f
[vi[>c1(q)|v] v/ Ev+(v—ul)+

We get

1 ifg>d—1,
//e “ /)LX2+3(U')(1+|U’|)—‘1 dv' <O(v) with O(v):=<In(1+ |v|) ifg=d—1,
* |10 ifg<d— 1.

We deduce that

Bays(f9)(v) S val’d“’%@(v)/ Flv = vy 772 dvl,

[vl>e(g)v]

—_ oY
<N|u|*d+1*259(v)( max %)/ FL) (1+[0l)?) dul,
i>en@lvl vl L[> (@)o]
< Njo| =1 76(v),

which concludes the proof. O

3.7. UPPER BOUND ON THE NON-SINGULAR (LOWER ORDER) TERM (ps

Prorosition 3.11 (Estimate of Qns(f, f))
Assume [ satisfies (3.1) with g = N min(1, |v|~%). Then for v >0

@ns(f, F)(v) S L+ |v])7g(v),
while for v < 0,
Qus(f, ) S 277 g(0) 7 4+ (14 [v])g(v).

Moreover, when ¢ = 0 and v € (—d,0), by using the uniform bound on the local
entropy it is possible to weaken slightly the dependency on g(v) as follows: there is a
function 1) = (r) on R that goes to zero as r — 400 such that

(3.7) Qus(f, ) S 9(0)' 7 (g()) + (1 + [v]) g (v).

The function v is explicit from the proof and depends on My and Hy.
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Pm(gf. We first deal with the easier case v > 0:
QulF, N0) = Csf0) [ flo vl do
R

< 9(v) g fv=w.) ([v =07 + Jo.|7) do.

Sot) [ fo=u) (o=l 1+ 0P) do,
< 9(0) [Eo + (1+ [o]") Mo)
< olg(v),

where we have used |v| > 1.
We now turn to the case v < 0 and pick r < |v|/2 and write

Qns(.} 9’ f) (v)
=C v Vx v—v*“’dv* C v Vx v—v*'ydv*
sf( )/lv mqf( )| | +Csf( )/I fwdl |

V=V, | >T
< 27g(v)? /

[v—vy|<r

[v — vi|” dvs + g(v)r”/ f(vs) doy
]Rn
< 29g(v)*r Y + Mor”,

where we have used in the first integral the fact that |v.| > |v|/2, and |v] > 1. The
optimisation in r gives, for

rimminl () 5]

the estimate
Qus(f. F)(v) S 277 4g(0)t 7/
when g(v) > My279(|v|/2)~%, and otherwise it gives
@ns(f, /)W) < g(0) (1 + |v])7,

which concludes the proof of the second inequality.

Let us finally consider the proof of the third refined inequality in the case v < 0.
We use again the classical fact that the entropy bound implies the non-concentration
estimate

/Af(t,x,v) dv Spro.m, ©(J4])  with o(r) =In(14+7r) + [ln (1"71)]_1

and A a Borel set. Split the integral as

Qus(f, /v) = C’sf(v)/ +C'sf(v)/r o+ Csf() /|vv*>;";

lv—vy|<r1 1< v—va|<ra

with (for g(v) large enough, otherwise the previous estimate is sufficient):
/ -1/ / /
n= () )l <= Gap) oGl
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and apply the L* bound in the first term, the non-concentration estimate in the

second term and the L' bound on the third term to get
M, )}min(1/2,(d+7)/|7|)

— + (1 +|v])7g(v).
e 1+ o]) g (0)

This concludes the proof of this third inequality. O

Quslf: 1) S 9(@)' o

4. I\IAXIMUM PRINCIPLE AND PROOF OF THE UPPER BOUNDS

4.1. Tae stratecy. — We recall that the strategy is to prove that the solution f
remains below a certain barrier function g ensuring the upper bound N (¢)(1 + |v|) =4l
for ¢ > 0 and N(t) a function of time that is either constant (for propagation of
pointwise moments) or singular (for the appearance of pointwise moments) at ¢t — 0.

We consider a first contact point (g, 2o, vp) such that (3.1) holds true. Recall that
the existence of this first contact point is guaranteed by the rapid decay assumption
in Definition 1.2 and the compactness of the spatial domain. At this point, the in-
equality (1.4) would hold. We use the fine structure of the collision operator Q(f, f)
to obtain that it is “negative enough” at large velocities. Concretely, we prove that
the negative “good part” G dominates the other “bad” and non-singular parts of the
collision operator at large velocities. Note that, for higher pointwise moments, the
not-so-large velocities are controlled thanks to the L bound in Theorem 4.1.

We start by revisiting the L> bound of [49] in order to include the minor technical
extensions needed for this paper.

4.2. Tue L* sounxp rrom [49]. The first proof of the L bound for solutions
satisfying (1.3) was obtained by the third author in [49, Th.1.2]. We state here a
slightly refined version.

Tueorem 4.1 (L bound). — Let v € R and s € (0,1) satisfy v+ 2s € [0,2] and f
be a non-negative solution of the Boltzmann equation (1.1) such that (1.3) holds true
for some positive constants mg, Mo, Eo, Hy. Then

Vte (OaT]a Hf(ta')HL"" <‘ZVO<>(]-—’_1‘L7d/28)

for a positive constant No only depending on mg, My, Ey, Hy, dimension, v and s.
Moreover, if || follne < N for N > Nu, then ||f(t,-)||pe < N fort € [0,T].

Remark 4.2, With respect to [49, Th.1.2]: the marginal improvements are the
inclusion of the borderline case v + 2s = 0 and the fact that if the initial data is
bounded, the L> bound is uniform as ¢ | 07. We provide a detailed proof below for
self-containedness and because of these small variations.

Proof. — Without loss of generality, it is enough to show the inequality holds for
t € (0,1]. We consider the barrier g(t,v) := Noot~%?* and consider the equation (1.4)
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at a first contact point to € (0,1] and vy € R%. It is enough to prove that for N,
large enough

d —(d/2s)—
(41) Q(f7f)(t07x07vo) < —%Nooto (@/29) 1'
Observe that when ¢ is constant in v, at the contact point the bad term satisfies

B(f,f)(t(),l’o,’l}o) < 0

and can be discarded. We then apply Proposition 3.3 for |vg| > 1 and Proposition 3.6
for |vg| < 1 to get

G(f, )(to, z0,v0) < —NL2s/d= (/271 4 1y yy+2s+25/d
and Proposition 3.11 (valid for all v) to get
(4.2) Qus(f, f)(to, zo,v0) < Nootad/zs(l + |vo|)Y + 17<0N§O_7/dt6(d/25)+7/25.

In case v + 2s > 0, the exponents of Ny and ¢, Yin the first negative equation
are strictly greater than those in second positive equation. Moreover, the exponent
v+ 2s 4 2s/d of |vg| is strictly greater than all the other exponents v — 2, v and 0.
Therefore by choosing N, large enough, we deduce that

1 - s)— s+2s
QUE )t 20, v0) < =5 No2/ 1 (2711 o200/

and taking N, even greater if necessary, this contradicts (4.1).

The case v+ 2s = 0 (and thus v < 0) is treated similarly but since the inequal-
ity (4.2) is now too weak to show that Qus(f, f) is dominated by G(f, f) for large N,
we use instead the refined inequality (3.7) from Proposition 3.11 to get

Qns(f, f)(to, zo,v0) (Noot_d/zs)1+7/d1/)(Noot_d/25).

With this inequality, we recover that Qns(f, f) is dominated by G(f, f) for N suffi-
ciently large and the contradiction follows as before.
We finally prove the propagation of the L°* bound when it is finite initially. If

_d
Il follLee < N for some N > N, we pick ty € (0,1) such that Not, > = N. By the
same reasoning as before, we obtain

F(t,2,0) < Noo(t + to) /2.

In particular, f(t,xz,v) < N for t € (0,1 — tp). This allows us to extend the upper
bound for a fixed period of time. Iterating this, we extend it for all time. O

Remark 4.3. — Here we present some further interpretation of the cone of non-
degeneracy and the L*° bound. The cone of Lemma 2.1 is a cone of direction for
(v" — ), i.e., the so-called “w” vector of the “w-representation” (see [52, §4.6]):

Aw) ={wes" st {v, : (V) —v) w=0& f(v]) >co & [v}| < Ro}| > 6} .

(The variable v’ remains to be integrated independently of this cone.) This is a set
of directions where the kernel is bounded below in the Carleman representation. The
fact that the set where f is bounded below can be some complicated Borel set in
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a ball near zero does not change fundamentally the argument, which would be very
similar if f > fxp,. The set A(v) is {w € ST : |w-v/|v|]| < |v|7'} or a non-zero
measure-proportion of this set, hence |w-v| < Ry or a non-zero proportion of this set
of directions.

The goal of this cone of direction is to find configurations so that v/ is brought
back near 0 in a zone where f is bounded below, in order to bound from below the
“coefficients” of the operator, i.e., the kernel.

Then this set of directions A(v) creates a cone v’ € Z(v) centred at v and of angles
of order 1/|v| close to orthogonal to v/|v|. Then in [49], see Theorem 4.1 above,
the part of this cone where f < (1/2) max f is bounded below using the Chebychev
inequality and the mass and energy bounds. That is: the assumptions imply that f is,
for a significant amount of the large velocities, far from its maximum, i.e., less than
(max f)/2. On this part of the cone, the coercivity of Q1(f, f) is recovered, and
together with the bounds from above on Qus(f, f), gives the contradiction and the
L barrier.

4.3. APPEARANCE OF POINTWISE MOMENTS WHEN v > 0. — Let us now prove the ap-
pearance of pointwise moments (second part of the theorem), when assuming fur-
thermore that v > 0 and restricting without loss of generality to t € [0, 1]. Consider
g(v) = N(t)min (1,|v|79) where N(t) = Not=? and 3 = (q/7v) + d/2s, and with
q > d+ 1 to be chosen large enough later. We recall that the existence of the first
contact point is granted by our assumptions on the solution (periodic condition in x
and rapid qualitative decay in v).
At the first contact point g(to,vo) = f(to,Zo,vo) and Theorem 4.1 implies that

N(to) min (17 |U0|7q) - g(t07v0) - f(toax()aUO) Noo (]- + tO) 4/2s < Nootad/zsa

where N, is the constant in Theorem 4.1 and we have used tg € [0, 1]. It shows that
|vo| 2 NO1 / 74,7 can be made large by choosing Ny large enough. In particular we can
apply again Propositions 3.1, 3.7, 3.8, 3.9 and 3.11 to get

Q'(f, (o, xo,v0) S —a°|vo|"g(vo) from Proposition 3.1,

, F)(t0, 2o, v0) S q22q|v0|"’ 2g(vo) from Proposition 3.7,

, F)(to, 2o, v0) S \vo|’Y (vo) from Proposition 3.8,

, ) (to, 2o, v0) S |v0|7 g(vo) from Proposition 3.9,

Qns(f, £)(to, xo,v0) S |vo|"g(vo) from Proposition 3.11,

and therefore by choosing g large enough (independently of Ny) we deduce

Q(f, )(to, o, v0) S [—a*|vol™ + |vol” + Jvo" 2] g(vo) S —¢°|vo| g (o),

which yields the inequality

(2 50) )~ duglta, ) < QU )t 0,10) < ~Calun o)
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for some constant C' > 0 at the contact point. Since |vg| 2 Né/qtav we deduce that
d ,
(g + 7) > C/qéNg/q7
v o 2s
which is a contradiction for Ny large enough. This shows that the contact point does
not exist and concludes the proof of the appearance of pointwise moments.

Remark 4.4. — Note that this proof only uses the first estimate on the good term
(Proposition 3.1), and therefore does not fully exploit the non-cutoff nature of the
collision operator.

4.4. PROPAGATION OF POINTWISE MOMENTS. — We consider the setting and assumptions
of Theorem 1.3 and prove first the propagation of pointwise moments (first part of
the theorem). Consider g(v) = Nomin (1, |v]|~9) with ¢ > d + 1 to be chosen large
enough later. At the first contact point g(to,vo) = f(to,Zo,vp) and Theorem 4.1
implies that Ny min(1, |vg|~%) < N which shows that |vg| 2 N&/q can be made large
by choosing Ny large enough. Apply Propositions 3.1, 3.7, 3.8, 3.9 and 3.11 apply at
this contact point:

g(fa f)(t07 Zo, UO) 5 _qs‘vopg(vo) from Proposition 31)

Bi(f, f)(to, z0,v0) < ¢*290vo|"2g(vo) from Proposition 3.7,
1

Ba(f, f)(to, xo,v0) < p |vo|” g(vo) from Proposition 3.8,

B3(fa f)(t07 Zo, UO) 5 q‘?fo|772g(7j0) from Proposition 39)

Qus(f, ) (to, 0, v0) < |vo|"g(vo) + 1y <0279/ %g(ve)} =7/ from Proposition 3.11.
We choose ¢ large enough (independently of Ny) so that
G(f, f) + Ba(f, f) + [vol"g(v0) S —¢°[vol"g(vo)-

For large |vg| (ensured by our choice of Ny, that depends on ¢), we get

QUf, f)(to; w0, v0) = G(f, f)(to, w0, vo) + B1(f, f)(to, To, vo)
+ Ba(f, f)(to, xo, vo) + Bs(f, ) (to, zo, vo) + Qus(f, f)(to, zo, vo)
< —¢|vol"g(vo) <0
which contradicts the inequality 0 = 9;g(to, vo) < Of (Lo, xo,v0) = Q(f, f)(to,x0,v0)
at this contact point. This shows that the contact point does not exist and concludes
the proof of the propagation of pointwise moments.

When v < 0 and g > d+ 1 large enough the only additional difficulty is the second
term on the right hand side of the control on Q,s. But

gvo) /4 S Ny T | et e/

and the exponent of |vg| is strictly lower than that of G(f, f), uniformly in ¢ > d + 1,
so is dominated by G(f, f) by taking |vg| large enough (through Ny large enough).
Finally taking ¢ large enough yields the same contradiction as before.
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4.5. APPEARANCE OF LOW POINTWISE MOMENTS FOR 7y < 0. Consider as before g(v) =
N (t) min(1, |v|~9) with ¢ > 0 to be restricted later, and N(t) = Not~%?% and Ny =
No(mg, Mo, Eg, Hy, 7, s,d) is a large constant to be determined below. As before it is
sufficient to prove that the conclusion holds for ¢ € (0, 1].

At the first contact point g(to,ve) = f(to,Zo,vo) and Theorem 4.1 implies that
Nomin(1,|vg|~9) < N which shows that |vg| 2 N&/q can be made large by choos-
ing Ny large enough. Apply Propositions 3.3, 3.7, 3.8, 3.10 and 3.11 at this contact
point (note that we do not track the dependency in ¢ since it is bounded here):

G(f, )(to, 2o, v0) S —|vo|1T29F28/dg ()1 +25/4 from Proposition 3.3,

Bi(f, £)(to, zo,v0) < |vo|"2g(vo) from Proposition 3.7,
(Ba + Bs3)(f, f)(to, xo,v0) < vo|"g(vo) from Proposition 3.10,
Qus(f, ) (to, 20, v0) < |vo| g(vo) + g(v)—/? from Proposition 3.11.

To check that the first negative term dominates the other terms (i.e., is larger
than, say, twice all the other terms for Ny large enough), there are three independent
conditions to check: (1) that the (negative) exponent of |vg| is strictly greater in
this negative term than the corresponding exponents in all the other terms, and (2)
that the (positive) power of N(t) is strictly greater in this negative term than the
corresponding exponents in all the other terms, and finally (3) that the exponent
of |vg| in the negative term is greater or equal than that of the barrier, i.e., ¢. Note in
particular that the two first conditions must be checked independently since |vg| can
be possibly be much larger than Nol/q. As far as (1) is concerned, check that

’y+25+2§—q—q%s>'yf2fq for all ¢ € [0,3(d+ 1)) D[0,d+ 1),
’y+23+2§—q7q%s>fy—q for all ¢ € [0,d + 1),
7+23+2§—q—q%s >—q+q% for all ¢ > [o,d+7i‘928) 50,d+1).
As far as (2) is concerned, check that
1+2?j>1 for all g e Ry D [0,d+ 1),
1+%>1—% for all g € Ry O [0,d + 1),

where we have used v+ 2s > 0 in the last inequality. As far as (3) is concerned, check
that

dy

2s 2
74_254_*_(]_(18 —q forallq€[0d+1+2

d d”~

We thus impose the most restrictive condition ¢ = d + 1 + d~y/2s if v < 0. In the
limit case v = 0, observe however that if the condition (1) above is saturated (same
exponents of |vg|) and the condition (3) is satisfied, but the condition (2) is strict
(strictly greater exponent of N(t) is the negative term), we can still prove that the
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negative term dominates by taking Ny large enough. This proves in all cases that, by
choosing Ny and thus |vg| large enough:

Q(fa f)(t07 Zo, UO) S 7|U0|(’y+28)+25/dg(v)1+25/d
< _N(t)1+25/d‘,uo|7d717d'y/25 ~ —N(t)2s/dN/(t)|U|7d*1*d’Y/2S7

~

which contradicts 9:g(to,vo) < Q(f, f)(to, o, vo) at the contact point by picking No
large enough.

5. RELAXINC PARTIALLY THE QUALITATIVE RAPID DECAY ASSUMPTION

This section discusses various ways of weakening the qualitative assumptions made
on the initial data in 1.2. Observe first that if a clean local existence and stability
theory was available in H*((v)) for hard potentials, and some k, ¢, then it would be
possible to use the generation of L' moments conditionally to hydrodynamic bounds in
the style of [31, §5.3.1], together with interpolation, to deduce the qualitative pointwise
moments. In the case of soft potentials such a local existence and stability theory is
available in [46] but the propagation of L' moments conditionally to hydrodynamic
bounds is not available: if it was, an approximation argument on the initial data
(truncating its support) could be performed. We postpone this discussion to another
work.

Meanwhile we discuss here how to weaken the qualitative decay assumed in Def-
inition 1.2 by approximation argument on the barrier g(¢,v) used in the maximum
principle arguments.

51 S(,)LUTI(,)NS WITHOUT RAPID DECAY AND STATEMENT

Derintrion 5.1 (Classical solutions to the Boltzmann equation with mild decay)
Given T € (0,+40oc], we say that a function f : [0,7] x T¢ x R? — [0, +00) is a
classical solution to the Boltzmann equation (1.1) with mild decay if
— the function f is differentiable in ¢ and x and twice differentiable in v everywhere;
— the equation (1.1) holds classically at every point;
— The limit lim,|_,o f(t,2,v) = 0 holds uniformly in ¢ € [0,7] and = € <.

Tueorewm 5.2 (Pointwise moment bounds revisited). — Lety € R and s € (0, 1) satisfy
Y+2s € [0,2] and f be a solution of the Boltzmann equation (1.1) as in Definition 5.1
such that f(0,x,v) = fo(z,v) in T? x R? and (1.3) holds. Then

(1) Ify € (2,0 and g =d+1+4~d/2s if v <0 or g € [0,q+ 1), then there exists
N > 0 depending on mg, My, Fo, Hy,d and s such that

Vte (0,T), €T veRY, f(t,z,v) <N(1 th*d/zs) min(1, |v|79).

(2) If v > 0 there exists a constant N > 0 depending on mg, My, Eg, Hy,d and s,
and a power B > 0 such that

Vte (O,T], T € Td, v E ]Rd, f(t,x,v) <N (1 —|—L‘7ﬁ) min(l, |U|7d71),
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(3) If v < 0 and v + 2s < 1, there exists qo depending on d,s,~v, mo, Mo, Eo, Hy
such that for all ¢ > qo and fo < Cmin(l, |v|~9) then there exists N depending on
C,mg, My, Eg, Hy,q,d and s such that

Vte[0,T], z €T veRY,  f(t,z,v) < Nmin(l,|v]”%).
(4) If v > 0, there exists qo > 0 such that if

lim |v| ®f(t,z,0v) =0

|[v|— o0

holds uniformly in t € [0,T] and x € T?, then for all ¢ > 0, there exists constants N
and B > 0 depending on mgy, My, Eg, Hy,q,d and s such that

Vte (0,7), €T veR  f(t,z,v) <N (1+¢t7)min(1, |v|79).

Remark 5.3

(1) Note that for v > 0, we know from part (2) that for all ¢ > 0,

|[v|— o0

for any ¢ < d+1. The assumption in part (4) would be automatically true if gog < d+1.
Unfortunately, it is hard to compute gy explicitly from our proof.

(2) The only purpose of the technical assumption v + 2s < 1 in (3) is to handle
the error term — see |v|~471*+¢ in (5.2) below. It is most likely not necessary. It is
certainly not necessary for the a priori estimate if we knew that our solution decays

faster than |v|~?~2 at infinity.

The proof follows the same pattern as before. The only new difficulty is to prove
the existence of the first contact point, and avoid the situation where it would appear
asymptotically as |v| — oo. To this purpose we modify the barrier functions used in
Section 4 by adding arbitrarily small correctors: g = g + e. The correctors are related
to the decay known on g, in order to ensure the existence of the first contact point.

— For parts (1), (2) and (3) with ¢ < d+ 1, we use a constant corrector
(5.1) g(t,v) =N(t) (1Av] %) +e withe=¢e>0.
— For part (3) with ¢ > d+ 1 and 7 < 0, we use
(5.2) gt v) = N@) (LA 0|77 +e(t,v) with e(t,v) :=e(t) (LA o]~ 1F7)

for certain choices of N(t) and £(¢) and 1 > 0.
— For part (4) with v > 0, it is enough to consider g > go and we use

(5.3) g(t,v) = N(t) (1A [v]79) +e(t,v) with e(t,v) :=e(t) (LA |v|7%)

for certain choices of N(t) and &(t).
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5.2. TECHNICAL ESTIMATES ON THE COLLISION OPERATOR. The following results are
variations of the corresponding results in Section 3 when taking into account the
correctors to the barrier function. We define the decomposition Qs = G+ By + By + B3
as before in (3.2)-(3.6).

Prorosirion 5.4 (Estimate of G(f, g) useful for large ¢). — Let f be a non-negative
function satisfying (1.3) and g given by (5.1), (5.2) or (5.3) with ¢ > 0. Then there
exists a radius Ry = Cr(1+ q) so that

—¢*N|v|7~¢ if g is as in (5.1),
Vvl = Ry, G(f,9)(v) S —¢*Nw|"~9 —e(@)|o|~@+D+1 4f g is as in (5.2),
—@* N7~ 1 — gje(t)|v|7~%® if g is as in (5.3).
where the constants Cr > 0 and in the latter inequality are independent of q.
Proof. — Tt is a straight forward modification of Proposition 3.1 adding an extra

correction term. In the case g is as in (5.1), note that the extra terms +¢ will cancel
out in the upper bound for (f(v") — f(v)). O

Prorosirion 5.5 (Estimate of G(f, f) useful for not-so-large q)
Assume [ satisfies (3.1) for of the form (5.1) or (5.2) and ¢ > 0. Then there
exists Ry = Cr(1 + q) so that

Yo eRY | [v] > Ry, G(f,9)(v) Sq —g(v)! T2/ dp[r2et2e/,

Proof. — We follow the same ideas as in the proof of Proposition 3.3. We first analyse
the range of values of v where the inequality follows from Proposition 5.4.

If g is given by (5.1), then the estimate of Proposition 5.5 derives from Proposi-
tion 5.4 for [v| > 1 and € € (0,1) such that

9 _ _
2 SN 5 o] 7.

w

Indeed it implies e'+25/4 < N|v|=9725725/d and (N|o|~2)'+2s/d < N|y|~9-2s-25/d
which in turn yields
g(U)1+28/d 5 N|U|_q_2s_25/d

and then the conclusion follows from Proposition 5.4.

If now g is given by (5.2) or (5.3), then the estimate of Proposition 5.5 derives from
Proposition 5.4 as soon as [v| > 1, e € (0,1) and g(v) <, |v|~ (@Y. Indeed, we then
have g(v)?s/|v|?s+2s/4 < 1 and the conclusion follows.

We are left with two cases: (1) when g(v) 2, [v|~(*1) with g given by (5.1), (5.2)
or (5.3), or (2) when g(v) < ¢/3 and g is of the form (5.1).

In both cases, we argue as in the proof of Proposition 3.1. We pick r > 0 such that

42,

=(t,2,v) N By| = — 0
=t 2.0) N Bl = e
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and deduce

G(f,9)(v) < / 9(v)

a 5~ g(v+ w)} K4(v, v+ w) dw.
Z(t,z,v)NB.N{f(v+w)<g(v)/2}

As in Proposition 3.1, this is a useful estimate if g(v + w) > g(v)/2 for w € 2N B,..
If g(v) 2, [v|79"!, we end the proof as in Proposition 3.1 (by choosing an appro-
priately large constant Cj). If g is given by (5.1) and N|v|~? < ¢/3, then we have
for all w € R? that g(v + w) > 3g(v)/4. This also allows to continue the proof and
conclude. 0

Let f be a non-negative

Prorosition 5.6 (Estimate of Bi(f,g) for all ¢ > 0).
(5.2) or (5.3) with ¢ > 0. Then

function satisfying (1.3). Let g be of the form (5.1),
for |v| = 2,
Bi(f,9)(v) S (1+)*27v["2g(v)

with constant uniform in q.
Proof. — Tt is a straight forward adaptation of the proof of Proposition 3.7. O

Prorosirion 5.7 (Estimate of Bo(f, f) for large q). Let f be a non-negative function
satisfying (1.3). Assume f < g for all v € R? and either g is of the form (5.2) with
v+2s < 1—mn, org is of the form (5.3) with gqo > d + v + 2s. Assume further that
q >~ +2s+d. Then for |v| > 2

1

— 0| T gy if g is as in (5.2),
B Fereerer T fo (52)
BZ(fa f) ~ 1
—_— |7 f ¢ V|71 if g is as in (5.3).
ppy sy L eyl U (5:3)
Proof. — Tt is the result of the same computation as in the proof of Proposition 3.8

but with the extra correction terms. The purpose of the assumptions v+ 2s <1 —1n
or qo > d+ v+ 2s is to make sure the tail of the integral

v — v, |72 !
Lo 8Dl *

is convergent (which was also the purpose of the assumption ¢ > v + 2s — d). a

Provosririon 5.8 (Estimate of Bs(f, f) for large ¢). — Let f be a non-negative function
satisfying (1.3). Assume f < g for all v € R? and g of the form (5.2) or (5.3) and
q>d+~y+2s. Then for all |v| = 2

1
Bs(f, f(v) <, ———————— 0|7 2g(v).
A0 S0 g T
Remark 5.9. — The dependency in ¢ of the constant is explicit and can be tracked

from the proof below.
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Proof. The proof is similar to that of Proposition 3.9 but takes the extra corrector
term into account. Define for |v/| < |v|/2:

Iy(o,0) = / KW )g()lw — o172 cos 0) v,
vl €v+(v/ —v)t

and decompose v, = |v|(0 4+ @) and calculate as before (the restriction X imposes
[v+ul > ci(q))

I(o,0) < Nlo| #2544 / @) 5+~ [P+ da

u€ (v —v)+

|U|7(d+1)+n+7+25+d/ + a‘—(d+1)+n |1~L|7+25+1 di

e (v’ —v)* [0 if g is as in (5.2),
te |5+l >cq
|U|_(10+’Y+2s+d - 5+ 4% [+ dy if g is s in (5.3).
|[o4-u|>cq

This implies the following estimates:
CyN|v| 794772 4 glo|~@+D+H147=2 when g is as in (5.2),

Bs(f, f)(v) <

CyNv|~9T772 4 Cypelv| "™ ~2  when g is as in (5.3),
which concludes the proof. O

Prorosirion 5.10 (Estimate of By (f, g) + Bs(f, g) for not-so-large q)
Let f be a non-negative function satisfying (1.3) and g be of the form (5.1) and
q € [0,d+1]. Then for |v| = 2,

N|o| 4=+ ifq>d—1,
(B2 + Bo) (£, 9)() S  Nlol =51V In(1 + o) if g =d —1,
Nly|79=2+7 ifg<d—1.

Proof. — The proof is identical to that of Proposition 3.10. Note that the extra
constant corrector term e cancels out in the estimate f(v') — f(v) < g(v') —g(v). O

Prorosirion 5.11 (Estimate of Quns(f, f)). — Assume [ satisfies (3.1) with g of the
form (5.1) or (5.2). Then for v >0
Qus(f, F)(v) S (1 +[v])7g(v),

while for v <0,

Qus(f ) S Cag(0)' ™7+ (1 + [0])7g(v)
for some constant Cy depending on q.
Proof. — In the case v > 0, the estimate Quns(f, f) < |v|7f(v) implies the result
follows for any form of the function g. In the case v < 0, the proof of Proposition 3.11

applies as soon as ¢g(v') < Cyg(v) whenever |v' —v| < |v|/2. This property is satisfied
for all the variants of the function g given by (5.1), (5.2) or (5.3). O
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5.3. Proor or TuEorREM 5.2

5.3.1. Proofof part (1). — It is identical to the proof of part (3) in Theorem 1.3 but
using

g(t,v) = N(t)min(1, |v|79) + ¢
for € > 0 arbitrarily small. We apply Propositions 5.4, 5.6, 5.10 and 5.11 instead of
Propositions 3.1, 3.7, 3.10 and 3.11 and we arrive to the same set of inequalities that
imply the contradiction.

5.3.2. Proof of part (2). We use the same estimates as for part (1), which
are not the same as the ones used for part (2) in Theorem 1.3. Set g(t,v) =
N(t) min(1, [v|~9) + & and N(t) = Not~%?5 where Ny is a large constant depending
on myg, My, Ey, Hy,7v,s and d, to be determined below, and ¢ is arbitrarily small.
Apply Propositions 5.4, 5.6, 5.10 and 5.11 at the point of contact (¢g, xo, vp), for |vo|
large enough:

G(f, )(to, zo,v0) S —|vo|7T29F28/dg ()1 +25/4 from Proposition 5.5,

Bi(f, f)(to, z0,v0) S [vol”*g(vo) from Proposition 5.6,
(Ba + B3)(f, f)(to, xo,v0) < vo|"g(vo) from Proposition 5.10,
Qus(f, f)(to, zo,v0) < |vol”g(vo) from Proposition 5.11.

As before |vp| large can be imposed by taking N large, and the first negative term
dominates all other at large |vg| which contradicts 9:g(to,vo) < Q(f, f)(to, zo, vo) and
concludes the proof.

5.3.3. Proof'of part (3) in the case v < 0 and ¢ = d + 1. — Consider a function g of
the form (5.1) with ¢ = d + 1 and € > 0 arbitrarily small and N = Ny large enough
so that g(0,v) > f(0,z,v) everywhere (using the L> bound on f). The first contact
(to,0,v0), such that (3.1) holds true, exists because f goes to zero as |v| — +oc.
Using the L° bound and picking N large enough, we can force |vg| to be arbitrarily
large, and we can apply Propositions 5.5, 5.6, 5.10 and 5.11:

G(f, [)(to, 2o, v0) < —|vo| F25125/dg () T25/4  from Proposition 5.5,

Bi(f, f)(to, zo,vo) < vol " 2g(vo) from Proposition 5.6,
(B2 + B3)(f, f)(to, zo,v0) < vl g(vo) from Proposition 5.10,
Qus(f, f)(to, o, vo) < |volg(ve) + ng(vo)l_“*/d from Proposition 5.11.

Since |vg|(VF2)+25/d > (||~ 4 g)~(H28)/(d+1)=2s/d(d+1) ypiformly as ¢ — 0
(Juo| is not close to zero), the negative term dominates the term g(vg)*~7/? by taking
Ny large enough, and we deduce for some constants K,C > 0

Q(f, ) (to, o, vo) < —K |ug| 7225/ dg(0)1F25/4 - Clug g (1, v),
2s/d
< [o[7g(t,0)(~K NG + C).

We choose Ny large enough to achieve the contradiction Q(f, f)(to, zo,v0) < 0.
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5.3.4. Proofof part (3) in the case v < 0 and q large. Having proved already that (3)
holds when ¢ = d + 1, we now use the corrected barrier g as in (5.2). The previous
subsubsection implies then f(¢,x,v) < g(t,v) when v is sufficiently large and therefore
there is a first contact point (tg,zg,v0). Take £(t) = eoe®? in (5.2), for g > 0
arbitrarily small. As before we impose |vg| large thanks to the L> by choosing Ny
large enough, and we now apply Propositions 5.4, 5.5, 5.6, 5.7, 5.8 and 5.11. Following
the same computations as in the proof of part (1) of Theorem 1.3, the principal
terms cancel out and we are left with the terms derived from the correction term
e(t)|vo| =411, We get

Q(f, f)(to, zo,vo) < Ce(t)|vo| FeT1=m,

Since v < 0 and |vg| is large, we have Q(f, f)(to, zo,v0) < Cee(t) for some Ce > 0.
We plug C. in the corrector £(t) = gge“=! and achieve the contradiction.

5.3.5. Proofof part (4). — We now use g as in (5.3) with N(t) = Not—# with g :=
(q/7) — d/2s and &(t) = got~P0 with By := qo/y — d/2s and Ny large enough and &
arbitrarily small and the exponents g and gy large enough, to be chosen later. The
first contact point (to, xg,vo) exists because of the convergence |v|% f(¢,x,v) — 0 as
|v| = 400 and the corrector term. We impose |vg| large enough by taking Ny large
enough, and we apply Propositions 5.4, 5.6, 5.7, 5.8 and 5.11:

g(f7 f)(t07 Zo, UO) _qu( )|U0|_q+ﬂy - q8€<t)|,uo|—€10+"/ from PI'OpOSitiOI’l 547

Bi(f, f)(to, xo,v0) ,Sq,qo N(t)|vg| 92 4 £(t)|vg| T2 from Proposition 5.6,
Ba(f, f)(to, xo,v0) S N( Yo T + —5(t)|v | 790t from Proposition 5.7,
Bs(f, f)(to, xo, vo) ,Sq)qo N (t)|vo| =97~ 2 +€( )|vo| "% T2 from Proposition 5.8,
Qus(f, £)(to, z0,v0) < N()|vo| "1 +e(t)|vg| 2+ from Proposition 5.11.

The first negative term dominates all other term when ¢ and go and |vg| are sufficiently
large and we deduce

Q. )(to, w0, v0) £ 4 N(1) oo~ = gie(t) g | =7,
We use that |vg| 24 No/qt—l/’y to get

QUf. f)(to,x0,v0) S —¢°t™~Huo| ™7 — ggeot” Hvo|

which yields a contradiction for ¢ > gg large enough, and finishes the proof.
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