Asymptotic analysis of a quantitative genetics model with nonlinear integral operator
[Analyse asymptotique d’un modèle de génétique quantitative avec un opérateur intégral non linéaire]
Journal de l’École polytechnique — Mathématiques, Tome 6 (2019), pp. 537-579.

Nous étudions le comportement asymptotique des solutions stationnaires d’un modèle de génétique quantitative. La sélection agit sur le trait, l’opérateur de reproduction est intégral et non linéaire, avec un paramètre décrivant la déviation du descendant par rapport à la moyenne du trait des parents. Nous étudions le régime où ce paramètre est petit. Nous prouvons alors l’existence et l’unicité locale d’un profil stationnaire ressemblant à une distribution gaussienne avec une petite variance. Notre approche est basée sur des techniques d’analyse perturbative pour mesurer précisément la déviation par rapport à l’ordre principal qu’est le profil gaussien.

We study the asymptotic behavior of stationary solutions to a quantitative genetics model with trait-dependent mortality and a nonlinear integral reproduction operator with a parameter describing the deviation between the offspring and the mean parental trait. Our asymptotic analysis encompasses the case when the parameter is typically small. Under suitable regularity and growth conditions on the mortality rate, we prove existence and local uniqueness of a stationary profile that gets concentrated around a local optimum of mortality, with a Gaussian shape having small variance. Our approach is based on perturbative analysis techniques that require to describe accurately the correction to the Gaussian leading order profile. Our result extends previous results obtained with linear reproduction operator, but using an alternative methodology.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.100
Classification : 35P20, 35P30, 35Q92, 35B40, 47G20
Keywords: Non linear spectral theory, asymptotic analysis, integro-differential equations, quantitative genetics
Mots-clés : Analyse spectrale non-linéaire, analyse asymptotique, équations intégro-différentielles, génétique quantitative

Vincent Calvez 1 ; Jimmy Garnier 2 ; Florian Patout 3

1 ICJ, UMR 5208 CNRS & Université Claude Bernard Lyon 1, Lyon, France
2 LAMA, UMR 5127 CNRS & Univ. Savoie Mont-Blanc, Chambéry, France
3 UMPA, UMR 5669 CNRS & Ecole Normale Supérieure de Lyon, Lyon, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2019__6__537_0,
     author = {Vincent Calvez and Jimmy Garnier and Florian Patout},
     title = {Asymptotic analysis of a quantitative genetics model with nonlinear integral operator},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {537--579},
     publisher = {\'Ecole polytechnique},
     volume = {6},
     year = {2019},
     doi = {10.5802/jep.100},
     zbl = {07088012},
     mrnumber = {3991898},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.100/}
}
TY  - JOUR
AU  - Vincent Calvez
AU  - Jimmy Garnier
AU  - Florian Patout
TI  - Asymptotic analysis of a quantitative genetics model with nonlinear integral operator
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2019
SP  - 537
EP  - 579
VL  - 6
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.100/
DO  - 10.5802/jep.100
LA  - en
ID  - JEP_2019__6__537_0
ER  - 
%0 Journal Article
%A Vincent Calvez
%A Jimmy Garnier
%A Florian Patout
%T Asymptotic analysis of a quantitative genetics model with nonlinear integral operator
%J Journal de l’École polytechnique — Mathématiques
%D 2019
%P 537-579
%V 6
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.100/
%R 10.5802/jep.100
%G en
%F JEP_2019__6__537_0
Vincent Calvez; Jimmy Garnier; Florian Patout. Asymptotic analysis of a quantitative genetics model with nonlinear integral operator. Journal de l’École polytechnique — Mathématiques, Tome 6 (2019), pp. 537-579. doi : 10.5802/jep.100. https://jep.centre-mersenne.org/articles/10.5802/jep.100/

[BBC + 18] E. Bouin, T. Bourgeron, V. Calvez, O. Cotto, J. Garnier, T. Lepoutre & O. Ronce - “Equilibria of quantitative genetics models beyond the Gaussian approximation I: Maladaptation to a changing environment”, 2018, in preparation

[BCGL17] T. Bourgeron, V. Calvez, J. Garnier & T. Lepoutre - “Existence of recombination-selection equilibria for sexual populations”, 2017, arXiv:1703.09078

[BDG06] E. Bertin, M. Droz & G. Grégoire - “Boltzmann and hydrodynamic description for self-propelled particles”, Phys. Rev. E 74 (2006) no. 2, article ID 022101 | DOI | Zbl

[BEV17] N. H. Barton, A. M. Etheridge & A. Véber - “The infinitesimal model: Definition, derivation, and implications”, Theoret. Population Biol. 118 (2017), p. 50-73 | DOI | Zbl

[BGHP18] E. Bouin, J. Garnier, C. Henderson & F. Patout - “Thin front limit of an integro-differential Fisher-KPP equation with fat-tailed kernels”, SIAM J. Math. Anal. 50 (2018) no. 3, p. 3365-3394 | DOI | MR | Zbl

[BHG11] M. Barfield, R. D. Holt & R. Gomulkiewicz - “Evolution in stage-structured populations”, The American naturalist 177 (2011) no. 4, p. 397-409 | DOI | Zbl

[BM15] E. Bouin & S. Mirrahimi - “A Hamilton–Jacobi approach for a model of population structured by space and trait”, Commun. Math. Sci. 13 (2015) no. 6, p. 1431-1452 | DOI | MR | Zbl

[BMP09] G. Barles, S. Mirrahimi & B. Perthame - “Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result”, Methods Appl. Anal. 16 (2009) no. 3, p. 321-340 | MR | Zbl

[BP07] G. Barles & B. Perthame - “Concentrations and constrained Hamilton-Jacobi equations arising in adaptive dynamics”, in Recent developments in nonlinear partial differential equations, Contemp. Math., vol. 439, American Mathematical Society, Providence, RI, 2007, p. 57-68 | DOI | MR | Zbl

[Bul80] M. G. Bulmer - The mathematical theory of quantitative genetics, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1980 | MR | Zbl

[CHM + 18] V. Calvez, C. Henderson, S. Mirrahimi, O. Turanova & T. Dumont - “Non-local competition slows down front acceleration during dispersal evolution”, 2018, arXiv:1810.07634

[CL18] V. Calvez & K.-Y. Lam - “Uniqueness of the viscosity solution of a constrained Hamilton-Jacobi equation”, 2018, arXiv:1809.05317

[CR14] O. Cotto & O. Ronce - “Maladaptation as a source of senescence in habitats variable in space and time”, Evolution 68 (2014) no. 9, p. 2481-2493 | DOI

[DFR14] P. Degond, A. Frouvelle & G. Raoul - “Local stability of perfect alignment for a spatially homogeneous kinetic model”, J. Statistical Physics 157 (2014) no. 1, p. 84-112 | DOI | MR | Zbl

[DJMP05] O. Diekmann, P.-E. Jabin, S. Mischler & B. Perthame - “The dynamics of adaptation: an illuminating example and a Hamilton-Jacobi approach”, Theoret. Population Biol. 67 (2005) no. 4, p. 257-271 | DOI | Zbl

[DS99] M. Dimassi & J. Sjostrand - Spectral asymptotics in the semi-classical limit, London Mathematical Society Lecture Note Series, vol. 268, Cambridge University Press, Cambridge, 1999 | DOI | MR | Zbl

[Fis18] R. A. Fisher - “The correlation between relatives on the supposition of Mendelian inheritance.”, Trans. Roy. Soc. Edinburgh 52 (1918), p. 399-433 | DOI

[GM17] S. Gandon & S. Mirrahimi - “A Hamilton–Jacobi method to describe the evolutionary equilibria in heterogeneous environments and with non-vanishing effects of mutations”, Comptes Rendus Mathématique 355 (2017) no. 2, p. 155-160 | DOI | MR | Zbl

[HT12] J. Huisman & J. Tufto - “Comparison of non-gaussian quantitative genetic models for migration and stabilizing selection”, Evolution 66 (2012) no. 11, p. 3444-3461 | DOI | Zbl

[LL17] K.-Y. Lam & Y. Lou - “An integro-PDE model for evolution of random dispersal”, J. Functional Analysis 272 (2017) no. 5 | DOI | MR | Zbl

[LMP11] A. Lorz, S. Mirrahimi & B. Perthame - “Dirac mass dynamics in multidimensional nonlocal parabolic equations”, Comm. Partial Differential Equations 36 (2011) no. 6, p. 1071-1098 | DOI | MR | Zbl

[Mah07] R. Mahadevan - “A note on a non-linear Krein-Rutman theorem”, Nonlinear Anal. 67 (2007) no. 11, p. 3084-3090 | DOI | MR | Zbl

[MG18] S. Mirrahimi & S. Gandon - “Evolution of specialization in heterogeneous environments: equilibrium between selection, mutation and migration”, 2018, bioRχiv:353458v1 | DOI | Zbl

[Mir13] S. Mirrahimi - “Adaptation and migration of a population between patches”, Discrete Contin. Dynam. Systems 18 (2013) no. 3, p. 753-768 | DOI | MR | Zbl

[Mir17] S. Mirrahimi - “A Hamilton–Jacobi approach to characterize the evolutionary equilibria in heterogeneous environments”, Math. Models Methods Appl. Sci. 27 (2017) no. 13, p. 2425-2460 | DOI | MR | Zbl

[Mir18] S. Mirrahimi - “Singular limits for models of selection and mutations with heavy-tailed mutation distribution”, 2018, arXiv:1807.10475

[MM15] S. Méléard & S. Mirrahimi - “Singular limits for reaction-diffusion equations with fractional Laplacian and local or nonlocal nonlinearity”, Comm. Partial Differential Equations 40 (2015) no. 5, p. 957-993 | DOI | MR | Zbl

[MP15] S. Mirrahimi & B. Perthame - “Asymptotic analysis of a selection model with space”, J. Math. Pures Appl. 104 (2015) no. 6, p. 1108-1118 | DOI | MR | Zbl

[MR13] S. Mirrahimi & G. Raoul - “Dynamics of sexual populations structured by a space variable and a phenotypical trait”, Theoret. Population Biol. 84 (2013), p. 87-103 | DOI | Zbl

[MR15] P. Magal & G. Raoul - “Dynamics of a kinetic model describing protein exchanges in a cell population”, 2015, arXiv:1511.02665

[MR15] S. Mirrahimi & J.-M. Roquejoffre - “A class of Hamilton-Jacobi equations with constraint: uniqueness and constructive approach”, 2015, arXiv:1505.05994 | Zbl

[Per07] B. Perthame - Transport equations in biology, Frontiers in mathematics, Birkhäuser, Basel, 2007 | Zbl

[Rao17] G. Raoul - “Macroscopic limit from a structured population model to the Kirkpatrick-Barton model”, 2017, arXiv:1706.04094

[Rou72] J. Roughgarden - “Evolution of niche width”, The American naturalist 106 (1972) no. 952, p. 683-718 | DOI

[SL76] M. Slatkin & R. Lande - “Niche width in a fluctuating environment-density independent model”, The American naturalist 110 (1976) no. 971, p. 31-55 | DOI

[Sla70] M. Slatkin - “Selection and polygenic characters”, Proc. Nat. Acad. Sci. U.S.A. 66 (1970) no. 1, p. 87-93 | DOI

[TB94] M. Turelli & N. H. Barton - “Genetic and statistical analyses of strong selection on polygenic traits: what, me normal?”, Genetics 138 (1994) no. 3, p. 913-941

[Tuf00] J. Tufto - “Quantitative genetic models for the balance between migration and stabilizing selection”, Genetics Research 76 (2000) no. 3, p. 285-293 | DOI

[Tur17] M. Turelli - “Commentary: Fisher’s infinitesimal model: A story for the ages”, Theoret. Population Biol. 118 (2017), p. 46-49 | DOI | Zbl

Cité par Sources :