We study certain monoidal subcategories (introduced by David Hernandez and Bernard Leclerc) of finite-dimensional representations of a quantum affine algebra of type . We classify the set of prime representations in these subcategories and give necessary and sufficient conditions for a tensor product of two prime representations to be irreducible. In the case of a reducible tensor product we describe the prime decomposition of the simple factors. As a consequence we prove that these subcategories are monoidal categorifications of a cluster algebra of type with coefficients.
Dans ce travail, nous étudions certaines sous-catégories monoïdales (introduites par David Hernandez et Bernard Leclerc) de représentations de dimension finie d’une algèbre affine de type . Nous classifions l’ensemble des représentations premières de ces sous-catégories, et donnons des conditions nécessaires et suffisantes pour que le produit tensoriel des deux représentations premières soit irréductible. Dans le cas où le produit tensoriel est réductible, nous décrivons une factorisation en modules premiers des facteurs simples. En conséquence, nous prouvons que ces sous-catégories monoïdales sont des catégorifications monoïdales d’algèbres amassées de type avec coefficients.
Accepted:
Published online:
DOI: 10.5802/jep.101
Keywords: Cluster algebra, monoidal categorification, prime representations
Mot clés : Algèbres amassées, catégorifiction monoïdale, représentation première
Matheus Brito 1; Vyjayanthi Chari 2
@article{JEP_2019__6__581_0, author = {Matheus Brito and Vyjayanthi Chari}, title = {Tensor products and $q$-characters of {HL-modules} and monoidal categorifications}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {581--619}, publisher = {\'Ecole polytechnique}, volume = {6}, year = {2019}, doi = {10.5802/jep.101}, zbl = {07114034}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.101/} }
TY - JOUR AU - Matheus Brito AU - Vyjayanthi Chari TI - Tensor products and $q$-characters of HL-modules and monoidal categorifications JO - Journal de l’École polytechnique — Mathématiques PY - 2019 SP - 581 EP - 619 VL - 6 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.101/ DO - 10.5802/jep.101 LA - en ID - JEP_2019__6__581_0 ER -
%0 Journal Article %A Matheus Brito %A Vyjayanthi Chari %T Tensor products and $q$-characters of HL-modules and monoidal categorifications %J Journal de l’École polytechnique — Mathématiques %D 2019 %P 581-619 %V 6 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.101/ %R 10.5802/jep.101 %G en %F JEP_2019__6__581_0
Matheus Brito; Vyjayanthi Chari. Tensor products and $q$-characters of HL-modules and monoidal categorifications. Journal de l’École polytechnique — Mathématiques, Volume 6 (2019), pp. 581-619. doi : 10.5802/jep.101. https://jep.centre-mersenne.org/articles/10.5802/jep.101/
[1] - “Cluster algebras. III. Upper bounds and double Bruhat cells”, Duke Math. J. 126 (2005) no. 1, p. 1-52 | DOI | MR | Zbl
[2] - “A new cluster character with coefficients for cluster category”, 2018 | arXiv
[3] - “Demazure modules of level two and prime representations of quantum affine ”, J. Inst. Math. Jussieu 17 (2018) no. 1, p. 75-105 | DOI | MR | Zbl
[4] - “Cluster algebras as Hall algebras of quiver representations”, Comment. Math. Helv. 81 (2006) no. 3, p. 595-616 | DOI | MR | Zbl
[5] - “Braid group actions and tensor products”, Internat. Math. Res. Notices (2002) no. 7, p. 357-382 | DOI | MR | Zbl
[6] - “Prime representations from a homological perspective”, Math. Z. 274 (2013) no. 1-2, p. 613-645 | DOI | MR | Zbl
[7] - “Minimal affinizations of representations of quantum groups: the nonsimply-laced case”, Lett. Math. Phys. 35 (1995) no. 2, p. 99-114 | DOI | MR | Zbl
[8] - “Weyl modules for classical and quantum affine algebras”, Represent. Theory 5 (2001), p. 191-223 | DOI | MR | Zbl
[9] - “A Steinberg type decomposition theorem for higher level Demazure modules”, J. Algebra 455 (2016), p. 314-346 | DOI | MR | Zbl
[10] - “Demazure modules, fusion products and -systems”, Comm. Math. Phys. 333 (2015) no. 2, p. 799-830 | DOI | MR | Zbl
[11] - “Quantized Chebyshev polynomials and cluster characters with coefficients”, J. Algebraic Combin. 31 (2010) no. 4, p. 501-532 | DOI | MR | Zbl
[12] - “On generalized Kostka polynomials and the quantum Verlinde rule”, in Differential topology, infinite-dimensional Lie algebras, and applications, Amer. Math. Soc. Transl. Ser. 2, vol. 194, American Mathematical Society, Providence, RI, 1999, p. 61-79 | DOI | MR | Zbl
[13] - “Cluster algebras: notes for the CDM-03 conference”, in Current developments in mathematics, 2003, Int. Press, Somerville, MA, 2003, p. 1-34 | Zbl
[14] - “On cluster algebras with coefficients and 2-Calabi-Yau categories”, Trans. Amer. Math. Soc. 362 (2010) no. 2, p. 859-895 | DOI | MR | Zbl
[15] - “Algebraic approach to -characters”, Adv. Math. 187 (2004) no. 1, p. 1-52 | DOI | MR | Zbl
[16] - “Simple tensor products”, Invent. Math. 181 (2010) no. 3, p. 649-675 | DOI | MR | Zbl
[17] - “Cyclicity and -matrices”, Selecta Math. (N.S.) 25 (2019) no. 2, article ID 19, 24 pages | DOI | MR | Zbl
[18] - “Monoidal categorifications of cluster algebras of type and ”, in Symmetries, integrable systems and representations, Springer Proc. Math. Stat., vol. 40, Springer, Heidelberg, 2013, p. 175-193 | DOI | MR | Zbl
[19] - “Cluster algebras and category for representations of Borel subalgebras of quantum affine algebras”, Algebra Number Theory 10 (2016) no. 9, p. 2015-2052 | DOI | MR | Zbl
[20] - “Monoidal categorification of cluster algebras”, J. Amer. Math. Soc. 31 (2018) no. 2, p. 349-426 | DOI | MR | Zbl
[21] - “Graded quiver varieties, quantum cluster algebras and dual canonical basis”, Adv. Math. 262 (2014), p. 261-312 | DOI | MR | Zbl
Cited by Sources: