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ASYMPTOTIC ANALYSIS OF A QUANTITATIVE GENETICS

MODEL WITH NONLINEAR INTEGRAL OPERATOR

by Vincent Calvez, Jimmy Garnier & Florian Patout

Abstract. — We study the asymptotic behavior of stationary solutions to a quantitative ge-
netics model with trait-dependent mortality and a nonlinear integral reproduction operator
with a parameter describing the deviation between the offspring and the mean parental trait.
Our asymptotic analysis encompasses the case when the parameter is typically small. Under
suitable regularity and growth conditions on the mortality rate, we prove existence and local
uniqueness of a stationary profile that gets concentrated around a local optimum of mortality,
with a Gaussian shape having small variance. Our approach is based on perturbative analysis
techniques that require to describe accurately the correction to the Gaussian leading order pro-
file. Our result extends previous results obtained with linear reproduction operator, but using
an alternative methodology.

Résumé (Analyse asymptotique d’un modèle de génétique quantitative avec un opérateur inté-
gral non linéaire)

Nous étudions le comportement asymptotique des solutions stationnaires d’un modèle de
génétique quantitative. La sélection agit sur le trait, l’opérateur de reproduction est intégral et
non linéaire, avec un paramètre décrivant la déviation du descendant par rapport à la moyenne
du trait des parents. Nous étudions le régime où ce paramètre est petit. Nous prouvons alors
l’existence et l’unicité locale d’un profil stationnaire ressemblant à une distribution gaussienne
avec une petite variance. Notre approche est basée sur des techniques d’analyse perturbative
pour mesurer précisément la déviation par rapport à l’ordre principal qu’est le profil gaussien.
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1. Introduction

We investigate solutions (λε, Fε) ∈ R×L1(R) of the following stationary problem:

(PFε) λεFε(z) +m(z)Fε(z) = Bε(Fε)(z), z ∈ Rd,

where Bε(f) is the following non linear, homogeneous integral operator associated to
the infinitesimal model [Fis18, BEV17]:

(1.1) Bε(f)(z) :=
1

εdπd/2

∫∫
R2d

exp
[
− 1

ε2

(
z− z1 + z2

2

)2]
f(z1)

f(z2)∫
Rd f(z′2) dz′2

dz1dz2.

In the context of quantitative genetics, the variable z denotes a multi-dimensional
phenotypic trait, Fε(z) is the phenotypic distribution of the population and m(z)

is the (trait-dependent) mortality rate which results in the selection of the fittest
individuals.

The mixing operator Bε acts as a simple model for the inheritance of quantitative
traits in a population with a sexual mode of reproduction. As formulated in (1.1),
it is assumed that offspring traits are distributed normally around the mean of the
parental traits (z1 +z2)/2, with a variance which remains constant across generations,
here ε2/2.

We are interested in the asymptotic behaviour of the trait distribution Fε as ε2

vanishes.
This asymptotic regime was investigated thoroughly for various linear opera-

tors Bε associated with asexual reproduction such as for instance the diffusion
operator Fε(z) + ε2∆Fε(z), or the convolution operator 1

εK( zε ) ∗ Fε(z) where K is a
probability kernel with unit variance, see [DJMP05, Per07, BP07, BMP09, LMP11]
for the earliest investigations, see further [MM15, Mir18, BGHP18] for the case of
a fractional diffusion operator (or similarly a fat-tailed kernel K), and see further
[Mir13, MP15, BM15, LL17, GM17, Mir17, MG18, CHM+18] for the interplay
between evolutionary dynamics and a spatial structure. In the linear case, the
asymptotic analysis usually leads to a Hamilton-Jacobi equation for the Hopf-Cole
transform Uε = −ε logFε. This yields an original problem with non-negativity
constraint that requires a careful well-posedness analysis [MR15, CL18].

Much less is known about the non linear equation (PFε), although this model is
widely used in theoretical evolutionary biology to describe sexual reproduction, see
e.g. [Sla70, Rou72, SL76, Bul80, TB94, Tuf00, BHG11, HT12, CR14, BEV17, Tur17].

From a mathematical viewpoint, the model (1.1) received recent attention in the
field of probability theory [BEV17] and integro-differential equations [MR13, Rao17].
In the latter couple of articles, a scaling different from (1.1) is studied: the variance is
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Asymptotic analysis of a quantitative genetics model with nonlinear integral operator 539

of order one, but there is a large reproduction rate that enforces the relaxation of the
phenotypic distribution towards a Gaussian local equilibrium. Macroscopic equations
are rigorously derived in [Rao17], in the case of an additional spatial structure, in the
spirit of hydrodynamic limits for kinetic equations.

In a different context, a similar collisional operator as Bε (1.1) was introduced in
the modelling of self-propelled particles with alignment interactions, see for instance
[BDG06, DFR14]. When two particles interact they tend to align with the mean ve-
locity, with some possible noise. However, there are some discrepancies with our case
study, since the operator is not conservative in our case, by definition of a reproduction
operator. Moreover, it is normalized by the total mass of the phenotypic distribution:∫
f(z′2) dz′2. The rationale behind this choice is that during the mating process, the

first parent chooses the trait of its partner depending on its frequency in the pop-
ulation. This is the neutral case without any assumption about assortative mating.
Moreover, this dependency upon the frequency rather than the density discards any
small population effects that could arise from a quadratic collisional operator. Such
homogeneity of degree one is a key ingredient in our analysis.

The problem (PFε) is equivalent to the existence of special solutions of the form
exp(λεt)Fε(z), for the following non-linear but one-homogeneous equation which will
be the subject of future work:

(1.2) ∂tf(t, z) +m(z)f(t, z) = Bε(f)(t, z), t > 0, z ∈ Rd.

Alternatively speaking, the problem (PFε) expresses the balance between selection
via trait-dependent mortality m(z), and the generation of diversity through reproduc-
tion Bε. The scalar λε is analogous to the principal eigenvalue of the operator Bε−m.
However, it might not be unique, as in the Krein-Rutman theory, see Corollary 1.5.
It measures the global fitness of the population: the population grows exponentially
fast λε > 0 when the reproduction term Bε dominates, while it declines exponentially
fast λε < 0 when the mortality m out-competes the reproduction.

This preliminary analysis on the stationary profile paves the way for a systematic
analysis of various quantitative genetics models, including time marching problems
and the combination of multiple effects.

Our work is inspired by similar asymptotics in the case of linear operator Bε,
see the seminal work by [DJMP05] and references cited above. Accordingly, our goal
is to analyze problem (PFε) in the limit of vanishing variance ε2 → 0. As there is
few diversity generated in this asymptotic regime, we expect that the variance of the
distribution solution Fε vanishes as well. Actually, there is strong evidence that the
leading order profile of Fε is a Gaussian distribution with variance ε2. As a matter
of fact, any Gaussian distribution with variance ε2 is invariant by the infinitesimal
operator Bε in the absence of selection (m ≡ 0, λε = 1) [TB94, MR13]. This motivates
the following decomposition of the solution:

(1.3) Fε(z) =
1

(2π)d/2εd
exp
(
− (z − z0)2

2ε2
− Uε(z)

)
.

J.É.P. — M., 2019, tome 6



540 V. Calvez, T. Garnier & F. Patout

The latter (1.3) is similar to the Hopf-Cole transform used in the asymptotic anal-
ysis of adaptative evolutionary dynamics in asexual populations. In our case Uε is a
corrector term that measures the deviation from the leading Gaussian distribution of
variance ε2. Our analysis reveals that selection determines the center of the distribu-
tion z0, as expected, and also reshapes the distribution Fε via the corrector Uε.

The operator Bε is invariant by translation. Up to a translation of m, we may
assume that the leading order Gaussian distribution is centered at the origin, i.e.,
z0 = 0. Next, up to a change of λε ← λε +m(0), we may assume that m(0) = 0. Note
that we may also assume Uε(0) = 0 without loss of generality, as the original problem
is homogeneous.

Plugging the transformation of (1.3) into (PFε) yields the following equivalent
problem for Uε:

(PUε) λε +m(z) = Iε(Uε)(z) exp (Uε(z)− 2Uε (z/2) + Uε(0)) , z ∈ Rd.

The residual term from the integral contribution is the following non-local term Iε(Uε),
see Section 2.1 for the details of the derivation. Set

Eε(y1, y2, z)

:= exp
[
−1

2
y1 · y2 −

3

4

(
|y1|2 + |y2|2

)
+ 2Uε (z/2)− Uε (z/2 + εy1)− Uε (z/2 + εy2)

]
Then

(1.4) Iε(Uε)(z) =

∫∫
R2d

Eε(y1, y2, z) dy1dy2

πd/2
∫
Rd

exp
[
−1

2
|y|2 + Uε(0)− Uε(εy)

]
dy

.

This decomposition appears to be relevant because a formal computation shows that
Iε(Uε) → 1 as ε → 0. Establishing uniform convergence is actually a cornerstone of
our analysis. Thus for small ε, the problem (PUε) is presumably close to the following
corrector equation, obtained formally at ε = 0:

(PU0) λ0 +m(z) = exp (U0(z)− 2U0 (z/2) + U0(0)) , z ∈ Rd.

Interestingly, this finite difference equation admits explicit solutions by means of an
infinite series:

U0(z) = γ0 · z +
∑
k>0

2k log
(
λ0 +m(2−kz)

)
,

However, two difficulty remains: identify (i) the linear part γ0 ∈ Rd and (ii) the
unknown λ0 ∈ R. On the one hand, the linear part γ0 cannot be recovered from (PU0)
because linear contributions cancel in the right-hand-side of (PU0). Thus, identifying
the coefficient γ0 will be a milestone of our analysis. On the other hand, two important
conditions must be fulfilled to guarantee that the series above converges, namely:

λ0 +m(0) = 1, and ∂zm(0) = 0.

The latter is a constraint on the possible translations that can be operated: the
origin must be located at a critical point of m. The former prescribes the value of λ0
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accordingly. These two conditions are necessary conditions for the resolvability of
problem (PU0). Indeed, evaluating (PU0) at z = 0, we get the first identity. Next,
differentiating and evaluating again at z = 0, we get the second identity.

In the sequel we make this formal discussion rigourous, following a perturbative
approach for ε small enough. Before stating our main result, we need to prescribe the
appropriate functional space for the corrector Uε.

Definition 1.1 (Functional space for Uε). — For any positive parameter α 6 2/5, we
define the functional space

E α =

u ∈ C 3(Rd) : u(0) = 0, and

∣∣∣∣∣∣
|Du(z)|

(1 + |z|)α
∣∣D2u(z)

∣∣
(1 + |z|)α

∣∣D3u(z)
∣∣ ∈ L∞(Rd)

 ,

equipped with the norm

(1.5) ‖u‖α = max
(

sup
z∈Rd

|Du(z)| , sup
z∈Rd

(1 + |z|)α
{∣∣D2u(z)

∣∣ , ∣∣D3u(z)
∣∣}).

For any bounded set K of E α, we use the notation ‖K‖α = supu∈K ‖u‖α. Occa-
sionally we use the notation ϕα for the weight function ϕα(z) = (1 + |z|)α. Although
2/5 is not the critical threshold, it happens that the exponent α cannot be taken too
large in our approach. We set implicitly α = 2/5 in the following results, however
we leave it as a parameter to emphasize its role in the analysis, and to pinpoint the
apparition of the threshold. Note that α > 0 is required in our approach, as one
constant collapses in the limit α→ 0 (see estimate (5.6) below).

Then, we detail the assumptions on the selection function m.

Definition 1.2 (Assumptions on m). — The function m is a C 3(Rd) function,
bounded below, that admits a local non-degenerate minimum at 0 such that
m(0) = 0, and there exists µ0 > 0 such that D2m(0) > µ0 Id in the sense of
symmetric matrices. Furthermore we suppose that (∀z) 1 +m(z) > 0 and

(1.6) (1 + |z|)α Dkm(z)

1 +m(z)
∈ L∞(Rd), for k = 1, 2, 3.

Remark 1.3. — Our result is insensitive to the sign of the local extremum. Indeed,
one can replace the hypothesis that m admits a “local non degenerate minimum” at 0

with a “local non degenerate maximum” at 0, and that there exists µ0 < 0 such that
D2m(0) 6 µ0 Id. However, we leave our main assumption as in Definition 1.2 as it is
the most natural one from the point of view of stability analysis for the time-marching
problem (1.2).

The condition (1.6) is clearly verified if m is a polynomial function. It would be
tempting to write, in short, that log(1 + m) ∈ E α, which is indeed a consequence
of (1.6). However, the latter condition also contains the decay of the first order deri-
vative D log(1 + m) with rate |z|−α, which is not contained in the definition of E α

(1.5) for good reasons.

J.É.P. — M., 2019, tome 6
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We also introduce the subset E α
0 :

(1.7) E α
0 =

{
v ∈ E α : Dv(0) = 0, D2v(0) > D2m(0) > µ0 Id

}
,

Then, our assumption on m in fact guarantees that

(1.8) log(1 +m) ∈ E α
0 .

The main result of this article is the following theorem.

Theorem 1.4 (Existence and convergence)
(i) There exist K0 a ball of E α, and ε0 a positive constant, such that for any ε 6 ε0,

the problem (PUε) admits a unique solution (λε, Uε) ∈ R×K0.
(ii) The family (λε, Uε)ε converges to (λ0, U0) as ε→ 0, with

λ0 = 1,(1.9)
U0(z) = γ0 · z + V0(z),(1.10)

where

γ0 =


∂3
zm(0)

2∂2
zm(0)

, if d = 1

1

2

(
D2m(0)

)−1
D(∆m)(0), if d > 1

V0 =
∑
k>0

2k log
(
1 +m(2−kz)

)
.

(1.11)

Moreover, the convergence Uε → U0 is locally uniform up to the second derivative.

An immediate remark is that the regularity required by (1.6), and particularly
the C 3 regularity of m, is consistent with formula (1.10) which involves the pointwise
value of third derivatives of m. Alternatively speaking we think that our result is close
to optimal in terms of regularity.

It is important to notice that our result holds true for any local minimum z0 such
that

(1.12) m(z0) < 1 + inf m.

One should define the functional spaces E α and E α
0 accordingly (and particularly

replace the conditions u(0) = 0 and Du(0) = 0 by the conditions u(z0) = 0 and
Du(z0) = 0), and then adapt (1.9)–(1.10) as follows, for the one-dimensional case:

λ0 = 1−m(z0),

U0(z0 + h) = γ0 · h+
∑
k>0

2k log
(
1 +m(2−k(z0 + h))−m(z0)

)
,(1.13)

where γ0 is defined by the same formula as in (1.11) but evaluated at z0. Immediately,
one sees that the compatibility condition (1.12) is necessary to have the positivity of
the term inside the log in (1.13). As a consequence, we have:
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Phenotypic trait z

1

Phenotypic trait z

Figure 1.1. Numerical simulations of the stationary problem (PFε)
with ε = 0.1 in an asymmetric double-well mortality rate (grey line).
The numerical equilibrium is in yellow plain line. The only difference
between the two simulations is the initial data (red dashed line). The
simulations illustrate the lack of uniqueness for problem (PFε).

Corollary 1.5 (Lack of uniqueness). — If the selection function m has at least two
different local non-degenerate minima that verify the compatibility condition (1.12),
there exists at least two pairs (λε, Fε) solutions of problem (PFε) for ε small enough.

We performed numerical simulations to illustrate this phenomenon (see Figure 1).
The function m is an asymmetric double well function. We solved the time marching
problem (1.2) but on the renormalized density Fε/

∫
Fε in order to catch a station-

ary profile. We clearly observed the co-existence of two equilibria for the same set of
parameters, that were obtained for two different initializations of the scheme. How-
ever, let us mention that the question of uniqueness in the case of a convex selection
function m is an open question, to the extent of your knowledge.

This result is in contrast with analogous eigenvalue problems where Bε is replaced
with a linear operator, say Fε+ε2∆Fε as in various quantitative genetics models with
asexual mode of reproduction, see e.g. [BMP09] and references mentioned above, or in
the semi-classical analysis of the Schrödinger equation, see e.g. [DS99]. In the linear
case, λε ∈ R and Fε > 0, Fε 6≡ 0 are uniquely determined (up to a multiplicative
constant for Fε) under mild assumptions on the potential m. This is the signature
that Bε (1.1) is genuinely non-linear and non-monotone, so that possible extensions
of the Krein-Rutman theorem for one-homogeneous operators, as in [Mah07], are not
applicable.

The existence part (i) has already been investigated in [BCGL17] using the
Schauder fixed point theorem and very loose variance estimates. But the approach
was not designed to catch the asymptotic regime ε → 0. The current methodology
gives much more precise information on the behavior of the solutions of the problem
(PFε) in the regime of vanishing variance.
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[BBC+18] Present article

Problem (PFε)

Problem (PUε)

Problem (PU0) Solution (λ0, U0)

Solution (λε, Uε)

Hopf-Cole transform

for small ε
Formal approximation

Fixed point argument
for ε > 0

Convergence as ε→ 0

Figure 1.2. Scope of our paper compared to precedent work

Theorem 1 provides a rigorous background for the connection between problem
(PUε) and problem (PU0) in a perturbative setting. It justifies that the problem
(PFε) is well approximated by the solution (λ0, U0) of the problem (PU0). Quite
surprisingly, the value γ0 of the linear part of the corrector function U0 is resolved
during the asymptotic analysis although it cannot be obtained readily from problem
(PU0) as mentioned above. It coincides with the heuristics of [BBC+18] where the
same coefficient was obtained by studying the formal expansion up to the next order
in ε2: Uε = U0 + ε2U1 + o(ε2), and by identifying the equation on U1 in which the
value of γ0 appears as another compatibility condition. Here the value of γ0 is obtained
directly as a by-product of the perturbative analysis.

As mentioned above, our approach is very much inspired, yet different to most of
the current literature about asymptotic analysis of asexual models, where the limiting
problem is a Hamilton-Jacobi equation, see [Per07] for a comprehensive introduction,
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and references above. To draw a parallel with our problem, let us consider the case
where Bε(f) is replaced with the (linear) convolution operatorKε∗f , where the kernel
has the scaling propertyKε = (1/ε)K (•/ε), andK is a probability distribution kernel.
There, the small parameter ε measures the typical size of the deviation between the
offspring trait and the sole parental trait. In this context, it is natural to introduce
the Hopf-Cole transform Uε = −ε logFε. Then, the problem is equivalent to the
asymptotic analysis of the following equation as ε→ 0:

(1.14) λε +m(z) =

∫
Rd

K (y) exp
(Uε(z)− Uε(z − εy)

ε

)
dy,

For this model, it is known that Uε converges towards the viscosity solution of a
Hamilton-Jacobi equation [BMP09]:

(1.15) λ0 +m(z) = H(DU0(z)) =

∫
Rd

K (y) exp (DU0(z) · y) dy.

Note that the limiting equation on U0 (1.15) can be derived formally from (1.14) by
a first order Taylor expansion on Uε.

There are two noticeable discrepancies between the asexual case (1.14)–(1.15) and
our problem involving the infinitesimal model with small variance. Firstly, ε plays
a similar role in both cases, i.e., measuring typical deviations between offspring and
parental traits. However, the appropriate normalization differs by a factor ε: it is
−ε logFε in the asexual case, whereas it is −ε2 logFε in our context, see (1.3). This
scaling difference is the signature of major differences between the two problems (asex-
ual vs. sexual). Secondly, the two limiting problems (1.15) and (PU0) have completely
different natures: a Hamilton-Jacobi PDE in the asexual case, vs. a finite difference
equation in the sexual case. Moreover, due to the lack of a comparison principle in the
original problem (PFε), we could not envision a similar notion of viscosity solutions
for (PU0). Instead, we use rigid contraction properties and a suitable perturbative
analysis to construct a unique strong solution near the limiting problem, as depicted
in Figure 1.2.

[MR13] observed that the infinitesimal operator Bε alone enjoys a uniform con-
traction property with respect to the quadratic Wasserstein distance, with a factor of
contraction 1/2. Recently, this was used by [MR15] to perform a hydrodynamic limit
in a different regime than the one under consideration here. However, the combination
of Bε with a zeroth-order heterogeneous mortality m(z) seems to destroy this nice
structure (details not shown).

The next section is devoted to the reformulation of problem (PUε) into a fixed
point problem, introducing a set of notation and the strategy to prove Theorem 1.4.
The organization of the paper is postponed to the end of the next section.

Up until the last part of the article we implicitly work in dimension d = 1, for the
readers’ convenience. In Section 7 we pinpoint the few elements of the proof that are
specific to the one-dimensional case and give an extension to the higher-dimensional
case in order to complete the proof of Theorem 1.4.
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ing discussions at the early stage of this work. They are thankful to Sepideh Mirrahimi
for pointing out the extension of the result to local maxima of the selection function,
see Remark 1.3.

2. Reformulation of the problem as a fixed point

2.1. Looking for problem (PUε). — The equivalence between problem (PFε) and
problem (PUε) through the transform (1.3) is not immediate. It is detailed in
[BBC+18], but we recall here the key steps for the sake of completeness. Plugging
(1.3) into problem (PFε) yields

λε +m(z) =

∫∫
R2

Ẽε(z1, z2, z) dz1dz2

ε
√
π

∫
R

exp
(
−q(z′)/ε2 − Uε(z′)

)
dz′

,

with the notation q(z) = z2/2 and

Ẽε(z1, z2, z)

:= exp
[
− 1

ε2

(
2q(z − (z1 + z2)/2) + q(z1) + q(z2)− q(z)

)
−Uε(z1)−Uε(z2) +Uε(z)

]
.

When ε→ 0, we expect the numerator integral to concentrate around the minimum
of the principal term that is:

argmin
(z1,z2)

[2q (z − (z1 + z2)/2) + q(z1) + q(z2)− q(z)] = (z/2, z/2) .

We introduce the notation
z = z/2.

Using the change of variable (z1, z2) = (z + εy1, z + εy2), we obtain the following
equation:

(2.1) λε +m(z)

=

∫∫
R2

exp (−Q(y1, y2)− Uε(z + εy1)− Uε(z + εy2) + Uε(z)) dy1dy2

√
π

∫
R

exp
(
−y2/2− Uε(εy)

)
dy

,

where
1

ε2
[2q (z − (z1 + z2)/2) + q(z1) + q(z2)− q(z)] =

1

2
y1y2 +

3

4
(y2

1 + y2
2).

Definition 2.1. — We denote by Q the following quadratic form:

Q(y1, y2) =
1

2
y1y2 +

3

4
(y2

1 + y2
2).
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It is the residual quadratic form after our change of variable. We notice that
1√
2π

exp(−Q) is the density of a bivariate normal random variable with covariance
matrix

(2.2) Σ =
1

4

(
3 −1

−1 3

)
.

At the denominator of (2.1) naturally arises N the density function of a N (0, 1)

random variable.
Finally, (2.1) is equivalent to problem (PUε):

λε +m(z) = Iε(Uε)(z) exp (Uε(z)− 2Uε (z) + Uε(0)) ,

simply by conjuring 2Uε(z/2) at the numerator and Uε(0) at the denominator, result-
ing into the definition of the remainder Iε(Uε) (1.4) that will be controlled uniformly
close to 1 in all our analysis.

In the next section we explain how we reformulate the problem (PUε) into a fixed
point argument in order to use a Banach-Picard fixed point theorem which prove our
results rigorously.

2.2. Some auxiliary functionals and the fixed point mapping. — This section is
devoted to the derivation of an alternative formulation for problem (PUε). Let (λε, Uε)

be a solution of problem (PUε) in R× E α.
The first step is to dissociate the study of λε and Uε. We first evaluate the problem

(PUε) at z = 0. It yields the following condition on λε, since m(0) = 0:

(2.3) λε = Iε(Uε)(0).

Considering the terms Iε as a perturbation, we divide problem (PFε) by Iε(Uε)(z)

which is positive, and we take the logarithm on each side. Then we obtain the following
equation, considering (2.3):

(2.4) Uε(z)− 2Uε(z) + Uε(0) = log
(Iε(Uε)(0) +m(z)

Iε(Uε)(z)

)
.

It would be tempting to transform (2.4) into a fixed point problem by inverting the
linear operator in the left-hand-side. However, the latter is not invertible as it contains
linear functions in its kernel. Therefore we are led to consider linear contributions
separately.

Our main strategy is to decompose the unknown Uε under the form

(2.5) Uε(z) = γεz + Vε(z),

with Vε ∈ E α
0 . This is consistent with the analytic shape of our statement in (1.10),

where γ0 and V0 have quite different features with respect to the function m.
Next, it is natural to differentiate (2.4). One ends up with the following recursive

equation for every z ∈ R

(2.6) ∂zUε(z)− ∂zUε(z) = ∂z

[
log
(Iε(Uε)(0) +m

Iε(Uε)(z)

)]
(z).
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One simply deduces that, if Uε exists and is regular, then we must have:

∂zUε(z) = ∂zUε(0) +
∑
k>0

∂z

[
log
(Iε(Uε)(0) +m

Iε(Uε)(z)

)]
(2−kz).

One can formally integrate back the previous equation to obtain

(2.7) Uε(z) = Uε(0) + ∂zUε(0)z +
∑
k>0

2k log
(Iε(Uε)(0) +m

Iε(Uε)(z)

)
(2−kz).

At this stage we formally identify:
– Uε(0) = 0, since Uε ∈ E α. This is not a loss of generality by homogeneity since Fε

is itself defined up to a multiplicative constant in problem (PFε).
– γε = ∂zUε(0). In fact this is part of the decomposition (2.5) since Vε ∈ E α

0 .
The real number γε is unknown at this stage, but it needs to verify some compatibility
condition to make the series converging in (2.6)–(2.7). In particular, if we evaluate
(2.6) at z = 0 we obtain that γε must satisfy

(2.8) 0 = ∂zIε(γε ·+Vε)(0).

We will solve (2.8) using an implicit function theorem in order to recover the value γε
associated with a given V . Beforehand, we introduce the following notation:

Definition 2.2 (Finite differences operator Dε). — We define the finite differences
functional Dε as

Dε(V )(y1, y2, z) = V (z)− 1

2
V (z + εy1)− 1

2
V (z + εy2), z = z/2.

We introduce the following auxiliary functional which makes the link between γε
and V .

Definition 2.3 (Auxiliary function Jε). — We define the functional Jε : R×E α
0 → R

as follows

(2.9) Jε(g, V )

=
1

ε2
√

2π

∫∫
R2

exp [−Q(y1, y2)− εg(y1 + y2) + 2Dε(V )(y1, y2, 0)]

×Dε(∂zV )(y1, y2, 0) dy1dy2.

The implicit relationship (2.8) is equivalent to Jε(γε, Ve) = 0. From this perspec-
tive, the following result is an important preliminary step.

Proposition 2.4 (Existence and uniqueness of γε). — For any ball K ⊂ E α
0 , there

exists εK , such that for all ε 6 εK and for any V ∈ K, there exists a unique solution
γε(V ) to the equation:

Find γ ∈ (−RK , RK) such that: Jε(γ, V ) = 0,
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where the bound |γε(V )| 6 RK is defined as

(2.10) RK = max

(‖K‖α ∫∫
R2

exp(−Q(y1, y2))
(
y2

1 + y2
2

)
dy1dy2 + 8

2∂2
zm(0)

; ‖K‖α

)
.

Next we define the main quantity we will work with: the double integral Iε which is
the rescaled infinitesimal operator. For convenience we define it as a mapping on E α

0 .
It is compatible with (1.4) because of the decomposition (2.5).

Definition 2.5 (Auxiliary functional Iε). — We define the functional Iε : E α
0 →

C 3(R) as follows:

(2.11) Iε(V )(z)

=

∫∫
R2

exp
(
−Q(y1, y2)− εγε(V )(y1 + y2) + 2Dε(V )(y1, y2, z)

)
dy1dy2

√
π

∫
R

exp
(
−y2/2− εγε(V )y + V (0)− V (εy)

)
dy

.

Finally, in view of (2.7) and (2.5), we see that Vε must be a solution of this implicit
equation:

(2.12) Vε(z) =
∑
k>0

2k log
(Iε(Vε)(0) +m

Iε(Vε)(z)

)
(2−kz), for every z ∈ R.

This justifies the introduction of our central mapping, upon which our fixed point
argument will be based.

Definition 2.6 (Fixed point mapping). — We define the mapping Hε : E α
0 → E α

0 as
follows

(2.13) Hε(V )(h) =
∑
k>0

2k log
(Iε(V )(0) +m(2−kh)

Iε(V )(2−kh)

)
.

2.3. Reformulation of the problem. — We are now in position to write our main
result for this Section:

Theorem 2.7 (Existence and uniqueness of the fixed point)
There is a ball K0 ⊂ E α

0 and a positive constant ε0 such that for every ε 6 ε0,
the mapping Hε admits a unique fixed point in K0.

To conclude, it is sufficient to check that solving problem (PUε), on the ball K0,
and seeking a fixed point for Hε in K0 are equivalent problems for ε 6 ε0 small
enough.

Proposition 2.8 (Reformulation of the problem (PUε)). — There is a ball K ′0 of E α,
and a positive constant ε′0 such that for every ε 6 ε′0, the following statements are
equivalent:

– (λε, Uε) is a solution of problem (PUε) in R×K ′0.
– Uε = γε(Vε) ·+Vε, with Vε ∈ E α

0 ∩K ′0, Hε(Vε) = Vε, and λε = Iε(Vε)(0).
Moreover, the statement of Theorem 2.7 holds true in the set E α

0 ∩K ′0.
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The main mathematical difficulties are stacked into Theorem 2.7. The rest of the
article is organized as follows:

– In section 3, we justify why the function γε is well defined in Proposition 2.4.
– Then in section 4, we provide the main properties and the key estimates of the

nonlocal operator Iε. We point out why this term plays the role of a perturbation be-
tween problem (PUε) and problem (PU0). In section 4.2 we prove crucial contraction
estimates.

– Those estimates are the main ingredients of the proof of properties of Hε in
Section 5: most notably the finiteness of Hε(V ), and the fact that Hε is a contraction
mapping.

– This allows us to establish the proof of Theorem 2.7 and Proposition 2.8, and
finally to come back to the proof of our main result Theorem 1.4 in the sections 6.1
and 6.2.

– Section 7 is devoted to those specific arguments that require an extension to the
higher dimensional case d > 1.

3. Well-posedness of the implicit function γε

3.1. Heuristics on finding γε. — We consider V ∈ E α
0 , and we look for solutions γε

of Jε(γε, V ) = 0, or equivalently:

(3.1) 0 =
1

ε2
√

2π

∫∫
R2

exp [−Q(y1, y2)− εγε(y1 + y2) + 2Dε(V )(y1, y2, 0)]

×
(
Dε(∂zV )(y1, y2, 0)

)
dy1dy2,

in accordance with (2.9). We will see here how a Taylor expansion of the right-hand-
side around ε = 0 helps to understand why it defines a unique γε in a given interval
for small ε. We will show formally why Jε(·, V ) can be uniformly approximated by
a non-degenerate linear function for small ε.

We expand the right-hand-side with respect to ε:
1

ε2
√

2π

∫∫
R2

exp [−Q(y1, y2)] exp [−εγε(y1 + y2) + 2Dε(V )(y1, y2, 0)]

×
(
Dε(∂zV )(y1, y2, 0)

)
dy1dy2

= − 1

ε2
√

2π

∫∫
R2

exp [−Q(y1, y2)] [1− εγε(y1 + y2) + o (ε)]

×
(ε

2
(y1 + y2) ∂2

zV (0) +
ε2

4

(
y2

1 + y2
2

)
∂3
zV (0) + o(ε2)

)
dy1dy2

=
1

ε2

(ε2

2
γε∂

2
zV (0)− ε2 3∂3

zV (0)

8
+ o(ε2)

)
.

Then solving

0 = −3∂3
zV (0)

8
+

1

2
γε∂

2
zV (0) + o(1),
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we get the expression:

(3.2) γε ∼
ε→0

3

4

∂3
zV (0)

∂2
zV (0)

.

These heuristics are consistent with the statement in Theorem 1.4, up to the relation
between V0 and m that can be easily read out from (1.11). Note that the denominator
involves ∂2

zV (0), so that the local convexity of V should be controlled uniformly during
our construction. This is the purpose of the restriction in E α

0 (1.7). In the following,
we provide estimates that turn these heuristics into a rigorous proof.

3.2. Proof of Proposition 2.4. — The aim of this section is to prove the existence
and uniqueness of γε(V ) stated in Proposition 2.4. We first start with a Lemma
providing some useful estimates on the function Jε. Combining these estimates with
a continuity and monotonicity arguments, we will be able to prove the Proposition 2.4.

Lemma 3.1 (Estimates of Jε). — For any ball K ⊂ E α
0 , there exists εK > 0, such

that for all ε 6 εK and V ∈ K, the following estimate holds true for all g in the
interval (−RK , RK):

Jε(0, V ) = − 1

4
√

2π

∫∫
R2

exp(−Q(y1, y2))(3.3)

×
[
y2

1∂
3
zV (εỹ1) + y2

2∂
3
zV (εỹ2))

]
dy1dy2 + O(ε),

∂gJε(g, V ) =
∂2
zV (0)

2
+ O(ε),(3.4)

where, in the former expansion, the variable ỹi is a by-product of Taylor expansions
and is such that |ỹi| 6 |yi|+ 1.

Remark 3.2. — We prove the uniqueness of γε on a uniformly bounded interval. One
may think it is a strong restriction not to look at large γε. It is in fact a natural
restriction as we have by definition γε = ∂zUε(0), and ∂zUε ∈ L∞ in our perturbative
setting.

We postpone the proof of the technical Lemma 3.1 at the end of this section and
we first use it to prove the Proposition 2.4:

Proof of Proposition 2.4. — Let K be a ball of E α
0 and V ∈ K. We deduce from

Lemma 3.1 that |Jε(0, V )| 6 GK + 1, where

GK =
‖K‖α
4
√

2π

∫∫
R2

exp(−Q(y1, y2))
(
y2

1 + y2
2

)
dy1dy2,

for ε small enough. Integrating (3.4) with respect to g, we obtain

Jε(g, V ) = Jε(0, V ) +
∂2
zV (0)

2
g + O(ε),

where it is important to notice that the perturbation O(ε) is uniform with respect to ε
for g ∈ (−RK , RK) and V ∈ K. Since V ∈ E α

0 , we know that ∂2
zV (0) > ∂2

zm(0) > 0.
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Therefore, Jε is uniformly increasing with respect to g on (−RK , RK). Moreover,
the choice of RK is such that

Jε(RK , V ) > −1−GK +
∂2
zm(0)

2
RK + O(ε) = 1 + O(ε) > 0,

for ε small enough, and similarly, Jε(−RK , V ) < 0. Finally, there exists a unique
γε(V ) satisfying Jε(γε(V ), V ) = 0 because Jε is continuous with respect to g for
V ∈ E α

0 . �

Proof of Lemma 3.1. — Let K be a ball of E α
0 of radius ‖K‖α. In section 3.1, we have

used formal Taylor expansions to get a formula for γε(V ), morally valid when ε = 0.
The idea here is to write exact rests to broaden the formula for small but positive ε.

Proof of expansion (3.3). — Let us pick V ∈ K and ε > 0. Recall the expression of
Jε(0, V ):

Jε(0, V )

=
1

ε2
√

2π

∫∫
R2

exp [−Q(y1, y2) + 2Dε(V )(y1, y2, 0)]
(
Dε(∂zV )(y1, y2, 0)

)
dy1dy2.

We perform two Taylor expansions, namely:

(3.5)


2Dε(V )(y1, y2, 0) = −ε

2

2

(
y2

1∂
2
zV (εỹ1) + y2

2∂
2
zV (εỹ2)

)
Dε(∂zV )(y1, y2, 0) = −ε(y1 + y2)

2
∂2
zV (0)

−ε
2

4
(y2

1∂
3
zV (εỹ1) + y2

2∂
3
zV (εỹ2)),

where ỹi denote some generic number such that |ỹi| 6 |yi| for i = 1, 2. Moreover, we
can write

(3.6)
exp(−ε2P ) = 1− ε2P exp(−θε2P ), P =

1

2

(
y2

1∂
2
zV (εỹ1) + y2

2∂
2
zV (εỹ2)

)
,

|P | 6 1

2

(
y2

1 + y2
2

)
‖V ‖α,

for some θ = θ(y1, y2) ∈ (0, 1). Combining the expansions, we find:

Jε(0, V ) =
1

ε2
√

2π

∫∫
R2

exp [−Q(y1, y2)]
(
1− ε2P exp(−θε2P )

)
×
(
−ε(y1 + y2)

2
∂2
zV (0)− ε2

4
(y2

1∂
3
zV (εỹ1) + y2

2∂
3
zV (εỹ2))

)
dy1dy2.

The crucial point is the cancellation of the O(ε−1) contribution due to the symmetry
of Q:

(3.7)
∫∫

R2

exp(−Q(y1, y2))(y1 + y2)dy1dy2 = 0.
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So, it remains

Jε(0, V ) = − 1

4
√

2π

∫∫
R2

exp(−Q(y1, y2))
[
y2

1∂
3
zV (εỹ1) + y2

2∂
3
zV (εỹ2))

]
dy1dy2

+
ε

2
√

2π

∫∫
R2

exp(−Q(y1, y2))P exp(−θε2P )(y1 + y2)∂2
zV (0)dy1dy2

+
ε2

4
√

2π

∫∫
R2

exp(−Q(y1, y2))P exp(−θε2P )
(
y2

1∂
3
zV (εỹ1) + y2

2∂
3
zV (εỹ2)

)
dy1dy2.

Clearly the last two contributions are uniform O(ε) for V ∈ K and ε 6 εK small
enough. Indeed, the term P is at most quadratic with respect to yi (3.6), so Q+θε2P

is uniformly bounded below by a positive quadratic form for ε small enough.

Proof of expansion (3.4). — The first step is to compute the derivative of J with
respect to g:

∂gJε(g, V ) = − 1

ε
√

2π

∫∫
R2

exp [−Q(y1, y2)− εg(y1 + y2) + 2Dε(V )(y1, y2, 0)]

× (y1 + y2) [Dε(∂zV )(y1, y2, 0)] dy1dy2.

Similar Taylor expansions as above yields:

∂gJε(g, V ) = − 1

ε
√

2π

∫∫
R2

exp [−Q(y1, y2)] (1− εP ′ exp(−θεP ′))

× (y1 + y2)
(
−ε(y1 + y2)

2
∂2
zV (0)− ε2

4
(y2

1∂
3
zV (εỹ1) + y2

2∂
3
zV (εỹ2))

)
dy1dy2,

where P ′ = g(y1 + y2) + y1∂zV (εỹ1) + y2∂zV (εỹ2). Interestingly, the leading order
term does not cancel anymore, and it remains:

∂gJε(g, V ) =
1

2
√

2π

(∫∫
R2

exp [−Q(y1, y2)] (y1 + y2)2 dy1dy2

)
∂2
zV (0) + O(ε).

The justification that the remainder is a uniform O(ε) is similar as above, except that
now P ′ has a linear part depending on g, but the latter is assumed to be bounded a
priory by RK . �

4. Analysis of the perturbative term Iε

4.1. Lipschitz continuity of some auxiliary functionals. — The function Iε is cru-
cially involved in the definition of the mapping Hε. Thus to prove any contraction
property on this mapping we will need Lipschitz estimates about Iε and the three
first derivatives of its logarithm. But first we show that Iε really plays the role of
a perturbative term between problem (PUε) and problem (PU0) that converges to 1

uniformly as ε→ 0.

Proposition 4.1 (Estimation of Iε). — For every K ball of E α
0 , for every δ > 0,

there exists a constant εδ that depends only on K and δ, such that for every ε 6 εδ
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and for every V ∈ K:

(∀z ∈ R) 1− δ 6 Iε(V )(z) 6 1 + δ.

Proof. — Let V in K. For ε 6 εK , one can apply Proposition 2.4 which gives
|γε(V )| 6 RK . Next it is enough to write that:

Cε +

∫∫
R2

exp [−Q(y1, y2)− 2εRK(|y1|+ |y2|)] dy1dy2

√
2π

∫
R

exp
(
−y2/2− 2εRK |y|

)
dy

6 Iε(V )(z),

Iε(V )(z) 6

∫∫
R2

exp
(
−Q(y1, y2) + 2εRK(|y1|+ |y2|)

)
dy1dy2

√
2π

∫
R

exp
(
−y2/2− 2εRK |y|

)
dy

+ Cε.and

We deduce from this lower and upper estimates that the whole Iε(V ) converges
uniformly to 1 as ε→ 0. �

Next, we show Lipschitz continuity of various quantities of interest.

Proposition 4.2 (Lipschitz continuity of γε). — For every ball K ⊂ E α
0 , there exist

constants LK(γ), and εK , depending only on K, such that for all ε 6 εK , V1, V2 ∈ K

|γε(V1)− γε(V2)| 6 LK(γ) ‖V1 − V2‖α .

Proof. — Let K be a ball of E α
0 , and let V1, V2 ∈ K. Let denote ΓIε = γε(Vi) for

i = 1, 2. We argue by means of Fréchet derivatives: let s ∈ (0, 1), γs = sγ1 + (1− s)γ2,
Vs = sV1 + (1− s)V2, and consider the following computation:

(4.1) d

ds
Jε(γs, Vs) = ∂γJε(γs, Vs)(γ1 − γ2) +DV Jε(γs, Vs) · (V1 − V2),

where the Fréchet derivative of J with respect to V is:

DV Jε(γ, V ) ·H =
1

ε2
√

2π

∫∫
R2

exp [−Q(y1, y2)− εγ(y1 + y2) + 2Dε(V )(y1, y2, 0)]

×
(
2Dε(H)(y1, y2, 0)

)(
Dε(∂zV )(y1, y2, 0)

)
dy1dy2

+
1

ε2
√

2π

∫∫
R2

exp [−Q(y1, y2)− εγ(y1 + y2) + 2Dε(V )(y1, y2, 0)]

×
(
Dε(∂zH)(y1, y2, 0)

)
dy1dy2.

We perform similar Taylor expansions as in (3.5),

2Dε(W )(y1, y2, 0) =

{
−ε(y1 + y2)O (‖∂zW‖∞)

−ε(y1 + y2)∂zW (0)− (ε2/2)
(
y2

1 + y2
2

)
O
(
‖∂2
zW‖∞

)
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either for W = V,H ∈ E α
0 , or W = ∂zV, ∂zH. We deduce that

(4.2) DV Jε(γ, V ) ·H

=
1

ε2
√

2π

∫∫
R2

exp [−Q(y1, y2)− εγ(y1 + y2)− ε(y1 + y2)O (‖∂zV ‖∞)]

×
[(
−ε

2

2

(
y2

1 + y2
2

)
O
(
‖∂2
zH‖∞

))(
−ε(y1 + y2)O

(
‖∂2
zV ‖∞

))
+
(
−ε(y1 + y2)∂2

zH(0)− ε2

2

(
y2

1 + y2
2

)
O
(
‖∂3
zH‖∞

))]
dy1dy2.

We proceed as in the previous section for the exponential term: there exists θ =

θ(y1, y2) ∈ (0, 1) such that

exp(−εP ′) = 1− εP ′ exp(−θεP ′), where P ′ = γ(y1 + y2) + (y1 + y2)O (‖∂zV ‖∞) .

Again, the crucial point is the cancellation of the O(ε−1) contribution in (4.2), as
in (3.7) What remains is of order one or below, and one can easily show that there
exists CK such that

|DV Jε(γ, V ) ·H| 6 CK
(
‖∂3
zH‖∞ + |∂2

zH(0)| (|γ + ‖∂zV ‖∞|)

+ ε‖∂2
zH‖∞‖∂2

zV ‖∞ + ε‖∂3
zH‖∞ (|γ + ‖∂zV ‖∞|)

)
6 CK‖H‖α,

provided ε 6 εK is small enough.
On the other hand, we have already established that ∂γJε(γ, V ) = ∂2

zV (0)/2 +

O(ε) in Lemma 3.1. Consequently, integrating (4.1) from s = 0 to 1, we find:

0 = Jε(γ1, V1)−Jε(γ2, V2)

=
(∂2

zV (0)

2
+ O(ε)

)
(γ1 − γ2) +

(∫ 1

0

DV Jε(γs, Vs) · (V1 − V2) ds

)
.

We deduce from the previous estimates and the local convexity condition in (1.7) that

|γ1 − γ2| 6 CK
( 2

∂2
zm(0)

+ CKε
)
‖V1 − V2‖α,

for some CK and ε 6 εK small enough. �

In turn, Proposition 4.2 implies the Lipschitz continuity of Iε as a function of V .

Proposition 4.3 (Lipschitz continuity of Iε). — For every ball K of E α
0 , there exist

constants εK , CK depending only on K, such that for all ε 6 εK , V1, V2 ∈ K,

(4.3) sup
z∈R
|Iε(V1)(z)−Iε(V2)(z)| 6 εCK ‖V1 − V2‖α .

Proof. — The Lipschitz continuity of Iε with respect to V can be proven by composi-
tion of Lipschitz functions. With the same notations as in the proof of Proposition 4.2,
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and with the shortcut notation Iε = Aε/Bε to separate the numerator from the deno-
minator in (2.11) we have,

d

ds
Aε(Vs)(z) = −

∫∫
R2

GVε (y1, y2, z)

×
(
ε
d

ds
γε(Vs)(y1+y2)+

∫ z+εy1

z

∂z(V1−V2)(z′)dz′−
∫ z+εy2

z

∂z(V1−V2)(z′)dz′
)
dy1dy2,

where we have simply written V (z+ εy1)−V (z) =
∫ z+εy1
z

∂zV (z′) dz′, and where GVε
denotes the exponential weight:

GVε (y1, y2, z) =
1√
2π

exp [−Q(y1, y2)− εγε(V )(y1 + y2) + 2Dε(V )(y1, y2, z)] .

We deduce that Aε is such that:

(∀z)
∣∣∣ d
ds
Aε(Vs)(z)

∣∣∣
6 ε

∫∫
R2

GVε (y1, y2, z) (LK(γ)‖V1 − V2‖α + ‖V1 − V2‖α) (|y1|+ |y2|) dy1dy2.

As the weight GVε is uniformly close to a positive quadratic form for small ε, we find
that the numerator has a Lipschitz constant of order ε uniformly with respect to z:

sup
z∈R
|Aε(V1)(z)−Aε(V2)(z)| 6 εCK ‖V1 − V2‖α .

The same holds true for the denominator Bε. In addition, a direct by-product of the
proof of Proposition 4.1 is that Aε and Bε are uniformly bounded above and below
by positive constants for ε small enough. Consequently, the quotient Iε = Aε/Bε is
Lipschitz continuous. �

It is useful to introduce the probability measure dGVε induced by the exponential
weight GVε :

dGVε (y1, y2, z) =
GVε (y1, y2, z)∫∫

R2

GVε (·, ·, z)

=
exp [−Q(y1, y2)− εγε(V )(y1 + y2) + 2Dε(V )(y1, y2, z)]∫∫

R2

exp [−Q(y1, y2)− εγε(V )(y1 + y2) + 2Dε(V )(y1, y2, z)] dy1dy2

.

As a consequence of the previous estimates, we obtain the following one.

Lemma 4.4 (Lipschitz continuity of dGVε ). — For every ball K of E α
0 , there exist

constants εK , CK depending only on K, such that for all ε 6 εK , V1, V2 ∈ K,

(4.4) sup
z∈R

∣∣dGV1
ε (y1, y2, z)− dGV2

ε (y1, y2, z)
∣∣

6 εCK ‖V1 − V2‖α (1 + |y1|+ |y2|) exp
(
−Q(y1, y2) + 2εRK(|y1|+ |y2|)

)
.
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Furthermore, under the same conditions, we have the following bound, uniform with
respect to z ∈ R:

(4.5) dGVε (y1, y2, z) 6
1

4
exp [−Q(y1, y2) + 2εRK(|y1|+ |y2|)] .

Proof. — We first prove (4.5): the function GVε is such that

GVε (y1, y2, z) ≷
1√
2π

exp [−Q(y1, y2)∓ 2εRK(|y1|+ |y2|)] .

Therefore, its integral over (y1, y2) ∈ R2 converges to 1 as ε→ 0, and there exists εK
depending on K such that

∫∫
GVε (y1, y2, z) dy1dy2 > 4/

√
2π for ε 6 εK . This leads

to (4.5).
In order to obtain (4.4), we proceed as in the proof of Proposition 4.3, as the

denominator of dGVε is the numerator Aε of Iε. For the Lipschitz continuity of the
numerator of dGVε , we find:

(∀z)
∣∣∣ d
ds
GVs
ε (y1, y2, z)

∣∣∣
6 εGVs

ε (y1, y2, z) (LK(γ)‖V1 − V2‖α + ‖V1 − V2‖α) (|y1|+ |y2|) .

We deduce that the quotient dGVε = GVε /Aε(V ) is also Lipschitz continuous:∣∣dGV1
ε − dGV2

ε

∣∣ 6 ∣∣∣GV1
ε −GV2

ε

Aε(V1)
+
Aε(V2)−Aε(V1)

Aε(V1)Aε(V2)
GV2
ε

∣∣∣
6 εCK‖V1 − V2‖α (|y1|+ |y2|) exp

(
−Q(y1, y2) + 2εRK(|y1|+ |y2|)

)
+ εCK‖V1 − V2‖α exp

(
−Q(y1, y2) + 2εRK(|y1|+ |y2|)

)
.

This concludes the proof of (4.4). �

To conclude, we have established in this section that Iε is a perturbative term,
both in the uniform sense Iε(V ) → 1, and in the Lipschitz sense: LipV Iε = O(ε).
In addition, we have proven a similar Lipschitz smallness property for a probability
distribution dGVε that will appear frequently in our contraction estimates.

4.2. Contraction properties (first part). — On the way to estimating the fixed
point mapping Hε (2.13), we need good estimates on the logarithmic derivatives
of Iε. For that purpose, we introduce the following quantities for i = 1, 2, 3:

(4.6) W (i)
ε (V )(z) =

∂izIε(V )(z)

Iε(V )(z)
.

For the sake of conciseness, we omit sometimes the dependency with respect to
y1, y2 in the notations, as for instance: dGVε (y1, y2, z) = dGVε (z). The following nota-
tion with a duality bracket is useful:〈

dGVε (z), f
〉

=

∫∫
R2

dGVε (y1, y2, z)f(y1, y2) dy1dy2.

Indeed, for any V ∈ E α
0 , we have:

(4.7) W (1)
ε (V )(z) =

〈
dGVε (z),Dε(∂zV )(z)

〉
.

J.É.P. — M., 2019, tome 6



558 V. Calvez, T. Garnier & F. Patout

Similarly:

W (2)
ε (V )(z) =

〈
dGVε (z),

1

2
Dε(∂

2
zV )(z) + (Dε(∂zV )(z))

2
〉
.

And finally:

(4.8) W (3)
ε (V )(z)

=
〈
dGVε (z),

1

4
Dε(∂

3
zV )(z) + (Dε(∂zV )(z))

3
+ 3Dε(∂zV )(z)

(1

2
Dε(∂

2
zV )(z)

)〉
.

In order to obtain estimates on W (i) it seems natural from the previous pattern of
differentiation to begin with estimates on the symmetric difference of the derivatives
of V .

Lemma 4.5. — For any V ∈ E α, and (y1, y2) ∈ R2, we have:

sup
z

(1 + |z|)α
∣∣∣Dε(∂zV )(y1, y2, z)

∣∣∣(4.9)

6 ε2α‖V ‖α
[
|y1|+ |y2|+ εα|y1|1+α + εα|y2|1+α

]
,

sup
z

(1 + |z|)α
∣∣∣1
2
Dε(∂

2
zV )(y1, y2, z)

∣∣∣(4.10)

6 ε2α−1‖V ‖α
[
|y1|+ |y2|+ εα|y1|1+α + εα|y2|1+α

]
,

sup
z

(1 + |z|)α
∣∣∣1
4
Dε(∂

3
zV )(y1, y2, z)

∣∣∣(4.11)

6 2α−1‖V ‖α
(

1 +
εα

4
[|y1|α + |y2|α]

)
.

It is important to notice that the first two right-hand-sides (resp. first and second
derivatives) are of order ε. The third one is larger but controlled by 2α−1 < 1. This
is the first occurrence of the contraction property we are seeking. This is the main
reason why we make the analysis up to the third derivatives.

Proof. — We introduce the additional notation ϕα(z) = (1 + |z|)α. First, since
z = z/2, we have ϕα(z) 6 2αϕα(z).

Proof of (4.9). — By Taylor expansions, we have:

ϕα(z) |Dε(∂zV )(y1, y2, z)| 6 2αϕα(z)
∣∣∣εy1

2
∂2
zV (z + εỹ1) +

εy2

2
∂2
zV (z + εỹ2)

∣∣∣ ,
where |ỹi| 6 |yi|. Using the definition of ‖ · ‖α (1.5), we obtain

ϕα(z)
∣∣εy1∂

2
zV (z + εỹ1)

∣∣ 6 ε|y1|ϕα(z)

ϕα(z + εỹ1)
‖V ‖α 6

ε|y1|(1 + |εỹ1|+ |z + εỹ1|)α

(1 + |z + εỹ1|)α
‖V ‖α .

Since we chose α < 1, | · |α is sub-additive. Thus, we get

ϕα(z)
∣∣εy1∂

2
zV (z + εỹ1)

∣∣ 6 ε|y1|
(

1 +
|εỹ1|α

(1 + |z + εỹ1|)α
)
‖V ‖α

6 ε|y1|(1 + |εy1|α) ‖V ‖α 6 ε(|y1|+ |y1|1+α).

By symmetry of the role played by y1 and y2, we have proven equation (4.9).
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Proof of (4.10). — The second estimate is a consequence of the first one, applied to
the derivative of V . Notice that it is allowed as E α

0 enables control of derivatives up
to the third order.

Proof of (4.11). — We must be a little more careful in the estimations of the third
estimate (4.11), because we cannot go up to the fourth derivative in the Taylor ex-
pansions. This is why we do not have an ε bound, but we gain a contraction factor
instead. We have

ϕα(z)
∣∣∣1
4
Dε(∂

3
zV )(y1, y2, z)

∣∣∣ 6 2αϕα(z)
∣∣∣1
4
∂3
zV (z)− 1

8
∂3
zV (z + εy1)− 1

8
∂3
zV (z + εy2)

∣∣∣
6

2α

4
‖V ‖α + 2αϕα(z)

∣∣∣1
8
∂3
zV (z + εy1) +

1

8
∂3
zV (z + εy2)

∣∣∣.
We bound separately each term using again the sub-additivity of |·|α. For ε 6 1:

ϕα(z)
∣∣∣1
8
∂3
zV (z + εy1)

∣∣∣ 6 ϕα(z)

8ϕα(z + εy1)
‖V ‖α

6
‖V ‖α

8

(
1 +

(|εy1|)α

(1 + |z + εy1|)α
)
6 (1 + |εy1|α)

‖V ‖α
8

.

Summing it all up, one ends up with:

ϕα(z)
∣∣∣1
4
Dε(∂

3
zV )(y1, y2, z)

∣∣∣ 6 2α−1 ‖V ‖α
(

1 +
1

4
εα [|y1|α + |y2|α]

)
.

This is precisely equation (4.11). �

The following proposition is a first step towards contraction properties that will be
established in section 5. For convenience, we introduce the following notation:{

4W (i)
ε = W

(i)
ε (V1)−W (i)

ε (V2),

4V = V1 − V2.

Proposition 4.6 (Lipschitz continuity of Wε with respect to V )
Let K a ball of E α

0 , and V1, V2 ∈ K. There exists constants εK , CK depending
only on K such that for all ε 6 εK , we have:

sup
z

(1 + |z|)α|4W (1)
ε (z)| 6 εCK‖4V ‖α(4.12)

sup
z

(1 + |z|)α|4W (2)
ε (z)| 6 εCK‖4V ‖α,(4.13)

sup
z

(1 + |z|)α|4W (3)
ε (z)| 6

(
2α−1 + εαCK

)
‖4V ‖α .(4.14)

It is also possible to get estimates on W
(i)
ε (V ) itself, with the same hypotheses.

This is useful to prove the invariance of certain subsets of E α
0 .
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Proposition 4.7. — With the same setting as in Proposition 4.6, we also have:

sup
z

(1 + |z|)α|W (1)
ε (V )(z)| 6 εCK ‖V ‖α ,

sup
z

(1 + |z|)α|W (2)
ε (V )(z)| 6 εCK ‖V ‖α ,

sup
z

(1 + |z|)α|W (3)
ε (V )(z)| 6

(
2α−1 + εαCK

)
‖V ‖α .

We do not give the details of the proof of the latter Proposition, since it is a straight-
forward adaptation of Proposition 4.6. Actually, we cannot readily apply Proposi-
tion 4.6 to (V1, V2) = (V, 0) as 0 /∈ E α

0 , because of the additional condition (1.7) on
∂2
zV (0) which is required to prove boundedness and Lipschitz continuity of γε.

Proof of Proposition 4.6. — The proof of theses inequalities is quite tedious because
of the numerous non-linear calculations. However, the technique is similar for each
inequality, and consists in separating the fully non linear behavior from the quasi-
linear parts of the left-hand-sides of equations (4.12) to (4.14).

Proof of (4.12). — This is the easiest part, because it is quasi-linear with respect
to V . Indeed, we have

4W (1)
ε (z) =

〈
dGV1

ε (z),Dε(∂zV1)(z)
〉
−
〈
dGV2

ε (z),Dε(∂zV2)(z)
〉
.

We reformulate it in two parts, one involving V1 − V2, and the other involving
dGV1

ε − dGV2
ε :

(4.15) 4W (1)
ε (z) =

〈
dGV2

ε (z),Dε(∂z4V )(z)
〉

+
〈
dGV1

ε (z)− dGV2
ε (z),Dε(∂zV1)(z)

〉
.

For the first contribution in (4.15), we apply directly Lemma 4.5 to V1 − V2:

(1 + |z|)α
∣∣〈dGV2

ε (z),Dε(∂z4V )(z)
〉∣∣

6 ε2α ‖4V ‖α
〈
dGV2

ε (z),
(
|y1|+ |y2|+ εα|y1|1+α + εα|y2|1+α

)〉
6 εCK ‖4V ‖α .

For the last inequality we used equation (4.5), which enables to bound uniformly the
measure dGVε with respect to z. From Lemmas 4.4 and 4.5, there exists εK and CK
such that for ε 6 εK , the second contribution in the right-hand-side (4.15) satisfies

(4.16) (1 + |z|)α
∣∣〈dGV1

ε (z)− dGV2
ε (z),Dε(∂zV1)(z)

〉∣∣
6 ε2CK ‖4V ‖α ‖V1‖α

〈
(1 + |y1|+ |y2|) exp(−Q(y1, y2) + 2εRK(|y1|+ |y2|)),(

|y1|+ |y2|+ εα|y1|1+α + εα|y2|1+α
) 〉
.

The last integral is uniformly bounded for ε small enough, involving moments of a
Gaussian distribution. Therefore, the whole quantity is bounded by ε2CK ‖4V ‖α,
uniformly with respect to z. This concludes the proof of equation (4.12).
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Proof of (4.13). — To begin with, we have

4W (2)
ε (z) =

〈
dGV1

ε (z),
1

2
Dε(∂

2
zV1)(z) + (Dε(∂zV1)(z))

2
〉

−
〈
dGV2

ε (z),
1

2
Dε(∂

2
zV2)(z) + (Dε(∂zV2)(z))

2
〉
.

We split the difference into two, as in the previous part,

4W (2)
ε (z)

=
〈
dGV2

ε (z),
1

2
Dε(∂

2
zV1)(z) + (Dε(∂zV1)(z))

2 − 1

2
Dε(∂

2
zV2)(z)− (Dε(∂zV2)z))

2
〉

+
〈
dGV1

ε (z)− dGV2
ε (z),

1

2
Dε(∂

2
zV1)(z) + (Dε(∂zV1)(z))

2
〉

= A+B.

The first contribution can be rearranged as follows, by factorizing the difference of
squares:

A =
〈
dGV2

ε (z),
1

2
Dε(∂

2
z4V )(z) + Dε(∂z4V )(z)Dε(∂z(V1 + V2))(z)

〉
.

The term involving V1 + V2 is bounded uniformly in a crude way:

‖Dε(∂z(V1 + V2))‖∞ 6 2‖V1 + V2‖α

(in fact it is bounded by a O(ε) uniformly with respect to z, but this detail is omitted
here). Then, we apply Lemma 4.5 twice with V1 − V2 to obtain:

(1 + |z|)α |A| 6 εCK‖4V ‖α
〈
dGV2

ε (z),
(
|y1|+ |y2|+ εα|y1|1+α + εα|y2|1+α

)〉
.

To estimate B, the term involving the difference of measures dGVε , we apply (4.4)
and Lemma 4.5:

(4.17) (1 + |z|)α |B|

6
〈∣∣dGV1

ε (z)− dGV2
ε (z)

∣∣ , εC(‖V1‖2α + ‖V2‖α
)(
|y1|+ |y2|+ εα|y1|1+α + εα|y2|1+α

)〉
.

We find, exactly as above, that the quantity (1+|z|)α |B| is bounded by ε2CK ‖4V ‖α.
Combining both estimates on A,B, we deduce equation (4.13).

Proof of (4.14). — The full expression for 4W (3)
ε is as follows:

4W (3)
ε (z)

=
〈
dGV1

ε (z),
1

4
Dε(∂

3
zV1)(z) + (Dε(∂zV1)(z))

3
+ 3Dε(∂zV1)(z)

(
1

2
Dε(∂

2
zV1)(z)

)〉
−
〈
dGV2

ε (z),
1

4
Dε(∂

3
zV2)(z) + (Dε(∂zV2)(z))

3
+ 3Dε(∂zV2)(z)

(1

2
Dε(∂

2
zV2)(z)

)〉
.

We split again in two pieces, one involving V1 − V2, and the other one involving
dGV1

ε − dGV2
ε :

4W (3)
ε (V )(z) =

〈
dGV2

ε (z), A1 +A2 +A3

〉
+
〈
dGV1

ε (z)− dGV2
ε (z), B

〉
,
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with

A1 =
1

4
Dε(∂

3
z4V )(z)

A2 = (Dε(∂zV1)(z))
3 − (Dε(∂zV2)(z))

3

= (Dε(∂z4V )(z))
[
(Dε(∂zV1)(z))

2
+ (Dε(∂zV2)(z))

2

+ (Dε(∂zV1)(z)) (Dε(∂zV2)(z))
]

A3 = 3Dε(∂
2
zV1)(z)

(1

2
Dε(∂zV1)(z)

)
− 3Dε(∂zV2)(z)

(1

2
Dε(∂

2
zV2)(z)

)
= 3Dε(∂zV1)(z)

(1

2
Dε(∂

2
z4V )(z)

)
+ 3Dε(∂z4V )(z)

(1

2
Dε(∂

2
zV2)(z)

)
B =

1

4
Dε(∂

3
zV1)(z) + (Dε(∂zV1)(z))

3
+ 3Dε(∂zV1)(z)

(1

2
Dε(∂

2
zV1)(z)

)
.

We shall estimate all the contributions separately. Firstly, A1 yields the contraction
factor:

(1 + |z|)α
〈
dGV2

ε (z), |A1|
〉
6 2α−1 ‖4V ‖α

〈
dGV2

ε (z), 1 +
εα

4
[|y1|α + |y2|α]

〉
6
(
2α−1 + εαCK

)
‖4V ‖α .

The latter is the main contribution in (4.14). The remaining terms are lower-order
contributions with respect to ε. For A2, we have

(1 + |z|)α
〈
dGV2

ε (z), |A2|
〉
6 ε2α ‖4V ‖α

〈
dGV2

ε (z),
(
‖V1‖2α + ‖V2‖2α + ‖V1‖α ‖V2‖α

)
×
[
|y1|+ |y2|+ εα|y1|1+α + εα|y2|1+α

]〉
6 εCK ‖4V ‖α .

For A3, we have similarly

(1 + |z|)α
〈
dGV2

ε (z), |A3|
〉
6 εCK ‖4V ‖α .

It remains to control the term involving B. We argue as in (4.16) and (4.17). We set

P 1
α,ε(y1, y2) =

(
1 +

εα

4
[|y1|α + |y2|α]

)
,

P 2
α,ε(y1, y2) = |y1|+ |y2|+ εα|y1|1+α + εα|y2|1+α.

Then〈∣∣dGV1
ε (z)− dGV2

ε (z)
∣∣ , (1 + |z|)α |B|

〉
6 εCK ‖4V ‖α

×
〈

(1 + |y1|+ |y2|) exp(−Q(y1, y2) + 2εRK(|y1|+ |y2|)),

2α−1 ‖V1‖α P
1
α,ε(y1, y2) + Cε

(
‖V1‖3α + ‖V1‖2α

)
P 2
α,ε(y1, y2)

〉
.

The latter is controlled by εCK ‖4V ‖α for the same reasons as usual.
Combining all the pieces together, we obtain finally (4.14). �
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5. Analysis of the fixed point mapping Hε

In this section we focus on the fixed point mapping Hε (2.13), which is defined
through an infinite series. We are first concerned with the convergence of the series
for V ∈ E α

0 .

5.1. Well-posedness of Hε on balls. — Consider the following decomposition of
each term of the series (2.13) in two parts, with the corresponding notations:

Γε(z) = log
(Iε(V )(0) +m(z)

Iε(V )(0)

)
− log

(Iε(V )(z)

Iε(V )(0)

)
= Γmε (z)− ΓIε(z).

They have the following properties:

Lemma 5.1. — For every ball K ⊂ E α
0 , there exists εK such that for any ε 6 εK , and

V ∈ K, we have Γmε ∈ E α
0 . Moreover, we have (1 + |z|)α∂zΓmε ∈ L∞.

The proof of Lemma 5.1 is a straightforward consequence of Proposition 4.1 and
the assumptions on m made in definition 1.2, particularly (1.6).

Lemma 5.2. — For every ball K ⊂ E α
0 , there exists εK such that for any ε 6 εK , and

V ∈ K, we have ΓIε ∈ E α, and ∂zΓIε(0) = 0. Moreover, we have (1 + |z|)α∂zΓIε ∈ L∞.

Proof. — We begin by verifying the condition ∂zΓIε(0) = 0. This is in fact equivalent
to the choice of γε(V ), as can be seen on the following computation:

∂zΓ
I
ε(0) =

∂zIε(V )(0)

Iε(V )(0)
= W (1)

ε (V )(0).

Now, comparing (3.1) with (4.7), we see that ∂zΓ
I
ε(0) = 0 is equivalent to

J(γε(V ), V ) = 0, provided ε is small enough (for the quantities to be well de-
fined).

Secondly, we need to get uniform bounds on the derivatives of ΓIε to prove that it
belongs to E α. The following formulas relate the successive logarithmic derivatives of
Iε(V ) to the W (i)

ε (V ) introduced in equation (4.6):

∂zΓ
I
ε(z) = W (1)

ε (V )(z)(5.1)

∂2
zΓIε(z) = W (2)

ε (V )(z)−
[
W (1)
ε (V )(z)

]2
,(5.2)

∂3
zΓIε(z) = W (3)

ε (V )(z) + 3W (1)
ε (V )(z)W (2)

ε (V )(z) + 2
[
W (1)
ε (V )(z)

]3
.(5.3)

We can use directly the weighted estimates in Proposition 4.7, which include the alge-
braic decay of the first order derivative. Algebraic combinations are compatible with
those estimates because W (i)

ε (V ) ∈ L∞(R). A fortiori those terms are all uniformly
bounded and so we obtain that ΓIε ∈ E α. �

The main result of this section is the following one:

Proposition 5.3 (Convergence of the series Hε(V )). — For every ball K ⊂ E α
0 , there

exists εK such that for any ε 6 εK , and V ∈ K, the sum Hε(V ) is finite.
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Before proving this statement, we first establish an auxiliary technical lemma about
the following summation operator S:

S : Λ 7−→
(
h 7→

∑
k>0

2kΛ(2−kh)

)
.

Lemma 5.4 (Existence of the sum). — Take any function Λ∈E α such that ∂zΛ(0)=0.
Then S (Λ)(h) is well-defined for every h ∈ R.

Proof. — We perform a Taylor expansion: there exists h̃k, such that Λ(2−kh) =
1
2 (2−kh)2∂2

zΛ(2−kh̃k). Therefore, we have immediately∣∣∣∣∑
k>0

2kΛ(2−kh)

∣∣∣∣ 6 (h2
∑
k>0

2−k
)∥∥∂2

zΛ
∥∥
∞ <∞. �

One can now proceed to the proof of the finiteness of the sum of Hε in definition 2.6.

Proof of Proposition 5.3. — Let K be the ball of E α
0 of radius ‖K‖α and take V ∈ K,

z ∈ R. To use the previous lemma, we first notice the identity by definition:

(5.4) Hε(V ) = S (Γε).

There are two conditions to verify in order to apply Lemma 5.4:

∂zΓε(0) = 0, and Γε ∈ E α.

Those properties are verified thanks to Lemmas 5.1 and 5.2. The Proposition 5.3
immediately follows. �

So far, we have not used the algebraic decay condition which is part of the definition
of E α. In the following lemma, we refine the estimate on S (Λ) ∈ E α. This foreshadows
the same result for the function Hε(V ), as stated in the next section.

Lemma 5.5 (Better control of the series). — Assume that Λ ∈ E α, that ∂zΛ(0) = 0,
and that (1 + |z|)α∂zΛ ∈ L∞. Then, S (Λ) belongs to E α, with a uniform estimate:

(5.5) ‖S (Λ)‖α 6 C max
(
‖Λ‖α, sup

z∈R
(1 + |z|)α|∂zΛ(z)|

)
.

There is some subtlety hidden here. In fact, we were not able to propagate the
algebraic decay at first order from Λ to S (Λ). What saves the day is that we gain
some algebraic decay of the first order derivatives somewhere in our procedure (see
e.g. Proposition 4.7).

Proof. — Recall the notation ϕα(h) = (1 + |h|)α. We begin with the uniform bound
on the first derivative, which is the main reason why we have to impose algebraic
decay in our functional spaces.
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Step 1: ∂zS (Λ) is uniformly bounded. — We split the sum in two parts. Let h ∈ R,
and let Nh ∈ N be the lowest integer such that |h| 6 2Nh . We consider the two
regimes: k > Nh and k 6 Nh. In the former regime, a simple Taylor expansion yields∣∣∣∣ ∑

k>Nh

∂zΛ(2−kh)

∣∣∣∣ 6 ∑
k>Nh

2−k|h|
∥∥∂2

zΛ
∥∥
∞ 6

∥∥∂2
zΛ
∥∥
∞ ,

by definition of Nh. In the regime k 6 Nh, we use the algebraic decay which is encoded
in the space E α. If |h| > 1, we have Nh > 1, and∣∣∣∣ ∑

k6Nh

∂zΛ(2−kh)

∣∣∣∣ 6 ∑
k6Nh

‖ϕα∂zΛ‖∞
(1 + 2−k|h|)α

6

( ∑
k6Nh

2kα

|h|α

)
‖ϕα∂zΛ‖∞ =

( 1

|h|α
2(Nh+1)α − 1

2α − 1

)
‖ϕα∂zΛ‖∞.

By definition ofNh, we have 2Nh−1 < |h|, so that the right-hand-side above is bounded
by a constant that get arbitrarily large as α→ 0 (hence, the restriction on α > 0):

(5.6)
∣∣∣∣ ∑
k6Nh

∂zΛ(2−kh)

∣∣∣∣ 6 ( 4α

2α − 1

)
‖ϕα∂zΛ‖∞.

The case |h| 6 1 is trivial as the sum is reduced to a single term ∂zΛ(h) since Nh = 0.

Step 2: ϕα
∣∣∂2
zS (Λ)

∣∣ is uniformly bounded. — This bound and the next one are easier.
For any h ∈ R, we have

ϕα(h)

∣∣∣∣∑
k>0

2−k∂2
zΛ(2−kh)

∣∣∣∣ 6 (∑
k>0

2−k
ϕα(h)

ϕα(2−kh)

)
‖ϕα∂2

zΛ‖∞.

Since 1 > 2−k, one obtains

ϕα(h)

∣∣∣∣∑
k>0

2−k∂2
zΛ(2−kh)

∣∣∣∣ 6 (∑
k>0

2k(α−1)

)
‖ϕα∂2

zΛ‖∞ =
( 2

2− 2α

)
‖ϕα∂2

zΛ‖∞.

The latter sum is finite since α < 1.

Step 3: ϕα
∣∣∂3
zS (Λ)

∣∣ is uniformly bounded. — The proof is similar to the previous
argument. �

5.2. Contraction properties (second part). — In this section we prove that Hε sta-
bilizes some subset of E α

0 . We first show that Hε maps balls into balls with incre-
mental radius that do not depends on the initial ball (Proposition 5.8). This prop-
erty immediately implies the existence of an invariant subset for Hε (Corollary 5.9).
Finally, we prove that the mapping Hε is a contraction mapping for ε small enough
(Theorem 5.10). To completely justify the definition of Hε, it remains to show that
Hε(V ) ∈ E α

0 . We begin with the lower bound on the second derivative, which is for
free.
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Lemma 5.6 (Lower bound on ∂2
zHε(V )(0)). — For every ball K ⊂ E α

0 , there exists εK
such that for any ε 6 εK , and V ∈ K, we have:

∂zHε(V )(0) = 0, ∂2
zHε(V )(0) > ∂2

zm(0).

Proof. — The identity ∂zHε(V )(0) = 0, and more particularly ∂zΓ
I
ε(0) = 0 is a

consequence of the choice of γe(V ) in Proposition 2.4. Indeed, we have, by (5.4),

∂zHε(V )(0) =
∑
k>0

∂zΓε(V )(0) = 0.

For the second estimate, a simple computation yields, using m(0) = ∂zm(0) = 0:

∂2
zHε(V )(0) =

∑
k>0

2−k
[ ∂2

zm(0)

Iε(V )(0)
−W (2)

ε (V )(0)−W (1)
ε (V )(0)2

]
.

But since V ∈ E α
0 , one can use again the uniform estimates of Proposition 4.7 to write

that for ε 6 εK , that depends only on the ball K:

(5.7) ∂2
zHε(V ) = 2

∂2
zm(0)

Iε(V )(0)
+ O(ε),

where O(ε) that depends only on the ball K. Then, we use Proposition 4.1 with
δ = 1/3 to deduce that for ε small enough, we have Iε(V ) 6 4/3. Then (5.7) can be
simplified into

∂2
zHε(V )(0) >

3∂2
zm(0)

2
+ O(ε).

Recall that ∂2
zm(0) > 0 by assumption. Therefore, for ε small enough, we get as

claimed
∂2
zHε(V )(0) > ∂2

zm(0). �

Remark 5.7. — Considering the proof, another way to interpret the result is that
automatically for any function V ∈ E α such that ∂zV (0) = 0, the function Hε

prescribes a lower bound on ∂2
zV (0). Since we are seeking a fixed point Hε(V ) = V ,

we may as well put this condition in the subspace E α
0 without loss of generality.

Finally, we can establish a first useful estimate on ‖Hε(V )‖α, showing more than
just its finiteness:

Proposition 5.8 (Contraction in the large). — For every ball K ∈ E α
0 , there exists

an explicit constant κ(α) < 1, as well as Cm, CK and εK that depend only on K such
that, for all ε 6 εK , and for every V ∈ K,

(5.8) ‖Hε(V )‖α 6 Cm + (κ(α) + εαCK) ‖V ‖α .

Proof. — Let K be the ball of E α
0 , and take V ∈ K. For clarity we write respectively

Iε(h) and W
(i)
ε (h) instead of Iε(V )(h) and W

(i)
ε (V )(h). Combining various esti-

mates derived in Section 5.1, and particularly Lemma 5.5 together with Lemmas 5.1
and 5.2, we find that Hε(V ) = S (Γε) = S (Γmε ) −S (ΓIε) belongs to E α. However,
the associated estimate (5.5) is not satisfactory, at least for the S (ΓIε) and we need
to re-examine the dependency of the constants upon ε and α.
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The first and second derivatives of ΓIε involveW
(1)
ε andW (2)

ε which are both of order
εCK ‖V ‖α thanks to Proposition 4.7. Back to the proof of Lemma 5.5, the quantities
‖ϕα∂zΓIε‖∞ and ‖ϕα∂2

zΓIε‖∞ are in fact of order ε ‖Λ‖α, and so are ‖∂zS (ΓIε)‖∞ and
‖ϕα∂2

zS (ΓIε)‖∞.
This cannot be extended readily to the third derivative as we lose the order ε at

this stage. However, Proposition 4.7 provides an explicit constant that is going to be
used. From (5.3), we have:

∂3
zS

(
ΓIε
)

(h) =
∑
k>0

4−k
[
W (3)
ε (2−kh) + 3W (2)

ε (2−kh)W (1)
ε (2−kh) + 2W (1)

ε (2−kh)3
]
.

The contributions involvingW (1)
ε andW (2)

ε are of order ε, and can be handled exactly
as above. However, the linear term involvingW (3)

ε requires a careful attention. We ob-
tain from Proposition 4.7 that ϕαW (3)

ε is bounded uniformly by
(
2α−1 + εαCK

)
‖V ‖α.

Therefore,

(5.9) ϕα(h)

∣∣∣∣∑
k>0

4−kW (3)
ε (2−kh)

∣∣∣∣ 6 (2α−1 + εαCK
)(∑

k>0

4−k
ϕα(h)

ϕα(2−kh)

)
‖V ‖α

6
(
2α−1 + εαCK

)(∑
k>0

2k(α−2)

)
‖V ‖α =

( 2α+1

4− 2α
+ εαCK

)
‖V ‖α .

In view of the latter estimate, we define the explicit constant κ(α) as

κ(α) =
21+α

4− 2α
.

A simple calculation shows that κ(α) < 1 if and only if α < 2− log2(3) ≈ 0.415. The
choice α < 2/5 gives some room below this threshold. We conclude that

∥∥S (ΓIε)
∥∥
α
6

(κ(α) + εαCK) ‖V ‖α.
The other contribution to Hε(V ), namely S (Γmε ) can be bounded in an easier way.

Indeed, we have

Γmε = log(1 +m) + log
(

1 +
m

Iε(0)

)
− log(1 +m)

= log(1 +m) + log
(

1 +
m

1 +m

( 1

Iε(0)
− 1
))
.

(5.10)

We define accordingly

Cm = max
k=1,2,3

(∥∥∥ϕα ∂kzm

1 +m

∥∥∥
∞

)
,

Moreover, Proposition 4.1 can be easily refined into |Iε(0) − 1| 6 εCm‖V ‖α, using
the definition of RK in (2.10). Straightforward computations show that the last con-
tribution in (5.10) can be estimated by εCm ‖V ‖α. Combining the estimates obtained
for S (Γmε ) and S (ΓIε), we come to the conclusion:

‖Hε(V )‖α 6 Cm + (κ(α) + εαCK) ‖V ‖α . �

Proposition 5.8 calls an immediate corollary.
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Corollary 5.9 (Invariant subset). — There exist K0 a ball of E α
0 , and ε0 a positive

constant such that for all ε 6 ε0 the set K0 is invariant by Hε:

Hε(K0) ⊂ K0.

Proof. — Let K0 be the ball of radius R0 = 2Cm/(1−κ(α)). We deduce from Propo-
sition 5.8 that, for all V ∈ K0,

‖Hε(V )‖α 6 Cm + (κ(α) + εαCK0
)R0 = Cm

(
1 +

2κ(α)

1− κ(α)

)
+ εαCK0

R0

= Cm

( 2

1− κ(α)
− 1
)

+ εαCK0R0

= R0 + Cm

(
−1 +

2εαCK0

1− κ(α)

)
.

Therefore, the choice ε0 = (1− κ(α)/2CK0
)
1/α guarantees that K0 is left invariant

by Hε. �

We are now in position to state the more important result of this section:

Theorem 5.10 (Contraction mapping). — There exists a constant CK0
such that for

any ε 6 ε0, and every function V1, V2 ∈ K0, the following estimate holds true

(5.11) ‖Hε(V1)−Hε(V2)‖α 6 (κ(α) + εαCK) ‖V1 − V2‖α .

Proof. — We denote by 4V the difference V1 − V2, again. The proof is analogous
to Proposition 5.8. For clarity we write respectively I i

ε (h) instead of Iε(Vi)(h) and
4W (i)

ε (h) instead of W (i)
ε (V1)(h)−W (i)

ε (V2)(h). We decompose 4Hε(V ) as above:

4Hε = 4
(
S (Γmε )−S (ΓIε)

)
= 4H m

ε −4H I
ε .

We deal with 4H m
ε in the following lemma:

Lemma 5.11. — There exists a constant C0 such that for any ε 6 ε0, and every
function V1, V2 ∈ K0, we have

‖4H m
ε ‖α 6 εC0 ‖4V ‖α .

Proof. — Recall the following definition:

4Γmε = log
(
I 1
ε (0) +m

)
− log

(
I 2
ε (0) +m

)
− log

(
I 1
ε (0)/I 2

ε (0)
)
.

The first derivative has the following expression,

(5.12) ∂z4Γmε = − ∂zm

(I 1
ε (0) +m)(I 2

ε (0) +m)
4Iε(0).

Clearly, I 2
ε (0) + m is bounded below, uniformly for ε small enough. Therefore, we

can repeat the arguments of Lemma 5.5, with Λ = log(I 1
ε (0) +m) in order to get

‖∂zS (4Γmε )‖∞ 6 Cm|4Iε(0)|.

However, Proposition 4.3 yields that |4Iε(0)| 6 εC0 ‖4V ‖α.
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The next order derivatives can be handled similarly. Indeed, the following quantities
must be bounded uniformly by εC0 ‖4V ‖α:

ϕα(h)

∣∣∣∣∑
k>0

2−k
[ ∂2

zm(2−kh)

I 1
ε (0) +m(2−kh)

− ∂2
zm(2−kh)

I 2
ε (0) +m(2−kh)

]∣∣∣∣ 6 εC0 ‖4V ‖α

ϕα(h)

∣∣∣∣∑
k>0

2−k
[ ∂zm(2−kh)2

(I 1
ε (0) +m(2−kh))2

− ∂zm(2−kh)2

(I 2
ε (0) +m(2−kh))2

]∣∣∣∣ 6 εC0 ‖4V ‖α

ϕα(h)

∣∣∣∣∑
k>0

4−k
[ ∂3

zm(2−kh)

I 1
ε (0) +m(2−kh)

− ∂3
zm(2−kh)

I 2
ε (0) +m(2−kh)

]∣∣∣∣ 6 εC0 ‖4V ‖α

ϕα(h)

∣∣∣∣∑
k>0

4−k
[ ∂zm(2−kh)3

(I 1
ε (0) +m(2−kh))3

− ∂zm(2−kh)3

(I 2
ε (0) +m(2−kh))3

]∣∣∣∣ 6 εC0 ‖4V ‖α ,

ϕα(h)

∣∣∣∣∑
k>0

4−k
[∂2

zm(2−kh)∂zm(2−kh)

(I 1
ε (0) +m(2−kh))2

− ∂2
zm(2−kh)∂zm(2−kh)

(I 2
ε (0) +m(2−kh))2

]∣∣∣∣ 6 εC0 ‖4V ‖α .

The first and the third items are handled similarly as for the first derivative. The
three other items are handled analogously. For the sake of concision, we focus on the
second line: We have,

∂zm(z)2

(I 1
ε (0) +m(z))2

− ∂zm(z)2

(I 2
ε (0) +m(z))2

=
[ ∂zm(z)

I 1
ε (0) +m(z)

+
∂zm(z)

I 2
ε (0) +m(z)

][ −∂zm(z)4Iε(0)

(I 1
ε (0) +m(z))(I 2

ε (0) +m(z))

]
.

The first factor is uniformly bounded by assumption (1.6), for ε small enough. The
second factor is the same as above, so we can conclude directly. �

It remains to handle 4H I
ε . We have the following formulas for the two first deriva-

tives (5.1)–(5.3):
∂z4H I

ε (h) =
∑
k>0

4W (1)
ε (2−kh),

∂2
z4H I

ε (h) =
∑
k>0

2−k
[
4W (2)

ε (2−kh)−4
(
W (1)
ε (2−kh

)2
)
]
.

Finally the formula for the third derivative is:

(5.13) ∂3
z4H I

ε (h)

=
∑
k>0

4−k
[
4W (3)

ε (2−kh) + 34
(
W

(2)
1 W

(1)
1 (2−kh)

)
+ 24

(
W (1)
ε (2−kh)3

)]
.

The combination of Proposition 4.6 and Lemma 5.5 yields

‖∂z4H I
ε ‖∞ 6 εC0 ‖4V ‖α .

In the same way, we get the bound for the second derivative, using the factorization

4
(
W (1)
ε (z)2

)
=
(
W (1)
ε (V1)(z) +W (1)

ε (V2)(z)
)
4
(
W (1)
ε (z)

)
,

together with the uniform bound in Proposition 4.7.
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As in the proof of Proposition 5.8, the third order derivative must be handled with
care, as it does not yield a O(ε) bound.

Exactly as above, the contribution involving 4W (3)
ε in (5.13) is the one that yields

the contraction factor, the remaining part being of order O(ε) ‖4V ‖α. Actually, we
have precisely:

ϕα(h)

∣∣∣∣∑
k>0

4−k4W (3)
ε (2−kh)

∣∣∣∣ 6 (κ(α) + εαC0) ‖4V ‖α

as in (5.9). This concludes the proof of the main contraction estimate. �

6. Existence of a (locally) unique Uε, and convergence as ε→ 0

6.1. Solving problem (PUε) – Theorem 1.4(i). — First of all, Theorem 5.10 immedi-
ately implies Theorem 2.7, that is the existence of a unique fixed point Hε(Vε) = Vε
in the invariant subset K0, for ε 6 ε0. Note that ε0 could possibly be reduced to meet
the requirement of the last estimate in (5.11).

However, due to the peculiar role played by the linear part γε(Vε), it is convenient
to enlarge slightly the set K0. More precisely, after Corollary 5.9 we define K ′0 the
ball of radius

(6.1) R′0 = R0 + sup
V ∈K0

|γε(V )|.

It is clear that, up to reducing further ε0 to ε′0 in order to control the new constant
CK′0 , the set K ′0 is also invariant for ε 6 ε′0. The same contraction estimate as in
Theorem 5.10 holds, obviously. Furthermore, the fixed point on K ′0 coincides with the
fixed point on the smaller ball K0, by uniqueness.

Next, we show that finding this fixed point is equivalent to solving problem (PUε),
as claimed in Proposition 2.8. We prove in fact the two sides of the equivalence.

– The easy part consists in saying that, being given Vε the unique fixed point inK0,
the function Uε = γε(Vε) ·+Vε belongs to K ′0 by definition of K ′0 (6.1), and it solves
problem (PUε) by construction.

On the other side, suppose that (λε, Uε) ∈ R × K ′0 is a solution of the problem
(PUε). As in section 2, evaluating (PUε) at z = 0 yields the following necessary
condition on λε, since m(0) = 0:

λε = Iε(Uε)(0).(1)

Then, we focus on Uε. We decompose it as Uε = γU · +VU , with γU = ∂zUε(0), and
∂zVU (0) = 0. Our purpose is threefold: (i) first, we show that γU = γε(VU ), then (ii)
we prove that VU ∈ E α

0 , and finally (iii), we prove that Hε(VU ) = VU .
We can reformulate problem (PUε) as follows:

(6.2) Iε(γU ·+VU )(0) +m(z) = Iε(γU ·+VU ) exp (VU (z)− 2VU (z) + VU (0)) .

(1)We use the notation Iε(Uε) introduced in equation (1.4), that should not be confused with
Iε(Vε). It is the purpose of the present argument to show that the two quantities do coincide.
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Since we assume Uε ∈ E α, we can differentiate the previous equation, and evaluate it
at z = 0 to get:

∂zIε(γU ·+VU )(0) = 0.

As in Section 2, a direct computation shows that γU and VU are linked by the following
relation:

(6.3) 0 = Jε(γU , VU ),

In order to invert this relationship, and deduce that γU = γε(VU ), it is important to
prove that Vε ∈ E α

0 , which amounts to showing that ∂2
zVε(0) > ∂2

zm(0), the other
conditions being clearly verified.

Differentiating the problem (PUε) twice, and evaluating at z = 0, we get:

∂2
zm(0) = ∂2

zIε(Uε)(0) + Iε(Uε)(0)
∂2
zUε(0)

2

= Iε(Uε)(0)
(∂2

zIε(Uε)(0)

Iε(Uε)(0)
+
∂2
zUε(0)

2

)
.

Then, using straightforward adaptations of Propositions 4.1 and 4.7, where V should
be replaced with VU ∈ E α and γε(V ) should be replaced by γU , we find that

∂2
zm(0) 6

3

2

(
εCK′0 +

∂2
zUε(0)

2

)
.

for ε sufficiently small. We deduce that the missing condition is in fact a consequence
of the formulation (PUε):

∂2
zUε(0) > ∂2

zm(0).

By definition, ∂2
zUε(0) = ∂2

zVε(0), so we have established that Vε ∈ E α
0 .

Hence, we can legitimately invert (6.3), so as to find γU = γε(VU ), where the
function γε is defined in Proposition 2.4. Since Uε ∈ K ′0 by assumption, we have in
particular ‖VU‖α 6 R′0. Of course, VU is the candidate of being the unique fixed point
of Hε in K ′0 (but also in K0). The proof of this claim follows the lines of section 2.2,
checking that all manipulations are justified.

First, we divide (6.2) by IU = Iε(γU ·+VU ) = Iε(γε(VU )·+VU ) = Iε(VU ). According
to Proposition 4.1, this quantity is uniformly close to 1 for ε small, so it does not
vanish. Taking the logarithm on both sides, we get for all z ∈ R:

VU (z)− 2VU (z) + VU (0) = log
(IU (0) +m(z)

IU (z)

)
.

We differentiate the last equation to end up with the following recursive equation for
every z ∈ R

∂zVU (z)− ∂zVU (z) = ∂z log
(IU (0) +m

IU (z)

)
(z).

One simply deduces, that for all z ∈ R, we necessarily have:

∂zVU (z) = ∂zVU (0) +
∑
k>0

log
(IU (0) +m(2−kz)

IU (2−kz)

)
.
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Note that the C 1 continuity at z = 0 is used here. Moreover, ∂zVU (0) = 0 by definition
of VU . The analysis performed in Proposition 5.3 guarantees that this sum is indeed
finite. Finally, integrating back the previous identity yields

VU (z) =
∑
k>0

2k log
(IU (0) +m(2−kz)

IU (2−kz)

)
=
∑
k>0

2k log
(Iε(VU )(0) +m(2−kz)

Iε(VU )(2−kz)

)
.

The last expression is nothing but Hε(VU ), by definition (2.13). Therefore, VU =

Hε(VU ) is the unique fixed point of Hε in K ′0.

6.2. Convergence of (λε, Uε) towards (λ0, U0) – Theorem 1.4(ii)
As previously, we decompose Uε = γε · +Vε, where γε stands for γε(Vε). Firstly,

we have λε = Iε(Vε)(0) → 1, using Proposition 4.1. Secondly, using an argument of
diagonal extraction, there exists a subsequence εn, and a limit function V0 such that

lim
ε→0

∂zVε = ∂zV0, in L∞loc,(6.4)

lim
ε→0

∂2
zVε = ∂2

zV0, in L∞loc.(6.5)

We have used the Arzelà-Ascoli theorem and the uniform C 3 bound in order to get
the convergence up to the second derivative. However, there is no reason why the
convergence should hold for the third derivative, due to the lack of compactness.

Looking at (PUε), we see that Iε(Uε) converges uniformly to 1, and, for every
given z ∈ R, (6.4) implies that

(6.6) Uε(z)− 2Uε(z) + Uε(0) = Vε(z)− 2Vε(z) + Vε(0)

−−−→
ε→0

V0(z)− 2V0(z) + V0(0).

Passing to the pointwise limit in problem (PUε), we get that V0 solves the following
problem:

1 +m(z) = exp (V0(z)− 2V0(z) + V0(0)) .

Then, we have necessarily:

(6.7) V0(z) =
∑
k>0

2k log
(
1 +m(2−kz)

)
.

This completes the proof of Theorem 1.4(ii), up to the identification of the limit
of γε, if it exists. In our approach, this goes through the characterization of the
functional Jε (2.9). This was indeed the purpose of Lemma 3.1. Here comes an
important difficulty, as compactness estimates are not sufficient to pass to the limit
in Jε(0, Vε) as ε→ 0 (3.3), as it would formally involve the pointwise value ∂3

zV0(0)

which is beyond what our compactness estimates can provide. Note that passing to
the limit in ∂gJε(g, Vε) as ε→ 0 is not an issue, as it can be encompassed by (6.5),
see (3.4).
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It remains to prove that the following limit holds true

(6.8) lim
ε→0

1

4
√

2π

∫∫
R2

exp(−Q(y1, y2))
[
y2

1∂
3
zV (εỹ1) + y2

2∂
3
zV (εỹ2))

]
dy1dy2

=
1

2
∂3
zm(0).

Indeed, this would directly imply that

lim
ε→0

Jε(g, Vε) = −1

2
∂3
zm(0) + g∂2

zm(0),

as ∂2
zV0(0) = 2∂2

zm(0) as a consequence of (6.7). We could deduce immediately that
the root γε(Vε) converges to the expected value (1.11).

In the absence of compactness, we call the contraction argument, in order to prove
the following key result:

Lemma 6.1. — For every δ>0, there exists R1(δ)>0, such that, for every R>R1(δ),
there exists ε1(δ,R) such that for all ε 6 ε1(δ,R), we have:

(6.9) sup
|z|6εR

∣∣∣∂3
zVε(z)−

4

3
∂3
zm(z)

∣∣∣ 6 δ.
Proof. — To begin with, we differentiate the problem (PUε) three times:

∂3
zVε(z)−

1

4
∂3
zVε(z) = ∂3

z log (λε +m(z))− ∂3
z log (Iε(Uε)(z)) .

We expand the right hand side as usual:

∂3
zVε(z)−

1

4
∂3
zVε(z) =

∂3
zm(z)

λε +m(z)
+

3∂2
zm(z)∂zm(z)

(λε +m(z))2
+

2∂zm(z)3

(λε +m(z))3

−W (3)
ε (z)− 3W (2)

ε (z)W (1)
ε (z)− 2W (1)

ε (z)3.

We subtract ∂3
zm(z) on each side, and we reorganize the terms in order to conjure

the difference ∂3
zVε(z)− (4/3)∂3

zm(z) we are interested in:

(6.10) ∂3
zVε(z)−

4

3
∂3
zm(z)− 1

4

(
∂3
zVε(z)−

4

3
∂3
zm(z)

)
+

1

3

(
∂3
zm(z)− ∂3

zm(z)
)

= ∂3
zm(z)

( 1

λε +m(z)
− 1
)

+
3∂2
zm(z)∂zm(z)

(λε +m(z))2
+

2∂zm(z)3

(λε +m(z))3

−W (3)
ε (z)− 3W (2)

ε (z)W (1)
ε (z)− 2W (1)

ε (z)3.

We estimate below each term of (6.10). First, the terms involvingm and its derivatives
on the right hand side of (6.10) converge to zero, uniformly for |z| 6 εR, as ε → 0,
simply because m(0) = ∂zm(0) = 0, and λε → 1. Actually, the same holds true for
the difference of ∂3

zm(z)− ∂3
zm(z) by continuity of ∂3

zm at the origin.
Second, from Proposition 4.7, we know that

max
(∥∥W (1)

ε

∥∥
∞,
∥∥W (2)

ε

∥∥
∞

)
= O(ε).
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The remaining term, W (3)
ε (z) is more delicate to handle. In fact, it will result in a

contraction estimate, exactly as in section 5. We recall the expression of W (3)
ε (4.8):

W (3)
ε (z) =

〈
dGVε

ε (z),
1

4
Dε(∂

3
zVε)(z) + (Dε(∂zVε)(z))

3
+

3

2
Dε(∂zVε)(z)Dε(∂

2
zVε)(z)

〉
.

As in the proof of equations (4.12) to (4.14), we get that the last two contributions
involving the non-linear and lower order terms (Dε(∂zVε))

3 and Dε(∂zVε)Dε(∂
2
zVε)

are O(ε). It remains the term
〈
dGVε

ε , (1/4)Dε(∂
3
zVε)

〉
, which is a double integral in

variables (y1, y2) that we split in two regions of integration:

Ω = {|y1| 6 R/2, and |y2| 6 R/2} and Ωc = {|y1| > R/2, or |y2| > R/2} .

Let δ > 0. We can choose R1(δ) large enough so that, for all R > R1(δ), we have

1

4

∣∣〈dGVε
ε (z)1Ωc(y1, y2),Dε(∂

3
zVε)(z)

〉∣∣ 6 1

2

〈
dGVε

ε (z)1Ωc(y1, y2), 1
〉
‖K0‖α

6
δ

10
.

In the region where y1 and y2 are both below R/2, we introduce the difference with
∂3
zm, as in (6.9):〈

dGVε
ε (z)1Ω,

1

4
∂3
zVε(z)−

1

8
∂3
zVε(z + εy1)− 1

8
∂3
zVε(z + εy2)

〉
= A+B,

where

A =
〈
dGVε

ε (z)1Ω,
1

4

(
∂3
zVε(z)−

4

3
∂3
zm(z)

)
− 1

8

(
∂3
zVε(z + εy1)− 4

3
∂3
zm(z + εy1)

)
− 1

8

(
∂3
zVε(z + εy2)− 4

3
∂3
zm(z + εy2)

)〉
and

B =
1

6

〈
dGVε

ε (z)1Ω,
(
∂3
zm(z)− ∂3

zm(z + εy1)
)

+
(
∂3
zm(z)− ∂3

zm(z + εy2)
)〉
.

By construction, we have |z + εyi| 6 εR/2 + εR/2 6 εR. Therefore, we have

|A| 6
〈
dGVε

ε (z)1Ω,
1

4
sup
|z|6εR

∣∣∣∂3
zVε(z)−

4

3
∂3
zm(z)

∣∣∣+
2

8
sup
|z|6εR

∣∣∣∂3
zVε(z)−

4

3
∂3
zm(z)

∣∣∣〉
6

1

2
sup
|z|6εR

∣∣∣∂3
zVε(z)−

4

3
∂3
zm(z)

∣∣∣.
As for B we find:

|B| 6 1

3

〈
dGVε

ε (z)1Ω, osc
|z|6εR

(∂3
zm)

〉
6

1

3
osc
|z|6εR

(
∂3
zm
)
−−−→
ε→0

0.
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Going back to (6.10), we have shown that for R > R1, there exists ε1 > 0 small
enough such that for all ε 6 ε1 we have:

sup
|z|6εR

∣∣∣∂3
zVε(z)−

4

3
∂3
zm(z)

∣∣∣ 6 δ

4
+

1

4
sup
|z|6εR

∣∣∣∂3
zVε(z)−

4

3
∂3
zm(z)

∣∣∣
+

1

2
sup
|z|6εR

∣∣∣∂3
zVε(z)−

4

3
∂3
zm(z)

∣∣∣
6
δ

4
+

3

4
sup
|z|6εR

∣∣∣∂3
zVε(z)−

4

3
∂3
zm(z)

∣∣∣.
As a consequence, we find that

sup
|z|6εR

∣∣∣∂3
zVε(z)−

4

3
∂3
zm(z)

∣∣∣ 6 δ.
This completes the proof of Lemma 6.1. �

Back to (6.8), we recall that |ỹi| 6 |yi|+ 1, as a by-product of Taylor expansions.
Let δ > 0, and take R sufficiently large such that

1

4
√

2π

∫∫
Ωc

exp(−Q(y1, y2))
(
‖K0‖α +

1

2
∂3
zm(0)

) [
y2

1 + y2
2

]
dy1dy2 6

δ

10
,

where Ω = {|y1| 6 R− 1, and |y2| 6 R− 1}. The other part of the double integral is:

1

4
√

2π

∫∫
Ω

exp(−Q(y1, y2))
[
y2

1∂
3
zV (εỹ1) + y2

2∂
3
zV (εỹ2))

]
dy1dy2.

Using Lemma 6.1 and the continuity of ∂3
zm at z = 0, we can find ε1 > 0 such that

for all ε 6 ε1,∣∣∣∣ 1

4
√

2π

∫∫
Ω

exp(−Q(y1, y2))

×
[
y2

1

(
∂3
zV (εỹ1)− 4

3
∂3
zm(0)

)
+ y2

2

(
∂3
zV (εỹ2)− 4

3
∂3
zm(0)

)]
dy1dy2

∣∣∣∣
6

(
1

4
√

2π

∫∫
Ω

exp(−Q(y1, y2))
[
y2

1 + y2
2

]
dy1dy2

)
δ

10
.

Putting all the pieces together, and using that

1√
2π

∫∫
R2

exp(−Q(y1, y2))
[
y2

1 + y2
2

]
dy1dy2 =

3

2

by (2.2), we deduce that:∣∣∣∣ 1

4
√

2π

∫∫
R2

exp(−Q(y1, y2))
[
y2

1∂
3
zV (εỹ1) + y2

2∂
3
zV (εỹ2))

]
dy1dy2 −

1

2
∂3
zm(0)

∣∣∣∣ 6 δ.
Hence, the limit announced in (6.8) holds true. This completes the proof of the asymp-
totic behavior (λε, Uε)→ (λ0, U0) as described in Theorem 1.4(ii).
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7. Extension to higher dimensions

Our methodology can be extended to higher dimension, without too much effort.
This section is devoted to the generalization of the elements of proof that were specific
to the one-dimensional case.

All the estimates on the operator Hε and its constitutive pieces are still operational
in higher dimension. The only part of our proof that requires some specific attention
is the construction of the linear part γε(Vε) which was performed in Section 3. Indeed,
we used a monotonicity argument to show that γε(Vε) can be defined in a unique way.

We proceed as in Section 3. First we show formally how to obtain the expression
of the vector γ0 (1.11) via suitable Taylor expansions. Then, we justify these Taylor
expansions, and we exhibit a monotonic function that enables to conclude, exactly as
in dimension 1.

7.1. The formal expression of the linear part γ0. — Following the very same
heuristics as in section 3.1, but being careful during the Taylor expansions, we
formally end up with the following matrix valued identity:

(7.1) D2V (0)

(
1

(
√

2π)d

∫∫
R2d

e−Q(y1,y2)(y1 ⊗ y1 + y1 ⊗ y2)dy1dy2

)
γ0

=
1

2
D3V (0)

(
1

(
√

2π)d

∫∫
R2d

e−Q(y1,y2)y1 ⊗ y1dy1dy2

)
.

The quadratic form Q yields the multivariate centered Gaussian distribution associ-
ated with the following covariance matrix Σ ∈M2d(R):

Σ =
1

4

(
3 Id − Id

− Id 3 Id

)
.

The Kronecker product y1 ⊗ y1 yields a matrix of moments, and so the relation (7.1)
can be simplified, similarly to the one dimensional case, so as to obtain:(

D2V (0)
(3

4
− 1

4

)
Id
)
γ0 =

1

2
D3V (0)

3

4
Id,

1

2
D2V (0)γ0 =

3

8
D3V (0) Id .

The right hand side is a tensor applied to a matrix yields a vector that can be simplified
even further using tensorial properties: D3V (0) Id = D(∆V )(0). Then, provided that
D2V (0) is non degenerate, we obtain the limited expected value of γ0 in dimension
higher than 1, that is a generalization of (3.2):

γ0(V ) =
3

4

(
D2V (0)

)−1
D(∆V )(0).

In the case where V0 is given by (1.11) through the fixed point procedure, we obtain

γ0(V0) =
1

2

(
D2m(0)

)−1
D(∆m)(0).
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7.2. Extension of the proof of Proposition 2.4 (section 3.2). — We now fix V ∈ K,
where K is a ball of E α

0 . The purpose is to prove that there is a unique solution in Rd

of the following problem:

(7.2) Jε(γ, V ) = 0.

We insist upon the fact that the variable g belongs to Rd and the function Jε(·, V )

is now defined as a vector field on Rd, Jε : Rd × E α → Rd.
As in section 3.2, we can obtain the following estimate

(7.3) Jε(g, V ) = Jε(0, V ) +
1

2
D2V (0)g + O(ε),

by means of refined Taylor expansions, where Jε(0, V ) is bounded a priori, indepen-
dently upon ε > 0 for V ∈ K. To prove the existence of a root γε, we used the mean
value theorem in the proof of Proposition 2.4. The analogous statement in higher
dimension is the Brouwer fixed point theorem. Indeed, (7.2) can be recast as follows:

g =
(

Id +
1

2
D2V (0)

)−1

(g −Jε(0, V ) + O(ε)) = T (g).

Thus, we are led to finding a fixed point of a continuous function. As in the one-
dimensional case, thanks to the lower bounded D2V (0) > µ0 Id encoded in the def-
inition of E α

0 (1.7), we can show easily that there exists RK such that the ball of
radius RK in Rd is left invariant by T . Brouwer’s fixed point theorem guarantees
that there exists a fixed point γε to T , which is also a root of (7.2).

For the uniqueness part, we can use strict monotonicity, similarly as in the one
dimensional case. This is possible, thanks to (3.4):

(7.4) DgJε(g, V ) =
1

2
D2V (0) + O(ε).

We deduce from this strong estimate that the vector field Jε(·, V ) is locally uniformly
monotonic, in the sense that there exists µK such that the following inequality holds
true for all ε sufficient small, and every g1, g2 ∈ B(0, RK):

(7.5) (Jε(g1, V )−Jε(g2, V )) · (g1 − g2) >
1

2
µK ‖g1 − g2‖2 .

This monotonicity condition is clearly satisfied, as it is equivalent to the following
first order condition,

(7.6) 1

2

(
DgJε(g, V ) +DgJε(g, V )>

)
> µK Id .

It is immediate that any strictly monotonic vector field admits at most one root. This
completes the proof of uniqueness of γε(V ).
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