@article{JEP_2019__6__31_0, author = {Damien Calaque and Julien Grivaux}, title = {The Ext algebra of a quantized cycle}, journal = {Journal de l'\'Ecole polytechnique --- Math\'ematiques}, publisher = {\'Ecole polytechnique}, volume = {6}, year = {2019}, pages = {31-77}, doi = {10.5802/jep.87}, language = {en}, url = {https://jep.centre-mersenne.org/item/JEP_2019__6__31_0} }
Damien Calaque; Julien Grivaux. The Ext algebra of a quantized cycle. Journal de l'École polytechnique — Mathématiques, Tome 6 (2019) pp. 31-77. doi : 10.5802/jep.87. https://jep.centre-mersenne.org/item/JEP_2019__6__31_0/
[1] - “When is the self-intersection of a subvariety a fibration?”, Adv. Math. 231 (2012) no. 2, p. 815-842 | MR 2955193 | Zbl 1250.14006
[2] - “Some remarks about the associated envelope of a Lie algebra”, Funct. Anal. Appl. 1 (1967) no. 2, p. 91-102 | Article | Zbl 0227.22020
[3] Algebra I. Chapters 1–3, Elements of Mathematics, Springer-Verlag, Berlin, 1998 | Zbl 0904.00001
-[4] - “Hochschild cohomology and Atiyah classes”, Adv. Math. 224 (2010) no. 5, p. 1839-1889 | Article | MR 2646112 | Zbl 1197.14017
[5] - “PBW for an inclusion of Lie algebras”, J. Algebra 378 (2013), p. 64-79 | Article | MR 3017014 | Zbl 1316.17008
[6] - “On the Lie algebroid of a derived self-intersection”, Adv. Math. 262 (2014), p. 751-783 | Article | MR 3228441 | Zbl 1297.14018
[7] Lectures on Duflo isomorphisms in Lie algebra and complex geometry, EMS Lect. in Math., European Mathematical Society (EMS), Zürich, 2011 | Article | Zbl 1220.53006
-[8] - “Notes on supersymmetry (following Joseph Bernstein)”, in Quantum fields and strings: a course for mathematicians, Vol. 1, 2 (Princeton, NJ, 1996/1997), American Mathematical Society, Providence, RI, 1999, p. 41-97 | Zbl 1170.58302
[9] - “Opérateurs différentiels bi-invariants sur un groupe de Lie”, Ann. Sci. École Norm. Sup. (4) 10 (1977) no. 2, p. 265-288 | Article | Numdam | Zbl 0353.22009
[10] - “Open problems in representation theory of Lie groups”, in Conference on Analysis on homogeneous spaces (Katata, Japan), 1986, p. 1-5
[11] - “On a conjecture of Kashiwara relating Chern and Euler classes of O-modules”, J. Differential Geom. 90 (2012) no. 2, p. 267-275 | MR 2899876 | Zbl 1247.32013
[12] - “The Hochschild-Kostant-Rosenberg isomorphism for quantized analytic cycles”, Internat. Math. Res. Notices (2014) no. 4, p. 865-913 | Article | MR 3168398 | Zbl 1312.14027
[13] Derived geometry of the first formal neighborhood of a smooth analytic cycle” (2015), arXiv:1505.04414
- “[14] - “Differential forms on regular affine algebras”, Trans. Amer. Math. Soc. 102 (1962), p. 383-408 | Article | MR 142598 | Zbl 0102.27701
[15] - “Rozansky-Witten invariants via Atiyah classes”, Compositio Math. 115 (1999) no. 1, p. 71-113 | MR 1671737 | Zbl 0993.53026
[16] Deformation quantization modules, Astérisque, vol. 345, Société Mathématique de France, Paris, 2012 | Zbl 1260.32001
-[17] - “Deformation quantization of Poisson manifolds”, Lett. Math. Phys. 66 (2003) no. 3, p. 157-216 | Article | MR 2062626 | Zbl 1058.53065
[18] - “Combinatorial Hopf algebras”, in Quanta of maths, Clay Math. Proc., vol. 11, American Mathematical Society, Providence, RI, 2010, p. 347-383 | MR 2732058 | Zbl 1217.16033
[19] Algebraic operads, Grundlehren Math. Wiss., vol. 346, Springer-Verlag, Berlin Heidelberg, 2012 | MR 2954392 | Zbl 1260.18001
-[20] - “The Atiyah class, Hochschild cohomology and the Riemann-Roch theorem”, J. London Math. Soc. (2) 79 (2009) no. 1, p. 129-143 | Article | MR 2472137 | Zbl 1167.14005
[21] - “The big Chern classes and the Chern character”, Internat. J. Math. 19 (2008) no. 6, p. 699-746 | Article | MR 2431634 | Zbl 1165.13011
[22] - “The relative Riemann-Roch theorem from Hochschild homology”, New York J. Math. 14 (2008), p. 643-717 | MR 2465798 | Zbl 1158.19002
[23] - “Duality and intersection theory in complex manifolds. I”, Math. Ann. 237 (1978) no. 1, p. 41-77 | MR 506654 | Zbl 0391.32008
[24] Todd class via homotopy perturbation theory” (2015), arXiv:1510.07936
- “