[Une borne asymptotiquement optimale pour la constante de Davenport]
We prove that for every integer
Nous prouvons que pour tout entier
Accepté le :
Publié le :
DOI : 10.5802/jep.79
Keywords: Additive combinatorics, zero-sum sequences, Davenport constant, finite Abelian groups
Mots-clés : Combinatoire additive, suites de somme nulle, constante de Davenport, groupes abéliens finis
Benjamin Girard 1

@article{JEP_2018__5__605_0, author = {Benjamin Girard}, title = {An asymptotically tight bound for {the~Davenport} constant}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {605--611}, publisher = {\'Ecole polytechnique}, volume = {5}, year = {2018}, doi = {10.5802/jep.79}, zbl = {1401.05311}, mrnumber = {3852262}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.79/} }
TY - JOUR AU - Benjamin Girard TI - An asymptotically tight bound for the Davenport constant JO - Journal de l’École polytechnique — Mathématiques PY - 2018 SP - 605 EP - 611 VL - 5 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.79/ DO - 10.5802/jep.79 LA - en ID - JEP_2018__5__605_0 ER -
%0 Journal Article %A Benjamin Girard %T An asymptotically tight bound for the Davenport constant %J Journal de l’École polytechnique — Mathématiques %D 2018 %P 605-611 %V 5 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.79/ %R 10.5802/jep.79 %G en %F JEP_2018__5__605_0
Benjamin Girard. An asymptotically tight bound for the Davenport constant. Journal de l’École polytechnique — Mathématiques, Tome 5 (2018), pp. 605-611. doi : 10.5802/jep.79. https://jep.centre-mersenne.org/articles/10.5802/jep.79/
[1] - “There are infinitely many Carmichael numbers”, Ann. of Math. (2) 139 (1994) no. 3, p. 703-722 | DOI | MR | Zbl
[2] - “A lattice point problem and additive number theory”, Combinatorica 15 (1995) no. 3, p. 301-309 | DOI | MR | Zbl
[3] - “Regular subgraphs of almost regular graphs”, J. Combin. Theory Ser. B 37 (1984) no. 1, p. 79-91 | DOI | MR | Zbl
[4] - “The interplay of invariant theory with multiplicative ideal theory and with arithmetic combinatorics”, in Multiplicative ideal theory and factorization theory, Springer Proc. Math. Stat., vol. 170, Springer, 2016, p. 43-95 | DOI | MR | Zbl
[5] - “Zero-sum problems in finite abelian groups and affine caps”, Q. J. Math. 58 (2007) no. 2, p. 159-186 | DOI | MR | Zbl
[6] - “The classification of the largest caps in
[7] - “On large subsets of
[8] - A combinatorial problem on finite abelian groups. II (1969) no. ZW-007, 60 pages, Technical report | MR | Zbl
[9] - A combinatorial problem on finite abelian groups. III (1969) no. ZW-008, Technical report | Zbl
[10] - “Zero-sum problems and coverings by proper cosets”, European J. Combin. 24 (2003) no. 5, p. 531-549 | DOI | MR | Zbl
[11] - “Zero-sum problems in finite abelian groups: a survey”, Exposition. Math. 24 (2006) no. 4, p. 337-369 | DOI | MR | Zbl
[12] - “On short zero-sum subsequences. II”, Integers 7 (2007), article #A21 | MR | Zbl
[13] - “Additive group theory and non-unique factorizations”, in Combinatorial number theory and additive group theory, Adv. Courses Math. CRM Barcelona, Birkhäuser Verlag, Basel, 2009, p. 1-86 | Zbl
[14] - Non-unique factorizations. Algebraic, combinatorial and analytic theory, Pure and Applied Mathematics, vol. 278, Chapman & Hall/CRC, Boca Raton, FL, 2006 | Zbl
[15] - “On the Davenport constant and on the structure of extremal zero-sum free sequences”, Period. Math. Hungar. 64 (2012) no. 2, p. 213-225 | DOI | MR | Zbl
[16] - “On Davenport’s constant”, J. Combin. Theory Ser. A 61 (1992) no. 1, p. 147-152 | DOI | MR | Zbl
[17] - “Ein Extremalproblem für Gitterpunkte”, J. reine angew. Math. 262/263 (1973), p. 356-360 | MR | Zbl
[18] - “On the distribution of irreducible algebraic integers”, Monatsh. Math. 156 (2009) no. 1, p. 47-71 | MR | Zbl
[19] - “A note on the growth of Davenport’s constant”, Manuscripta Math. 74 (1992) no. 3, p. 229-235 | DOI | MR | Zbl
[20] - “An uncertainty inequality and zero subsums”, Discrete Math. 84 (1990) no. 2, p. 197-200 | MR | Zbl
[21] - Elementary and analytic theory of algebraic numbers, Springer Monographs in Math., Springer-Verlag, Berlin, 2004 | DOI | Zbl
[22] - “A combinatorial problem on finite Abelian groups. I”, J. Number Theory 1 (1969), p. 8-10 | DOI | MR | Zbl
[23] - “A combinatorial problem on finite Abelian groups. II”, J. Number Theory 1 (1969), p. 195-199 | DOI | MR | Zbl
[24] - “The maximal order of the spherical cap in
[25] - “Maximal caps in
[26] - “A combinatorial problem in Abelian groups”, Math. Proc. Cambridge Philos. Soc. 59 (1963), p. 559-562 | DOI | MR | Zbl
- - “On the Inverse Problem of the k-th Davenport Constants for Groups of Rank 2”, Combinatorica 45 (2025) no. 3 | DOI:10.1007/s00493-025-00153-3
- - “The separating Noether number of abelian groups of rank two”, Journal of Combinatorial Theory. Series A 209 (2025), p. 15, Id/No 105951 | DOI:10.1016/j.jcta.2024.105951 | Zbl:7943111
- - “The separating Noether number of the direct sum of several copies of a cyclic group”, Proceedings of the American Mathematical Society 153 (2025) no. 1, p. 69-79 | DOI:10.1090/proc/17044 | Zbl:7959326
- - “On the incomparability of systems of sets of lengths”, European Journal of Combinatorics 111 (2023), p. 25, Id/No 103694 | DOI:10.1016/j.ejc.2023.103694 | Zbl:1526.20081
- - “The main zero-sum constants over
”, SIAM Journal on Discrete Mathematics 37 (2023) no. 3, p. 1496-1508 | DOI:10.1137/22m1496013 | Zbl:1544.11021 - - “The
-weighted Davenport constant in ”, Integers 22 (2022), p. paper | Zbl:1493.11023 - - “Davenport constant of a box in
”, Acta Arithmetica 197 (2021) no. 3, p. 259-274 | DOI:10.4064/aa191010-15-8 | Zbl:1459.11069 - - “Note on the Davenport constant for finite abelian groups with rank three”, Acta Mathematica Universitatis Comenianae. New Series 90 (2021) no. 1, p. 1-6 | Zbl:1485.11145
- - “On a zero-sum problem arising from factorization theory”, in Combinatorial and additive number theory IV. Selected papers based on the presentations at the CANT 2019 and 2020 workshops, New York, NY, USA, May 21–24, 2019 and virtual, June 1–5, 2020, Cham: Springer, 2021, p. 11-24 | DOI:10.1007/978-3-030-67996-5_2 | Zbl:1502.13005
- - “Higher degree Davenport constants over finite commutative rings”, Integers 21 (2021), p. paper | Zbl:1496.11015
- - “On an inverse problem of Erdős, Kleitman, and Lemke”, Journal of Combinatorial Theory. Series A 177 (2021), p. 15, Id/No 105323 | DOI:10.1016/j.jcta.2020.105323 | Zbl:1506.20061
- - “On minimal product-one sequences of maximal length over dihedral and dicyclic groups”, Communications of the Korean Mathematical Society 35 (2020) no. 1, p. 83-116 | DOI:10.4134/ckms.c190013 | Zbl:1509.20033
- - “On the lower bounds of Davenport constant”, Journal of Combinatorial Theory. Series A 171 (2020), p. 15, Id/No 105162 | DOI:10.1016/j.jcta.2019.105162 | Zbl:1446.11042
- - “Factorization theory in commutative monoids”, Semigroup Forum 100 (2020) no. 1, p. 22-51 | DOI:10.1007/s00233-019-10079-0 | Zbl:1442.20037
- - “The zero-sum constant, the Davenport constant and their analogues”, Technical Transactions (2020), p. 1 | DOI:10.37705/techtrans/e2020027
- - “Zero-sum invariants on finite abelian groups with large exponent”, Discrete Mathematics 342 (2019) no. 12, p. 7, Id/No 111617 | DOI:10.1016/j.disc.2019.111617 | Zbl:1461.11044
- - “On generalized Erdős-Ginzburg-Ziv constants of
”, Discrete Mathematics 342 (2019) no. 4, p. 1117-1127 | DOI:10.1016/j.disc.2018.12.018 | Zbl:1429.11053 - - “Minimal zero-sum sequences over
”, Journal of Number Theory 203 (2019), p. 230-241 | DOI:10.1016/j.jnt.2019.02.029 | Zbl:1446.11044
Cité par 18 documents. Sources : Crossref, zbMATH