signature Poincare
An asymptotically tight bound for the Davenport constant
[Une borne asymptotiquement optimale pour la constante de Davenport]
Journal de l’École polytechnique — Mathématiques, Tome 5 (2018), pp. 605-611.

We prove that for every integer r1 the Davenport constant D(Cnr) is asymptotic to rn when n tends to infinity. An extension of this theorem is also provided.

Nous prouvons que pour tout entier r1, la constante de Davenport D(Cnr) est équivalente à rn lorsque n tend vers l’infini. Nous proposons aussi une extension de ce théorème.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.79
Classification : 05E15, 11B30, 11B75, 11A25, 20D60, 20K01
Keywords: Additive combinatorics, zero-sum sequences, Davenport constant, finite Abelian groups
Mots-clés : Combinatoire additive, suites de somme nulle, constante de Davenport, groupes abéliens finis

Benjamin Girard 1

1 Sorbonne Université, Université Paris Diderot, CNRS, Institut de Mathématiques de Jussieu - Paris Rive Gauche, IMJ-PRG F-75005, Paris, France
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2018__5__605_0,
     author = {Benjamin Girard},
     title = {An asymptotically tight bound for {the~Davenport} constant},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {605--611},
     publisher = {\'Ecole polytechnique},
     volume = {5},
     year = {2018},
     doi = {10.5802/jep.79},
     zbl = {1401.05311},
     mrnumber = {3852262},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.79/}
}
TY  - JOUR
AU  - Benjamin Girard
TI  - An asymptotically tight bound for the Davenport constant
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2018
SP  - 605
EP  - 611
VL  - 5
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.79/
DO  - 10.5802/jep.79
LA  - en
ID  - JEP_2018__5__605_0
ER  - 
%0 Journal Article
%A Benjamin Girard
%T An asymptotically tight bound for the Davenport constant
%J Journal de l’École polytechnique — Mathématiques
%D 2018
%P 605-611
%V 5
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.79/
%R 10.5802/jep.79
%G en
%F JEP_2018__5__605_0
Benjamin Girard. An asymptotically tight bound for the Davenport constant. Journal de l’École polytechnique — Mathématiques, Tome 5 (2018), pp. 605-611. doi : 10.5802/jep.79. https://jep.centre-mersenne.org/articles/10.5802/jep.79/

[1] W. R. Alford, A. Granville & C. Pomerance - “There are infinitely many Carmichael numbers”, Ann. of Math. (2) 139 (1994) no. 3, p. 703-722 | DOI | MR | Zbl

[2] N. Alon & M. Dubiner - “A lattice point problem and additive number theory”, Combinatorica 15 (1995) no. 3, p. 301-309 | DOI | MR | Zbl

[3] N. Alon, S. Friedland & G. Kalai - “Regular subgraphs of almost regular graphs”, J. Combin. Theory Ser. B 37 (1984) no. 1, p. 79-91 | DOI | MR | Zbl

[4] K. Cziszter, M. Domokos & A. Geroldinger - “The interplay of invariant theory with multiplicative ideal theory and with arithmetic combinatorics”, in Multiplicative ideal theory and factorization theory, Springer Proc. Math. Stat., vol. 170, Springer, 2016, p. 43-95 | DOI | MR | Zbl

[5] Y. Edel, C. Elsholtz, A. Geroldinger, S. Kubertin & L. Rackham - “Zero-sum problems in finite abelian groups and affine caps”, Q. J. Math. 58 (2007) no. 2, p. 159-186 | DOI | MR | Zbl

[6] Y. Edel, S. Ferret, I. Landjev & L. Storme - “The classification of the largest caps in AG(5,3), J. Combin. Theory Ser. A 99 (2002) no. 1, p. 95-110 | DOI | MR | Zbl

[7] J. S. Ellenberg & D. Gijswijt - “On large subsets of 𝔽qn with no three-term arithmetic progression”, Ann. of Math. (2) 185 (2017) no. 1, p. 339-343 | DOI | MR | Zbl

[8] P. van Emde Boas - A combinatorial problem on finite abelian groups. II (1969) no. ZW-007, 60 pages, Technical report | MR | Zbl

[9] P. van Emde Boas & D. Kruyswijk - A combinatorial problem on finite abelian groups. III (1969) no. ZW-008, Technical report | Zbl

[10] W. Gao & A. Geroldinger - “Zero-sum problems and coverings by proper cosets”, European J. Combin. 24 (2003) no. 5, p. 531-549 | DOI | MR | Zbl

[11] W. Gao & A. Geroldinger - “Zero-sum problems in finite abelian groups: a survey”, Exposition. Math. 24 (2006) no. 4, p. 337-369 | DOI | MR | Zbl

[12] W. D. Gao, Q. H. Hou, W. A. Schmid & R. Thangadurai - “On short zero-sum subsequences. II”, Integers 7 (2007), article #A21 | MR | Zbl

[13] A. Geroldinger - “Additive group theory and non-unique factorizations”, in Combinatorial number theory and additive group theory, Adv. Courses Math. CRM Barcelona, Birkhäuser Verlag, Basel, 2009, p. 1-86 | Zbl

[14] A. Geroldinger & F. Halter-Koch - Non-unique factorizations. Algebraic, combinatorial and analytic theory, Pure and Applied Mathematics, vol. 278, Chapman & Hall/CRC, Boca Raton, FL, 2006 | Zbl

[15] A. Geroldinger, M. Liebmann & A. Philipp - “On the Davenport constant and on the structure of extremal zero-sum free sequences”, Period. Math. Hungar. 64 (2012) no. 2, p. 213-225 | DOI | MR | Zbl

[16] A. Geroldinger & R. Schneider - “On Davenport’s constant”, J. Combin. Theory Ser. A 61 (1992) no. 1, p. 147-152 | DOI | MR | Zbl

[17] H. Harborth - “Ein Extremalproblem für Gitterpunkte”, J. reine angew. Math. 262/263 (1973), p. 356-360 | MR | Zbl

[18] J. Kaczorowski - “On the distribution of irreducible algebraic integers”, Monatsh. Math. 156 (2009) no. 1, p. 47-71 | MR | Zbl

[19] M. Mazur - “A note on the growth of Davenport’s constant”, Manuscripta Math. 74 (1992) no. 3, p. 229-235 | DOI | MR | Zbl

[20] R. Meshulam - “An uncertainty inequality and zero subsums”, Discrete Math. 84 (1990) no. 2, p. 197-200 | MR | Zbl

[21] W. Narkiewicz - Elementary and analytic theory of algebraic numbers, Springer Monographs in Math., Springer-Verlag, Berlin, 2004 | DOI | Zbl

[22] J. E. Olson - “A combinatorial problem on finite Abelian groups. I”, J. Number Theory 1 (1969), p. 8-10 | DOI | MR | Zbl

[23] J. E. Olson - “A combinatorial problem on finite Abelian groups. II”, J. Number Theory 1 (1969), p. 195-199 | DOI | MR | Zbl

[24] G. Pellegrino - “The maximal order of the spherical cap in S4,3, Matematiche 25 (1971), p. 149-157

[25] A. Potechin - “Maximal caps in AG(6,3), Des. Codes Cryptogr. 46 (2008) no. 3, p. 243-259 | DOI | MR | Zbl

[26] K. Rogers - “A combinatorial problem in Abelian groups”, Math. Proc. Cambridge Philos. Soc. 59 (1963), p. 559-562 | DOI | MR | Zbl

  • Q. Zhong - “On the Inverse Problem of the k-th Davenport Constants for Groups of Rank 2”, Combinatorica 45 (2025) no. 3 | DOI:10.1007/s00493-025-00153-3
  • B. Schefler - “The separating Noether number of abelian groups of rank two”, Journal of Combinatorial Theory. Series A 209 (2025), p. 15, Id/No 105951 | DOI:10.1016/j.jcta.2024.105951 | Zbl:7943111
  • B. Schefler - “The separating Noether number of the direct sum of several copies of a cyclic group”, Proceedings of the American Mathematical Society 153 (2025) no. 1, p. 69-79 | DOI:10.1090/proc/17044 | Zbl:7959326
  • A. Geroldinger W. A. Schmid - “On the incomparability of systems of sets of lengths”, European Journal of Combinatorics 111 (2023), p. 25, Id/No 103694 | DOI:10.1016/j.ejc.2023.103694 | Zbl:1526.20081
  • F. E. Brochero Martínez, A. Lemos, B. K. Moriya S. Ribas - “The main zero-sum constants over D2n×C2, SIAM Journal on Discrete Mathematics 37 (2023) no. 3, p. 1496-1508 | DOI:10.1137/22m1496013 | Zbl:1544.11021
  • F. E. Brochero Martínez S. Ribas - “The {1,s}-weighted Davenport constant in Cnk, Integers 22 (2022), p. paper | Zbl:1493.11023
  • G. Deng X. Zeng - “Davenport constant of a box in Z2, Acta Arithmetica 197 (2021) no. 3, p. 259-274 | DOI:10.4064/aa191010-15-8 | Zbl:1459.11069
  • M. S. Zakarczemny - “Note on the Davenport constant for finite abelian groups with rank three”, Acta Mathematica Universitatis Comenianae. New Series 90 (2021) no. 1, p. 1-6 | Zbl:1485.11145
  • A. Bashir, A. Geroldinger Q. Zhong - “On a zero-sum problem arising from factorization theory”, in Combinatorial and additive number theory IV. Selected papers based on the presentations at the CANT 2019 and 2020 workshops, New York, NY, USA, May 21–24, 2019 and virtual, June 1–5, 2020, Cham: Springer, 2021, p. 11-24 | DOI:10.1007/978-3-030-67996-5_2 | Zbl:1502.13005
  • Y. Caro, B. Girard J. R. Schmitt - “Higher degree Davenport constants over finite commutative rings”, Integers 21 (2021), p. paper | Zbl:1496.11015
  • Q. Zhong - “On an inverse problem of Erdős, Kleitman, and Lemke”, Journal of Combinatorial Theory. Series A 177 (2021), p. 15, Id/No 105323 | DOI:10.1016/j.jcta.2020.105323 | Zbl:1506.20061
  • J. S. Oh Q. Zhong - “On minimal product-one sequences of maximal length over dihedral and dicyclic groups”, Communications of the Korean Mathematical Society 35 (2020) no. 1, p. 83-116 | DOI:10.4134/ckms.c190013 | Zbl:1509.20033
  • C. Liu - “On the lower bounds of Davenport constant”, Journal of Combinatorial Theory. Series A 171 (2020), p. 15, Id/No 105162 | DOI:10.1016/j.jcta.2019.105162 | Zbl:1446.11042
  • A. Geroldinger Q. Zhong - “Factorization theory in commutative monoids”, Semigroup Forum 100 (2020) no. 1, p. 22-51 | DOI:10.1007/s00233-019-10079-0 | Zbl:1442.20037
  • M. Zakarczemny - “The zero-sum constant, the Davenport constant and their analogues”, Technical Transactions (2020), p. 1 | DOI:10.37705/techtrans/e2020027
  • D. Han H. Zhang - “Zero-sum invariants on finite abelian groups with large exponent”, Discrete Mathematics 342 (2019) no. 12, p. 7, Id/No 111617 | DOI:10.1016/j.disc.2019.111617 | Zbl:1461.11044
  • D. Han H. Zhang - “On generalized Erdős-Ginzburg-Ziv constants of Cnr, Discrete Mathematics 342 (2019) no. 4, p. 1117-1127 | DOI:10.1016/j.disc.2018.12.018 | Zbl:1429.11053
  • X. Zeng G. Deng - “Minimal zero-sum sequences over [[m,n]], Journal of Number Theory 203 (2019), p. 230-241 | DOI:10.1016/j.jnt.2019.02.029 | Zbl:1446.11044

Cité par 18 documents. Sources : Crossref, zbMATH