We prove that for every integer the Davenport constant is asymptotic to when tends to infinity. An extension of this theorem is also provided.
Nous prouvons que pour tout entier , la constante de Davenport est équivalente à lorsque tend vers l’infini. Nous proposons aussi une extension de ce théorème.
@article{JEP_2018__5__605_0, author = {Benjamin Girard}, title = {An asymptotically tight bound for {the~Davenport} constant}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {605--611}, publisher = {\'Ecole polytechnique}, volume = {5}, year = {2018}, doi = {10.5802/jep.79}, zbl = {1401.05311}, mrnumber = {3852262}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.79/} }
TY - JOUR AU - Benjamin Girard TI - An asymptotically tight bound for the Davenport constant JO - Journal de l’École polytechnique — Mathématiques PY - 2018 SP - 605 EP - 611 VL - 5 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.79/ DO - 10.5802/jep.79 LA - en ID - JEP_2018__5__605_0 ER -
%0 Journal Article %A Benjamin Girard %T An asymptotically tight bound for the Davenport constant %J Journal de l’École polytechnique — Mathématiques %D 2018 %P 605-611 %V 5 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.79/ %R 10.5802/jep.79 %G en %F JEP_2018__5__605_0
Benjamin Girard. An asymptotically tight bound for the Davenport constant. Journal de l’École polytechnique — Mathématiques, Volume 5 (2018), pp. 605-611. doi : 10.5802/jep.79. https://jep.centre-mersenne.org/articles/10.5802/jep.79/
[1] - “There are infinitely many Carmichael numbers”, Ann. of Math. (2) 139 (1994) no. 3, p. 703-722 | DOI | MR | Zbl
[2] - “A lattice point problem and additive number theory”, Combinatorica 15 (1995) no. 3, p. 301-309 | DOI | MR | Zbl
[3] - “Regular subgraphs of almost regular graphs”, J. Combin. Theory Ser. B 37 (1984) no. 1, p. 79-91 | DOI | MR | Zbl
[4] - “The interplay of invariant theory with multiplicative ideal theory and with arithmetic combinatorics”, in Multiplicative ideal theory and factorization theory, Springer Proc. Math. Stat., vol. 170, Springer, 2016, p. 43-95 | DOI | MR | Zbl
[5] - “Zero-sum problems in finite abelian groups and affine caps”, Q. J. Math. 58 (2007) no. 2, p. 159-186 | DOI | MR | Zbl
[6] - “The classification of the largest caps in ”, J. Combin. Theory Ser. A 99 (2002) no. 1, p. 95-110 | DOI | MR | Zbl
[7] - “On large subsets of with no three-term arithmetic progression”, Ann. of Math. (2) 185 (2017) no. 1, p. 339-343 | DOI | MR | Zbl
[8] - A combinatorial problem on finite abelian groups. II (1969) no. ZW-007, 60 pages, Technical report | MR | Zbl
[9] - A combinatorial problem on finite abelian groups. III (1969) no. ZW-008, Technical report | Zbl
[10] - “Zero-sum problems and coverings by proper cosets”, European J. Combin. 24 (2003) no. 5, p. 531-549 | DOI | MR | Zbl
[11] - “Zero-sum problems in finite abelian groups: a survey”, Exposition. Math. 24 (2006) no. 4, p. 337-369 | DOI | MR | Zbl
[12] - “On short zero-sum subsequences. II”, Integers 7 (2007), article #A21 | MR | Zbl
[13] - “Additive group theory and non-unique factorizations”, in Combinatorial number theory and additive group theory, Adv. Courses Math. CRM Barcelona, Birkhäuser Verlag, Basel, 2009, p. 1-86 | Zbl
[14] - Non-unique factorizations. Algebraic, combinatorial and analytic theory, Pure and Applied Mathematics, vol. 278, Chapman & Hall/CRC, Boca Raton, FL, 2006 | Zbl
[15] - “On the Davenport constant and on the structure of extremal zero-sum free sequences”, Period. Math. Hungar. 64 (2012) no. 2, p. 213-225 | DOI | MR | Zbl
[16] - “On Davenport’s constant”, J. Combin. Theory Ser. A 61 (1992) no. 1, p. 147-152 | DOI | MR | Zbl
[17] - “Ein Extremalproblem für Gitterpunkte”, J. reine angew. Math. 262/263 (1973), p. 356-360 | MR | Zbl
[18] - “On the distribution of irreducible algebraic integers”, Monatsh. Math. 156 (2009) no. 1, p. 47-71 | MR | Zbl
[19] - “A note on the growth of Davenport’s constant”, Manuscripta Math. 74 (1992) no. 3, p. 229-235 | DOI | MR | Zbl
[20] - “An uncertainty inequality and zero subsums”, Discrete Math. 84 (1990) no. 2, p. 197-200 | MR | Zbl
[21] - Elementary and analytic theory of algebraic numbers, Springer Monographs in Math., Springer-Verlag, Berlin, 2004 | DOI | Zbl
[22] - “A combinatorial problem on finite Abelian groups. I”, J. Number Theory 1 (1969), p. 8-10 | DOI | MR | Zbl
[23] - “A combinatorial problem on finite Abelian groups. II”, J. Number Theory 1 (1969), p. 195-199 | DOI | MR | Zbl
[24] - “The maximal order of the spherical cap in ”, Matematiche 25 (1971), p. 149-157
[25] - “Maximal caps in ”, Des. Codes Cryptogr. 46 (2008) no. 3, p. 243-259 | DOI | MR | Zbl
[26] - “A combinatorial problem in Abelian groups”, Math. Proc. Cambridge Philos. Soc. 59 (1963), p. 559-562 | DOI | MR | Zbl
Cited by Sources: