Compression effects in heterogeneous media
Journal de l’École polytechnique — Mathématiques, Volume 6 (2019), pp. 433-467.

We study in this paper compression effects in heterogeneous media with maximal packing constraint. Starting from compressible Brinkman equations, where maximal packing is encoded in a singular pressure and a singular bulk viscosity, we show that the global weak solutions converge (up to a subsequence) to global weak solutions of the two-phase compressible/incompressible Brinkman equations with respect to a parameter ε which measures effects close to the maximal packing value. Depending on the importance of the bulk viscosity with respect to the pressure in the dense regimes, memory effects are activated or not at the limit in the congested (incompressible) domain.

Nous étudions dans cet article des effets de compression dans des milieux hétérogènes soumis à une contrainte d’entassement maximal. Partant des équations de Brinkman compressibles où la contrainte maximale est prise en compte au sein d’une pression et d’une viscosité de volume toutes deux singulières, nous montrons que les solutions faibles globales convergent (à une sous-suite près) vers des solutions faibles globales d’un modèle biphasique de type compressible/incompressible quand le paramètre ε, mesurant l’intensité de la résistance à la compression au voisinage de l’entassement maximal, tend vers 0. En fonction de la prédominance relative de la viscosité de volume par rapport à la pression dans les régimes denses, nous mettons en évidence l’activation d’effets de mémoire à la limite dans le domaine congestionné (incompressible).

Received:
Accepted:
Published online:
DOI: 10.5802/jep.98
Classification: 35Q35, 35B25, 76T20
Keywords: Compressible Brinkman equations, maximal packing, singular limit, free boundary problem, memory effect
Mot clés : Équations de Brinkman compressibles, contrainte d’entassement maximal, limite singulière, problème à frontière libre, effet mémoire

Didier Bresch 1; Šárka Nečasová 2; Charlotte Perrin 3

1 LAMA UMR 5127 CNRS, Univ. Savoie Mont Blanc Chambéry, France
2 Institute of Mathematics, Academy of Sciences of the Czech Republic Žitná 25, CZ-115 67 Praha 1, Czech Republic
3 Aix Marseille Univ., CNRS, Centrale Marseille, I2M Marseille, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{JEP_2019__6__433_0,
     author = {Didier Bresch and \v{S}\'arka Ne\v{c}asov\'a and Charlotte Perrin},
     title = {Compression effects in heterogeneous media},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {433--467},
     publisher = {\'Ecole polytechnique},
     volume = {6},
     year = {2019},
     doi = {10.5802/jep.98},
     mrnumber = {3974475},
     zbl = {07070266},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.98/}
}
TY  - JOUR
AU  - Didier Bresch
AU  - Šárka Nečasová
AU  - Charlotte Perrin
TI  - Compression effects in heterogeneous media
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2019
SP  - 433
EP  - 467
VL  - 6
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.98/
DO  - 10.5802/jep.98
LA  - en
ID  - JEP_2019__6__433_0
ER  - 
%0 Journal Article
%A Didier Bresch
%A Šárka Nečasová
%A Charlotte Perrin
%T Compression effects in heterogeneous media
%J Journal de l’École polytechnique — Mathématiques
%D 2019
%P 433-467
%V 6
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.98/
%R 10.5802/jep.98
%G en
%F JEP_2019__6__433_0
Didier Bresch; Šárka Nečasová; Charlotte Perrin. Compression effects in heterogeneous media. Journal de l’École polytechnique — Mathématiques, Volume 6 (2019), pp. 433-467. doi : 10.5802/jep.98. https://jep.centre-mersenne.org/articles/10.5802/jep.98/

[1] G. Allaire - “Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes. I. Abstract framework, a volume distribution of holes”, Arch. Rational Mech. Anal. 113 (1990) no. 3, p. 209-259 | DOI | MR | Zbl

[2] B. Andreotti, Y. Forterre & O. Pouliquen - Granular media. Between fluid and solid, Cambridge University Press, Cambridge, 2013 | Zbl

[3] F. Berthelin - “Existence and weak stability for a pressureless model with unilateral constraint”, Math. Models Methods Appl. Sci. 12 (2002) no. 2, p. 249-272 | DOI | MR | Zbl

[4] F. Berthelin - “Theoretical study of a multi-dimensional pressureless model with unilateral constraint”, SIAM J. Math. Anal. 49 (2017) no. 3, p. 2287-2320 | DOI | Zbl

[5] F. Bouchut, Y. Brenier, J. Cortes & J.-F. Ripoll - “A hierarchy of models for two-phase flows”, J. Nonlinear Sci. 10 (2000) no. 6, p. 639-660 | DOI | MR | Zbl

[6] D. Bresch & P.-E. Jabin - “Global existence of weak solutions for compresssible Navier–Stokes equations: Thermodynamically unstable pressure and anisotropic viscous stress tensor”, Ann. of Math. (2) 188 (2018) no. 2, p. 577-684 | DOI | Zbl

[7] D. Bresch, C. Perrin & E. Zatorska - “Singular limit of a Navier-Stokes system leading to a free/congested zones two-phase model”, Comptes Rendus Mathématique 352 (2014) no. 9, p. 685-690 | DOI | MR | Zbl

[8] D. Bresch & M. Renardy - “Development of congestion in compressible flow with singular pressure”, Asymptot. Anal. 103 (2017) no. 1-2, p. 95-101 | DOI | MR | Zbl

[9] P. Coussot - Rheometry of pastes, suspensions, and granular materials: applications in industry and environment, John Wiley & Sons, 2005 | DOI

[10] R. Danchin & P. B. Mucha - “Compressible Navier-Stokes system: large solutions and incompressible limit”, Adv. Math. 320 (2017), p. 904-925 | DOI | MR | Zbl

[11] P. Degond, J. Hua & L. Navoret - “Numerical simulations of the Euler system with congestion constraint”, J. Comput. Phys. 230 (2011) no. 22, p. 8057-8088 | DOI | MR | Zbl

[12] P. Degond, P. Minakowski, L. Navoret & E. Zatorska - “Finite volume approximations of the Euler system with variable congestion”, Comput. & Fluids 169 (2018), p. 23-39 | DOI | MR | Zbl

[13] B. Desjardins, E. Grenier, P.-L. Lions & N. Masmoudi - “Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions”, J. Math. Pures Appl. (9) 78 (1999) no. 5, p. 461-471 | DOI | MR | Zbl

[14] L. Desvillettes, F. Golse & V. Ricci - “The mean-field limit for solid particles in a Navier-Stokes flow”, J. Statist. Phys. 131 (2008) no. 5, p. 941-967 | DOI | MR | Zbl

[15] B. Ducomet & Š. Nečasová - “On the 2D compressible Navier-Stokes system with density-dependent viscosities”, Nonlinearity 26 (2013) no. 6, p. 1783-1797 | DOI | MR | Zbl

[16] S. Énault - Modélisation de la propagation d’une tumeur en milieu faiblement compressible, Ph. D. Thesis, ENS Lyon, 2010

[17] E. Feireisl - “Compressible Navier-Stokes equations with a non-monotone pressure law”, J. Differential Equations 184 (2002) no. 1, p. 97-108 | DOI | MR | Zbl

[18] E. Feireisl, Y. Lu & J. Málek - “On PDE analysis of flows of quasi-incompressible fluids”, Z. Angew. Math. Mech. 96 (2016) no. 4, p. 491-508 | DOI | MR

[19] E. Feireisl & A. Novotný - Singular limits in thermodynamics of viscous fluids, Advances in Mathematical Fluid Mechanics, Birkhäuser/Springer, Cham, 2017 | Zbl

[20] X. Huang & J. Li - “Existence and blowup behavior of global strong solutions to the two-dimensional barotrpic compressible Navier-Stokes system with vacuum and large initial data”, J. Math. Pures Appl. (9) 106 (2016) no. 1, p. 123-154 | DOI | MR | Zbl

[21] A. Lefebvre - “Numerical simulation of gluey particles”, ESAIM Math. Model. Numer. Anal. 43 (2009) no. 1, p. 53-80 | DOI | MR | Zbl

[22] A. Lefebvre-Lepot & B. Maury - “Micro-macro modelling of an array of spheres interacting through lubrication forces”, Adv. Math. Sci. Appl. 21 (2011) no. 2, p. 535-557 | MR | Zbl

[23] P.-L. Lions - Mathematical topics in fluid mechanics. Vol. 2: Compressible models, Oxford Lecture Series in Mathematics and its Applications, vol. 10, The Clarendon Press, Oxford University Press, New York, 1998 | Zbl

[24] P.-L. Lions & N. Masmoudi - “Incompressible limit for a viscous compressible fluid”, J. Math. Pures Appl. (9) 77 (1998) no. 6, p. 585-627 | DOI | MR | Zbl

[25] P.-L. Lions & N. Masmoudi - “On a free boundary barotropic model”, Ann. Inst. H. Poincaré Anal. Non Linéaire 16 (1999) no. 3, p. 373-410 | DOI | MR | Zbl

[26] B. Maury - “Prise en compte de la congestion dans les modeles de mouvements de foules”, 2012, Actes des colloques Caen, docplayer.fr/32954222 | Zbl

[27] B. Maury & A. Preux - “Pressureless Euler equations with maximal density constraint: a time-splitting scheme”, in Topological optimization and optimal transport, Radon Ser. Comput. Appl. Math., vol. 17, De Gruyter, Berlin, 2017, p. 333-355 | MR | Zbl

[28] A. Mecherbet & M. Hillairet - “L p estimates for the homogenization of Stokes problem in a perforated domain”, J. Inst. Math. Jussieu (2018), 1–28 pages | DOI

[29] H. Nasser El Dine - Étude mathématique et numérique pour le modèle Darcy-Brinkman pour les écoulements diphasiques en milieu poreux, Ph. D. Thesis, Lebanese University-EDST; Ecole Centrale de Nantes (ECN), 2017

[30] H. Nasser El Dine, M. Saad & R. Talhouk - “Existence results for a monophasic compressible Darcy–Brinkman’s flow in porous media”, J. Elliptic Parabol. Equ. 5 (2019) no. 1, p. 125-147 | DOI | MR | Zbl

[31] A. Novotný & I. Straškraba - Introduction to the mathematical theory of compressible flow, Oxford Lecture Series in Mathematics and its Applications, vol. 27, Oxford University Press, Oxford, 2004 | MR | Zbl

[32] M. Perepelitsa - “On the global existence of weak solutions for the Navier-Stokes equations of compressible fluid flows”, SIAM J. Math. Anal. 38 (2006) no. 4, p. 1126-1153 | DOI | MR | Zbl

[33] C. Perrin - “Pressure-dependent viscosity model for granular media obtained from compressible Navier-Stokes equations”, Appl. Math. Res. Express. AMRX (2016) no. 2, p. 289-333 | DOI | MR | Zbl

[34] C. Perrin - “Modelling of phase transitions in granular flows”, in LMLFN 2015—low velocity flows—application to low Mach and low Froude regimes, ESAIM Proc. Surveys, vol. 58, EDP Sciences, Les Ulis, 2017, p. 78-97 | MR | Zbl

[35] C. Perrin & E. Zatorska - “Free/congested two-phase model from weak solutions to multi-dimensional compressible Navier-Stokes equations”, Comm. Partial Differential Equations 40 (2015) no. 8, p. 1558-1589 | DOI | MR | Zbl

[36] B. Perthame, F. Quirós & J. L. Vázquez - “The Hele-Shaw asymptotics for mechanical models of tumor growth”, Arch. Rational Mech. Anal. 212 (2014) no. 1, p. 93-127 | DOI | MR | Zbl

[37] B. Perthame & N. Vauchelet - “Incompressible limit of a mechanical model of tumour growth with viscosity”, Philos. Trans. Roy. Soc. A 373 (2015), article ID 20140283, 16 pages | DOI | MR | Zbl

[38] V. A. Vaĭgant & A. V. Kazhikhov - “On the existence of global solutions of two-dimensional Navier-Stokes equations of a compressible viscous fluid”, Sibirsk. Mat. Zh. 36 (1995) no. 6, p. 1283-1316 | DOI | MR | Zbl

[39] N. Vauchelet & E. Zatorska - “Incompressible limit of the Navier-Stokes model with a growth term”, Nonlinear Anal. 163 (2017), p. 34-59 | DOI | MR | Zbl

Cited by Sources: