Corrigendum to “Height graded relative hyperbolicity and quasiconvexity”
Journal de l’École polytechnique — Mathématiques, Volume 6 (2019), pp. 425-432.

There is an unfortunate mistake in the statement and the proof of Proposition 5.1 of [DM17]. This affects one direction of the implications of the main theorem. A correction is given, that states that given a quasi-convex subgroup of a hyperbolic (or relatively hyperbolic) group, the graded relative hyperbolic structure holds with respect to saturations of i-fold intersections, that are stabilizers of limit sets of i-fold intersections.

Une malencontreuse erreur entache la preuve, et l’énoncé, de la Proposition 5.1 de l’article mentionné en titre. Celle-ci affecte un sens d’implication du théorème principal. Nous en donnons ici une correction, qui indique que, étant donné un sous-groupe quasi-convexe d’un groupe hyperbolique, ou relativement hyperbolique, la collection des saturations des intersections multiples (et non pas des intersections multiples elles-mêmes) fournit une structure relativement hyperbolique graduée.

Received:
Accepted:
Published online:
DOI: 10.5802/jep.97
Classification: 20F65, 20F67, 22E40
Keywords: Quasi-convex subgroups, hyperbolic groups, relatively hyperbolic groups, convex cocompact groups
Mot clés : Sous-groupes quasi-convexes, groupes hyperboliques, groupes relativement hyperboliques, groupes convexes cocompacts

François Dahmani 1; Mahan Mj 2

1 Institut Fourier, Université Grenoble Alpes 100 rue des Maths, CS 40700, F-38058 Grenoble Cedex 9, France
2 Tata Institute of Fundamental Research 1, Homi Bhabha Road, Mumbai-400005, India
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{JEP_2019__6__425_0,
     author = {Fran\c{c}ois Dahmani and Mahan Mj},
     title = {Corrigendum to  {{\textquotedblleft}Height} graded relative hyperbolicity and quasiconvexity{\textquotedblright}},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {425--432},
     publisher = {\'Ecole polytechnique},
     volume = {6},
     year = {2019},
     doi = {10.5802/jep.97},
     zbl = {07070265},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.97/}
}
TY  - JOUR
AU  - François Dahmani
AU  - Mahan Mj
TI  - Corrigendum to  “Height graded relative hyperbolicity and quasiconvexity”
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2019
SP  - 425
EP  - 432
VL  - 6
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.97/
DO  - 10.5802/jep.97
LA  - en
ID  - JEP_2019__6__425_0
ER  - 
%0 Journal Article
%A François Dahmani
%A Mahan Mj
%T Corrigendum to  “Height graded relative hyperbolicity and quasiconvexity”
%J Journal de l’École polytechnique — Mathématiques
%D 2019
%P 425-432
%V 6
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.97/
%R 10.5802/jep.97
%G en
%F JEP_2019__6__425_0
François Dahmani; Mahan Mj. Corrigendum to  “Height graded relative hyperbolicity and quasiconvexity”. Journal de l’École polytechnique — Mathématiques, Volume 6 (2019), pp. 425-432. doi : 10.5802/jep.97. https://jep.centre-mersenne.org/articles/10.5802/jep.97/

[DG18] F. Dahmani & V. Guirardel - “Recognizing a relatively hyperbolic group by its Dehn fillings”, Duke Math. J. 167 (2018) no. 12, p. 2189-2241 | DOI | MR | Zbl

[DM17] F. Dahmani & M. Mj - “Height, graded relative hyperbolicity and quasiconvexity”, J. Éc. polytech. Math. 4 (2017), p. 515-556 | DOI | MR | Zbl

[DT17] S. Dowdall & S. J. Taylor - “The co-surface graph and the geometry of hyperbolic free group extensions”, J. Topology 10 (2017) no. 2, p. 447-482 | DOI | MR | Zbl

[DT18] S. Dowdall & S. J. Taylor - “Hyperbolic extensions of free groups”, Geom. Topol. 22 (2018) no. 1, p. 517-570 | DOI | MR | Zbl

[Gro87] M. Gromov - “Hyperbolic groups”, in Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, New York, 1987, p. 75-263 | DOI | MR | Zbl

[Osi06] D. V. Osin - Relatively hyperbolic groups: intrinsic geometry, algebraic properties, and algorithmic problems, Mem. Amer. Math. Soc., vol. 179, no.  843, American Mathematical Society, Providence, RI, 2006 | MR | Zbl

[Raf14] K. Rafi - “Hyperbolicity in Teichmüller space”, Geom. Topol. 18 (2014) no. 5, p. 3025-3053 | DOI | MR | Zbl

[Yan12] W.-y. Yang - “Limit sets of relatively hyperbolic groups”, Geom. Dedicata 156 (2012), p. 1-12 | DOI | MR | Zbl

Cited by Sources: